
����������
�������

Citation: Ulfa, F.; Orton, T.G.; Dang,

Y.P.; Menzies, N.W. Developing and

Testing Remote-Sensing Indices to

Represent within-Field Variation of

Wheat Yields: Assessment of the

Variation Explained by Simple

Models. Agronomy 2022, 12, 384.

https://doi.org/10.3390/

agronomy12020384

Academic Editors: Miklós Neményi

and Anikó Nyéki

Received: 27 December 2021

Accepted: 29 January 2022

Published: 3 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Developing and Testing Remote-Sensing Indices to Represent
within-Field Variation of Wheat Yields: Assessment of the
Variation Explained by Simple Models
Fathiyya Ulfa * , Thomas G. Orton, Yash P. Dang and Neal W. Menzies

School of Agriculture and Food Science, The University of Queensland, St Lucia, QLD 4072, Australia;
t.orton@uq.edu.au (T.G.O.); y.dang@uq.edu.au (Y.P.D.); n.menzies@uq.edu.au (N.W.M.)
* Correspondence: f.ulfa@uqconnect.edu.au

Abstract: One important issue faced by wheat producers is temporal and spatial yield variation
management at a within-field scale. Vegetation indices derived from remote-sensing platforms,
such as Landsat, can provide vital information characterising this variability and allow crop yield
indicators development to map productivity. However, the most appropriate vegetation index and
crop growth stage for use in yield mapping is often unclear. This study considered vegetation
indices and growth stages selection and built and tested models to predict within-field yield variation.
We used 48 wheat yield monitor maps to build linear-mixed models for predicting yield that were
tested using leave-one-field-out cross-validation. It was found that some of the simplest models
were not improved upon (by more complex models) for the prediction of the spatial pattern of the
high and low yielding areas (the within-field yield ranking). In addition, predictions of longer-term
average yields were generally more accurate than predictions of yield for single years. Therefore,
the predictions over multiple years are valuable for revealing consistent spatial patterns in yield.
The results demonstrate the potential and limitations of tools based on remote-sensing data that
might provide growers with better knowledge of within-field variation to make more informed
management decisions.

Keywords: wheat yield prediction; within-field variation; vegetation index; long-term average yields

1. Introduction

Wheat, along with rice and maize, is one of the top three world food crops [1]. In
Australia, it is the major crop produced and has the highest export value of all the grain
crops [1]. Therefore, wheat productivity should be improved to achieve sustainable pro-
ductivity and food security, both regionally and globally [1]. A critical issue for wheat
productivity is how to maximise yields at both broad and fine scales. On a fine scale, such
as within a paddock, precision agriculture can help increase yields by allowing spatially
specific wheat production [2]. However, for this to be effective, good knowledge and
understanding of within-field yield variation and its causes are essential.

Characterization of within-field yield variation is a first step towards identifying the
main drivers of the variation itself, including factors such as soil constraints. Soil constraints,
such as soil sodicity or salinity, will impact crop growth and reduce yields in the same areas
of a field over multiple seasons (in contrast to other drivers of within-field yield spatial
variation, such as diseases, which would impact different parts of the field from season to
season) [2]. Furthermore, the impact of some soil constraints on crop growth might depend
on climatic factors [3], for instance, soil salinity might impact yield most in dry years when
soil water storage is most important. Therefore, besides assessing within-field variation
on a single year, it is also important to identify areas with consistently low yields year
after year.
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Analysing the spatial variation of crop yields (and its drivers) over multiple seasons
requires multi-year crop growth information. Combine-mounted yield monitors can pro-
vide this information, but long-term records for fields are not common. One alternative to
providing the information is remote-sensing imagery from earth-observing satellites. The
Landsat series of satellites is of particular use for this because of its long history, that started
in 1972. The long history has proven Landsat’s excellence in providing a window into the
past, useful for any agricultural monitoring and modelling [4]. Specifically in this study,
together with the spatial resolution of 30-m pixels, this long history makes the Landsat
dataset valuable for identifying stable long-term patterns of spatial variation within large
broadacre cropping fields.

Information derived from satellite imagery can help develop crop yield indicators
to map field-specific productivity [1]. These yield indicators often directly capture crop
growing conditions, such as biomass, using extracted vegetation indices. According to
previous studies, the most widely used vegetation index that correlates with yield is the
Normalised Difference Vegetation Index (NDVI) [5]. However, over time, other vegetation
indices have been developed that provide alternative options to NDVI depending on
the user’s purpose and considerations. For instance, Enhanced Vegetation Index (EVI)
was developed to be more sensitive in areas of high biomass [6]. Determining a suitable
vegetation index is a crucial step in any study seeking to develop yield indices. In some
cases, a combination of more than one vegetation index might improve analysis results [7].
Furthermore, the crop growth stage at which imagery is selected should be considered
before extracting vegetation indices to explore the crop yield predictive ability within a
growing season [8]. The selection of an appropriate growth state is essential since it relates
to how dense the biomass is that hypothetically reflects the wheat yield.

Improved prediction of actual yield does not necessarily correspond to improved
prediction of the within-field spatial pattern of yield. Therefore, a particular focus of the
current study is on whether areas of a field predicted as high/low yielding correspond to
areas of high/low actual yields. If this spatial pattern can be assessed well for individual
seasons, then, in the future, predictions might be used to identify, for instance, areas of
consistent poor growth over multiple growing seasons, which might relate to soil constraints.
In this regard, this study looks not only at how well the spatial variation of yield for
individual growing seasons is assessed, but also at how well the spatial variation of average
yield over multiple growing seasons is assessed.

Many studies have focused on crop yield analysis via remote sensing, such as using a
single vegetation index [9–13] and multiple vegetation indices [14–22]. Additionally, there
are also many studies that have used imageries from around the time of the vegetation
index peak [7,15,17,18]. The current study complements these by asking, for predicting
within-field variation of wheat yields in Australia’s northern grain-growing region:

1. Which vegetation indices perform best? Can combinations of vegetation indices
representing information about biomass and chlorophyll provide improvements
compared to a single index?

2. What growth stage, automatically detected based on analysis of remote-sensing time
series, is best? Can data from multiple growth stages help predictions?

3. Can the raw Landsat bands add further information to improve predictions compared
to those based on the vegetation indices alone, or do pre-formulated vegetation indices
contain most of the valuable information?

These questions are addressed while considering a variety of metrics to assess different
aspects of the predictions of within-field yield variation:

1. How well do predictions represent the within-field variation of actual yields and of
yield ranking?

2. How well do predictions represent within-field yield variation over multiple years as
compared with for a single year?
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Findings from this study will be important for further work looking at the drivers
of this variation and for underpinning software (e.g., ConstraintID; https://constraintid.
net.au/) that can overlay remote-sensing data with soil data, with the aim of diagnosing
reasons for consistent spatial variation of crop yields within fields.

2. Materials and Methods
2.1. Study Area

The study area is in Australia’s northern grain-growing region (as defined by the
Grains Research and Development Corporation of Australia, GRDC), encompassing Queens-
land and New South Wales (Figure 1). This work focuses on the winter wheat crop,
commonly planted from April to July and harvested from September into December.

Agronomy 2022, 12, x FOR PEER REVIEW 3 of 16 
 

 

2. How well do predictions represent within-field yield variation over multiple years 
as compared with for a single year? 
Findings from this study will be important for further work looking at the drivers of 

this variation and for underpinning software (e.g., ConstraintID; 
https://constraintid.net.au/) that can overlay remote-sensing data with soil data, with the 
aim of diagnosing reasons for consistent spatial variation of crop yields within fields.  

2. Materials and Methods 
2.1. Study Area 

The study area is in Australia’s northern grain-growing region (as defined by the 
Grains Research and Development Corporation of Australia, GRDC), encompassing 
Queensland and New South Wales (Figure 1). This work focuses on the winter wheat crop, 
commonly planted from April to July and harvested from September into December.  

 
Figure 1. Study area. 

2.2. Datasets and Pre-Processing 
2.2.1. Crop Yield Monitored Data 

This study used 48 wheat yield maps collected from 23 fields between 2001 to 2016. 
The original yield monitor data were cleaned and block kriged to 30-m grids in previous 
work [12]. A subset of those data used, as some of them were excluded because (i) there 
appeared to be differential within-field management (since our ultimate interest with 
undertaking the current study is the within-field variation of soil constraints, which 
would be confounded by the presence of within-field variation in management); or (ii) 
there was a substantial portion of missing values. This pre-processing resulted in the 48 
yield maps summarised in Table 1.  

Figure 1. Study area.

2.2. Datasets and Pre-Processing
2.2.1. Crop Yield Monitored Data

This study used 48 wheat yield maps collected from 23 fields between 2001 to 2016.
The original yield monitor data were cleaned and block kriged to 30-m grids in previous
work [12]. A subset of those data used, as some of them were excluded because (i) there
appeared to be differential within-field management (since our ultimate interest with
undertaking the current study is the within-field variation of soil constraints, which would
be confounded by the presence of within-field variation in management); or (ii) there was a
substantial portion of missing values. This pre-processing resulted in the 48 yield maps
summarised in Table 1.

https://constraintid.net.au/
https://constraintid.net.au/
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Table 1. Yield maps involved in the study.

Fields Year Fields Year

Field 1 2007, 2008 Field 13 2002, 2005, 2009
Field 2 2003, 2008 Field 14 2002, 2005, 2009
Field 3 2006, 2008 Field 15 2002, 2007, 2009
Field 4 2015 Field 16 2001
Field 5 2016 Field 17 2001
Field 6 2015 Field 18 2001
Field 7 2009 Field 19 2001, 2005, 2009
Field 8 2006, 2009 Field 20 2003, 2004
Field 9 2002, 2005, 2009 Field 21 2002, 2005, 2009

Field 10 2002, 2005, 2009 Field 22 2001, 2002, 2009
Field 11 2003 Field 23 2002, 2003, 2007
Field 12 2003, 2005, 2009

2.2.2. Satellite Data

The imagery used in this work are from Landsat-5 Thematic Mapper (TM), Landsat-
7 Enhanced Thematic Mapper Plus (ETM+), and Landsat-8 Operational Land Imager
(OLI) were collected between 2001 to 2016. Standardised surface reflectance was derived
according to [23], and cloud and cloud-shadow were masked from images using the Fmask
algorithm [24]. The data all sit on grids with 30-m spacings, and here the data from six
bands of each satellite were used, representing the blue, green, red, near-infrared, and two
shortwave infrared portions of the electromagnetic spectrum. Only images with at least
75% coverage of each yield map’s pixels were included; images with cloud coverage of
more than 25% of a yield map were excluded. Incomplete images occurred because of either
(i) partial cloud coverage or (ii) the ‘SLC (Scan Line Corrector)-off’ issue with Landsat-7.
Where images were incomplete but had ≥75% coverage, gaps were filled by regression
kriging as follows. First, the image (from the same season as the incomplete image) with
the highest correlation with the incomplete image was selected as the covariate (provided
it covered the missing pixels). Next, a linear model was fitted to predict the missing pixels
before the residuals from this linear model were kriged and added to the linear function to
give the fill values.

2.2.3. Selection of Vegetation Indices

Eight vegetation indices were tested for studying within-field yield variation. A study
by [7] classified the indices into two groups, including indices that provide a representation
of canopy structure (VISTR) and indices that are good for describing crop photosynthetic
activities (VICHL). The indices are shown in Table 2.

Table 2. Vegetation indices.

Index Equation

Canopy Structural-Related Indices (VISTR)

Normalised difference vegetation index
(NDVI)

NIR − Red
NIR + Red

Enhanced Vegetation Index (EVI) 2.5 NIR − Red
NIR + 6 × Red − 7.5 × Blue + 1

Enhanced Vegetation Index 2 (EVI2) 2.4 NIR − Red
NIR + Red + 1

Ratio Vegetation Index (RVI) NIR/Red
Visible Atmospherically Resistant Index Green

(VARIgreen)
Green − Red

Green + Red − Blue

Difference Vegetation Index (DVI) 2.4 × NIR − Red

Chlorophyll-related indices (VICHL)

Chlorophyll Vegetation Index (CVI) NIR × Red
Green2

Green Chlorophyll Vegetation Index (GCVI) ((NIR/Green) − 1)



Agronomy 2022, 12, 384 5 of 16

The VISTR indices, NDVI, EVI, EVI2, RVI, VARIgreen, and DVI, represent the canopy
structure and are positively correlated with leaf area index (LAI) and biomass. They are
formulated based on the captured light within the visible and near-infrared wavelengths,
primarily through positive relationships with vegetation reflective bands, such as NIR and
green reflectance, and negative relationships with vegetation absorption bands, such as
red and blue reflectance. Based on a literature review, the chosen indices have shown good
yield prediction in previous crop analyses. The NDVI is a benchmark because it is the most
widely used and known index for vegetation fluctuations. The EVI and EVI2 indices were
considered because they are sensitive to very dense biomass, able to reduce the disturbance
effect from the canopy background and the atmosphere, reduce aerosol perturbation of leaf
chlorophyll, and are less prone to saturation [25]. The RVI is a good predictor of leaf water
content and is sensitive to green vegetation, so it is well-correlated with the LAI and leaf
biomass [26]. The VARIgreen index is less sensitive to atmospheric effects, is suitable for
wheat classification, and has an excellent correlation with biomass variation over the entire
wheat growing period, so it will not saturate at high leaf biomass [27,28]. Finally, DVI
is sensitive to soil background change [29]. The VICHL indices, CVI and, GCVI, indicate
nitrogen supply and are a good predictor for crop yield [7]. They are formulated mostly
based on two vegetation reflective bands, the NIR, and green bands, which are primarily
reflected by healthy vegetation. Both CVI and GCVI have a high correlation with crop
chlorophyll content [30]. On the other hand, GCVI is not saturated at high leaf biomass
and has a good relationship with the LAI of cereal crops.

2.2.4. Imagery Selection

This work examined the performance of vegetation indices at different stages, where
remotely-sensed imagery would have the most potential to hold information indicative of
final crop yields. The duration of these stages was fixed at 25 days to allow data capture
from up to three separate Landsat images (potentially data for the same field every 8 days,
when two of the Landsat satellites are operational). Each interval was defined relative to
each vegetation index’s peak values in a time series of field medians; broadly speaking,
these peaks correspond to the greatest biomass period. Therefore, the stages were defined
as pre-peak, peak, and post-peak stages. For instance, the peak NDVI stage was defined
as the 25-day period centred on the date of the peak field-median NDVI; the pre-peak
and post-peak NDVI periods were defined as the preceding and following 25-day periods,
respectively. Note that the data representing any stage could be a composite of up to three
images from the 25-day period.

2.2.5. Set of Covariates

We created models (see Section 2.3 for modelling details) based on various combina-
tions of vegetation indices and stages. We started with a single index from a single-stage
and compared different ways of using information from multiple indices or multiple stages.
The combinations investigated in this analysis were:

• A single index, one stage (e.g., NDVI—peak stage);
• Two indices from different VI groups (see Table 2), both from the same stage (e.g., a

combination of NDVI and CVI in peak stage);
• A single index, all stages (e.g., NDVI from the pre-peak, peak, and post-peak stages);
• Combinations selected via a stepwise analysis, see Section 2.3.2, allowing any combi-

nations of vegetation index and stage or raw Landsat bands and stage.

2.3. Statistical Methods for Developing and Assesing the Yield Index
2.3.1. The Linear Mixed-Effect Model

The linear model provides a simple general form for relationships between covariates
and yield. Typically, this linear model’s residuals (the data minus the linear function’s
predicted values) are assumed to be independent. However, in the context of the yield
maps used as training data in this work, this assumption is not appropriate since the errors
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at locations within any particular yield map will be more closely related than the errors
from locations in distinct yield maps. The linear-mixed model framework [31] is designed
to represent such data; here, the linear function is referred to as the fixed effects, while
the residuals, assumed to be normally distributed with some correlation structure, are
referred to as the random-effects. Covariate combinations and yield monitored data were
paired at each pixel location. A random-effects component (random intercept and slopes)
was included for each specific yield map. Models were fitted using the lme4 [32] package
for R 4.0.2 [33].

2.3.2. Stepwise Analysis

As noted previously, in addition to manually selected covariates, a stepwise analysis
was applied to select combinations of up to six covariates to predict yield. This work
used a well-known model-selection criterion, namely the Akaike Information Criterion
(AIC) [34], to determine the covariate to be added to the linear-mixed model at each step of
the algorithm. This resulted in six models (from the six steps) of increasing complexity. The
lower the AIC, the better the fitted model. However, model assessment via cross-validation
(see Section 2.3.3) was still applied to each of the six models to provide a better indication
of predictive performance.

2.3.3. Cross-Validation

Predictions from the linear-mixed model approach were assessed using a form of
cross-validation; this was done for all sets of manually selected covariates (see Section 2.2.5)
and for the sets of covariates from each step of the stepwise analysis (Section 2.3.2). Since
this work’s main aim was to investigate approaches to predict and map within-field yield
variation based on remote-sensing data, a leave-one-yield-map-out cross-validation [8,12]
method was adopted (which this work refers to from here on as simply cross-validation).
In this approach, each of the 48 yield maps, in turn, was withheld from the training dataset
and a linear-mixed model fitted based on the remaining training data. The concordance
correlation coefficient [35] was used to assess the relationship between observed and
predicted values of the withheld data. The CCC can range from −1 to 1, where the closer
the value to 1, the closer the agreement between observed and predicted values, and values
close to 0 indicate a lack of association between observed and predicted values. The CCC
was first calculated based on the agreement between observed and predicted yields, CCCY.
Since a primary objective in this work was to determine how well the predictions represent
the spatial patterns of within-field variation of yield, the CCC was also calculated based on
the agreement between ranked predictions and ranked withheld data (i.e., the n withheld
data, representing all the pixels within any given yield map, were ranked from 1 to n, as
were the predictions of these data), referred to here as CCCRank. The CCCRank measures
the agreement between pixel rankings based on observed and predicted yields, and as such
provides a way to assess how well the high predicted yields corresponded with high actual
yields, and the low predicted yields corresponded with low actual yields; in this work, it is
this measure that this work focus on most. Each of these measures was calculated for each
withheld yield map in turn, and the spread of the 48 CCC values was summarised.

In addition to assessing predictions for any given year, an approach to investigate
predictions of longer-term average yields was also applied. Our dataset included 15 fields
with more than one year of yield data (Table 1). For a given field with yield maps from T
years, a total of P pixels were identified that were present in all T yield maps. The withheld
data and predictions for this field were labelled as ypt and ŷpt (for p in 1, . . . , P and t in
1, . . . , T), respectively. Then the predictions (for each of the P pixels) of the T-year average
yield were calculated as the average of ŷpt over the T years, and compared with the average
of ypt over the T years (again using CCCRank). For simplicity, this validation measure was
applied only in the final comparison of the validation study.
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3. Results
3.1. Single-Index Models

This work applied cross-validation for models based on a single vegetation index in
each stage (pre-peak, peak, and post-peak). In most cases, using vegetation index data
from the peak stage gave the highest median CCCRank (Figure 2). From the peak stage,
NDVI, EVI, EVI2, RVI (all from the VISTR group of indices), and GCVI (from the VICHL
group) gave the highest median CCCRank values (0.59–0.63), all giving reasonably similar
results. Table 3a shows another performance metric (CCCY) for the models with the five
largest CCCRank values. The values of the median CCCY were all less than 0.2, indicating
that predictions of actual yield were not very reliable.

Agronomy 2022, 12, x FOR PEER REVIEW 7 of 16 
 

 

years, a total of P pixels were identified that were present in all T yield maps. The withheld 
data and predictions for this field were labelled as 𝑦  and 𝑦  (for 𝑝 in 1,… , 𝑃 and 𝑡 
in 1,… , 𝑇), respectively. Then the predictions (for each of the P pixels) of the T-year 
average yield were calculated as the average of 𝑦  over the T years, and compared with 
the average of 𝑦  over the T years (again using CCCRank). For simplicity, this validation 
measure was applied only in the final comparison of the validation study. 

3. Results  
3.1. Single-Index Models  

This work applied cross-validation for models based on a single vegetation index in 
each stage (pre-peak, peak, and post-peak). In most cases, using vegetation index data 
from the peak stage gave the highest median CCCRank (Figure 2). From the peak stage, 
NDVI, EVI, EVI2, RVI (all from the VISTR group of indices), and GCVI (from the VICHL 
group) gave the highest median CCCRank values (0.59–0.63), all giving reasonably similar 
results. Table 3a shows another performance metric (CCCY) for the models with the five 
largest CCCRank values. The values of the median CCCY were all less than 0.2, indicating 
that predictions of actual yield were not very reliable.  

 
Figure 2. The concordance correlation coefficients of ranks for single vegetation indices from a single 
stage. Values show the median CCCRank for each treatment. For better visualisation, the figure 
excluded negative CCCRank. Within a stage, vegetation indices with the same letters are not 
significantly different. 

Table 3. Median CCC values from cross-validation based on manually selected covariates and those 
from the stepwise analysis. Covariates for stepwise models are referred to as S1–S5. 

Models CCCRank CCCY 
(a) Single-index analysis   

NDVI Peak 0.62 0.19 
EVI Peak 0.60 0.13 
EVI2 Peak 0.60 0.14 
RVI Peak 0.63 0.10 

Figure 2. The concordance correlation coefficients of ranks for single vegetation indices from a
single stage. Values show the median CCCRank for each treatment. For better visualisation, the
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significantly different.

3.2. Multi-Index Models

Multi-index models were assessed for combinations of indices from the two vegetation
index groups; six VISTR and two VICHL indices (Figure 3; see Appendices A and B for the
full results). Similarly, to the single-index analysis, all VISTR-VICHL combinations showed
the best performance in the peak stage. In this stage, there were generally only small
differences between models based on the different indices. Furthermore, the results did not
show any notable improvements over those based on a single vegetation index, with the
best median CCCRank value being 0.63. This was also the case in terms of CCCY (Table 3b),
which showed similar ranges of values to those from the single-index analysis.



Agronomy 2022, 12, 384 8 of 16

Table 3. Median CCC values from cross-validation based on manually selected covariates and those
from the stepwise analysis. Covariates for stepwise models are referred to as S1–S5.

Models CCCRank CCCY

(a) Single-index analysis

NDVI Peak 0.62 0.19
EVI Peak 0.60 0.13
EVI2 Peak 0.60 0.14
RVI Peak 0.63 0.10
GCVI Peak 0.59 0.11

(b) Multi-index analysis

NDVI Peak-CVI Peak 0.63 0.18
RVI Peak-CVI Peak 0.63 0.11
NDVI Peak-GCVI Peak 0.62 0.14
RVI Peak-GCVI Peak 0.62 0.10
VARIgreen Peak-GCVI Peak 0.62 0.13

(c) Multi-stage analysis

NDVI All Stages 0.61 0.17
EVI All Stages 0.58 0.13
EVI2 All Stages 0.56 0.13
RVI All Stages 0.64 0.12
GCVI All Stages 0.61 0.16

(d) Stepwise Analysis

S1 = GCVI Post Peak 0.56 0.11
S2 = S1 and EVI Pre Peak 0.63 0.17
S3 = S2 and EVI2 Peak 0.62 0.19
S4 = S3 and VARIgreen Post
Peak 0.62 0.19

S5 = S4 and SWIR1 Post Peak 0.60 0.17
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3.3. Multi-Stages Model

In the multi-stage analysis, this work used data from a single vegetation index from
all three stages (pre-peak, peak, and post-peak) in the same model. Similarly, in the single-
stage analysis, the multi-stage analysis also showed only relatively small differences in
CCCRank between indices (Figure 4; see Appendix C for full results). Most of the indices
showed a slightly better agreement in the peak stage alone, rather than in the multi-stage



Agronomy 2022, 12, 384 9 of 16

analysis (NDVI, EVI, EVI2, VARIgreen, and DVI). This was also the case in terms of actual
yield predictions (assessed by the median CCCY; Table 3c).
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3.4. Stepwise Analysis

Aside from the analyses that used manually selected covariates (a single-index, multi-
ple indices, and multiple stages), this work also applied a stepwise method to select models
with up to six covariates. The covariates involved were selected based on the lowest AIC
among all the models and subsequently assessed using cross-validation. The first covariate
selected was GCVI from the post-peak stage (Table 4), which gave a median CCCRank of
0.56 (Table 3d and Figure 5). The variables selected in the second and third steps were from
the pre-peak and peak stages, which improved the median CCCRank value to over 0.6. At
the fifth and sixth steps, data from the SWIR1 band were selected, first from the post-peak
stage, and next from the peak stage. Cross-validation results from the models selected in
steps two, three, four, and five were not significantly different (Figure 5). Based on the
cross-validation results, the model from step two, which involved the combination of GCVI
post-peak and EVI pre-peak, gave the largest median CCCRank (0.63). This was still no
better than the best model from the single-stage analysis (RVI Peak), indicating no better
representation of the spatial pattern of yield. In terms of actual yield predictions, results
did improve slightly but the best median CCCY values were only around 0.2 (Table 3d).
Results showed the best models when considering both metrics were those from Steps 2–4
of the stepwise algorithm, which showed CCC values close or similar to those of the best
model in terms of CCCRank (RVI Peak, GCVI post-peak, and EVI pre-peak) and in terms of
CCCY (NDVI peak).

Table 4. AIC summary for models in stepwise analysis. Covariate sets are referred to as S1–S6.

Steps Covariate Added to Model AIC

1 S1 = GCVI Post Peak 3626
2 S2 = S1 and EVI Pre Peak −9881
3 S3 = S2 and EVI2 Peak −17,753
4 S4 = S3 and VARIgreen Post

Peak
−20,700

5 S5 = S4 and SWIR1 Post Peak −22,649
6 S6 = S5 and SWIR1 Peak −24,778
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3.5. Comparing Multi-Year Average Prediction and Single Year Prediction

A performance measure was calculated for fields with more than one year of yield
data. For this analysis, this work focused on just the model of NDVI peak because it
was considered as a well-known vegetation index and had quite a high median CCCRank
compared to other models. As shown in the three years of data, similar spatial patterns of
yield were observed (and predicted) for all three years. In this field, there were 825 pixels
in all three years, and only these common pixels are analysed here and shown in Figure 6.
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The validation statistics for a single year showed large differences in CCCY and
CCCRank between years. The CCCY values for the first and the third year were 0.47, while
the second year was 0.25, giving a median CCCY value of 0.47 over the three years. The
CCCRank values showed smaller differences between years, with the highest CCCRank value
occurring for the second-year data (0.78), then followed by the first and third-year results
(0.75 and 0.67), giving a median CCCRank value of 0.75 over the three years.
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These median values (0.47 for CCCY and 0.75 for CCCRank) indicate how well yields
for individual years were predicted in this field. An indication of how well longer-term
average yields were predicted is provided by directly comparing the three-year-average
maps (those on the final row of Figure 6); the CCCY and CCCRank for the three-year-average
maps were 0.52 and 0.83, respectively.

Results in Figure 6 illustrate the process of multi-year validation for one field; Table 5
summarises the results from similar analyses of all 15 fields where multi-year data were
available. The table shows that all the final mean and median CCC values for both metrics
were larger in the multi-year analysis than in the single-year analysis. In particular, the
CCCRank from the multi-year analysis was on average 0.12higher than that from the single-
year analysis (p < 0.05, from a paired t-test). Moreover, over the 15 fields analysed for Table 5,
the CCCRank for individual fields ranged from 0.11 (Field 3, Year 2008) to 0.89 (Field 9, Year
2002), whereas the multi-year CCCRank values ranged from 0.42 for Field 3 to 0.86 for Field
13. Thus, the multi-year results suggest that using multi-year predictions reduces the risk
of very poor predictions.

Table 5. CCC values from single-year analysis (median of CCC values from individual years) and
multi-year results summary.

Single Year Long-Term
Fields CCCY CCCRank CCCY CCCRank

Field 1 0.02 0.64 0.21 0.73
Field 2 0.13 0.68 0.12 0.78
Field 3 0.02 0.36 0.24 0.42
Field 8 0.07 0.63 0.05 0.75
Field 9 0.18 0.64 0.25 0.85

Field 10 0.17 0.67 0.13 0.67
Field 12 0.26 0.57 0.12 0.69
Field 13 0.16 0.81 0.21 0.86
Field 14 0.13 0.24 0.17 0.47
Field 15 0.00 0.24 0.08 0.57
Field 19 0.32 0.61 0.31 0.66
Field 20 0.27 0.55 0.24 0.62
Field 21 0.47 0.74 0.79 0.85
Field 22 0.41 0.61 0.48 0.70
Field 23 0.47 0.75 0.52 0.83
Median 0.17 0.63 0.21 0.70

Mean 0.21 0.58 0.26 0.70

4. Discussion
4.1. Selection of Vegetation Indices and Stages for Simple Yield-Prediction Models

Several of the vegetation indices tested performed similarly in terms of the median
CCCRank. Figure 2 depicts this similarity for the best five CCCRank within all stages (NDVI,
EVI, EVI2, RVI, and GCVI). All five indices ranged from 0.51–0.55 during the pre-peak
stage, 0.59–0.63 during the peak stage, and 0.54 to 0.56 during the post-peak stage. These
top five models came from both groups of indices, where NDVI, EVI, EVI2, and RVI are
categorised as canopy structural-related indices (VISTR), and GCVI is a chlorophyll-related
index (VICHL). Thus, this study did not find any evidence to suggest that there is an
advantage to using a canopy structural-related index (VISTR) over a chlorophyll-related
index (VICHL) or vice versa. A previous study from [7] also reported similar findings, where
the VISTR and VICHL gave a similar performance for predicting actual wheat yields.

Two possible ways of incorporating extra information (compared with a single-index,
single-stage model) were investigated: using data from two different vegetation indices
(one canopy structural-related index and one chlorophyll-related index, both from the
same stage; multi-index models) and using data from all stages (for the same vegetation
index; multi-stage models). Neither of these approaches resulted in large improvements in
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predictions (a best value of CCCRank of 0.63 from the multi-index models and of 0.64 for the
multi-stage models) compared with the single-index single-stage models. A similar result
was also reported by [7], who also found only a small increase in predictive power when
assessing a combination of structural and chlorophyll-related indices [7] assumed that this
similarity occurred because structural and chlorophyll-related indices respond to different
aspects of the crop (morphological and physiological). In our study, one possible reason
for the lack of improvement might be the overlap in information (correlation) between
the vegetation index data from the same index (different stages) or from the same stage
(different indices). However, results from a stepwise analysis—where data from different
vegetation indices, different stages, and the raw Landsat bands could be added to the
model—also gave a best value of the median CCCRank of 0.63. In this case, the information
added to the model at each step would not be so correlated with information already in
the model. Therefore, results here (based on this dataset of yield monitor data and the
pool of simple linear models of vegetation indices tested) suggest linear functions of a
single vegetation index (any of NDVI, EVI, EVI2, RVI, and GCVI) from around the time of
its season peak would give reasonably accurate representations of the spatial patterns of
within-field yield variation (a median CCCRank of around 0.6).

4.2. Another Metric Assesing Properties of Yield Predictions

In terms of actual yield predictions, the best value of the median CCCY was only 0.2.
The validation statistics in terms of this metric were smaller than for yield rankings because
it is more challenging to predict actual yields and their within-field variation (based on just
remote-sensing data) than to predict the within-field yield rankings. One possible reason
for the very modest results in terms of CCCY (in comparison with other studies, e.g., [7]) is
the cross-validation approach used. This form of cross-validation would provide a sterner
and more relevant prediction test than internal metrics (e.g., R2) or cross-validation with
random splitting. Other studies also recommended the use of this cross-validation strategy
since it provides a realistic and accurate prediction [3,4]. In any case, the results indicated
that the predictions of actual yield for any single year, based on the models involved in this
work, should be used cautiously.

4.3. Stepwise Results Revealed Some Simple Models

Initially, this work hypothesised that the best single-covariate model would be one
consisting of a vegetation index coming from the peak stage. In terms of the median
CCCRank from cross-validation (Figure 2), our results backed up this hypothesis. However,
the first variable to be added in the stepwise analysis was GCVI from the post-peak stage,
which gave the smallest AIC of all the single-covariate models. Although selected based on
the AIC, this model did not perform so well in terms of the median CCCRank from cross-
validation; this highlights the importance of validation methods and metrics tailored to
assess the properties that are considered most important for a particular application, which
in this case was defined as an assessment of spatial patterns of within-field yield variation.

There were two interesting observations that can be made from this stepwise analysis:
(i) the first three covariates to be added were all different vegetation indices from different
stages and (ii) the peak stage information was not included until step three. The first three
indices were GCVI post-peak, EVI pre-peak, and EVI2 peak. A possible reason is that there
might be overlapping information in different vegetation indices from the same stage or in
the same vegetation index from different stages. Therefore, the most useful models include
different indices and different stages. Furthermore, in steps 5 and 6, data from a raw band
(SWIR1) were added to the model. The selection of SWIR1 was possibly because, in the
previous steps, all the vegetation indices added to the model were formulated from the
visible and NIR bands. Therefore, the SWIR1 band might provide additional information,
such as moisture information [36], that was not included in the previous steps.

In terms of CCCRank, there was no notable improvement from the stepwise models
(Table 3d) compared with the single-index models (Table 3a). However, in terms of CCCY,
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the cross-validation results suggested that the models from steps 2–4 gave the best all-
around performance. The CCCY values were around 0.2, which were slightly higher than
other model performances. Therefore, if one is willing to use a model of more than a single
index, then one of these models might be preferable.

4.4. Multi-Year Analyses and Implications

There are many possible reasons for poor prediction performance. Notably, for a
particular year, there could be issues with the yield monitor data or with the failure of the
remote-sensing data to capture the information most relevant to yield variation (because
of the timing of imagery or an index that is not sensitive within a particular field and
date). These issues can lead to predictions that show a good correlation with the data for
a particular year, but a poor correlation for the same field in other years. Therefore, in
this work, a long-term-average analysis was also applied for some fields that presented
more than one year of yield data (fields with two or three years in our dataset). The multi-
year yield analysis (applied with the NDVI peak single-covariate model) showed that the
mean and median of both metrics were better for the multi-year than for the single-year
results. These results suggested that a single year’s validation might provide a conservative
assessment of long-term-average yield prediction performance. In terms of the mean over
all the multi-year fields, the improvement from the multi-year results was 0.05 for CCCY
and 0.12 for CCCRank.

Based on these multi-year improvements, it might be reasonable to expect predictions
of averages over more years, such as five or ten years (our dataset had fields with at
most three years of data), to give larger improvements. Besides, the results also give
confidence that predictions from remote-sensing vegetation indices over multiple years
are a valuable tool for precision agriculture to reveal consistent spatial patterns in yield.
Previous studies [2,37] have used consistent yield patterns to target soil sampling to identify
the reason behind the low yielding areas; given that persistently low yield can indicate
the presence of a soil constraint. Therefore, the methodology identified from this work
could be used to develop tools to provide growers with important information about the
potential presence and location of soil constraints on a paddock scale. In further work,
the current analysis will be built on by using predictions based on models in this paper
together with data on other factors that potentially drive the spatial variation on crop yield
(e.g., topography, climate, soil).

5. Conclusions

This work concluded that there were only marginal differences in the performance
of the different vegetation indices tested. The well-known indices, such as NDVI, RVI,
EVI, and EVI2, mostly showed good predictions of the spatial pattern of yield, but only
modest performance in terms of predictions of actual yield (when assessed via within-field
metrics with leave-one-yield-map-out cross-validation). In terms of vegetation index group,
indices from both the structural-related group (VISTR) and the chlorophyll-related group
(VICHL) gave a similar performance in the single-index, single-stage analysis. In terms
of stages, data from the peak stage gave the best performance, and combining data from
the same vegetation index but from multiple stages did not improve predictions. Results
from a stepwise analysis revealed some simple combinations of different vegetation indices
from different stages could have better predictions in terms of actual yield predictions but
did not improve over the single-index models in terms of yield ranking predictions alone.
Moreover, the results showed that longer-term average yield predictions were generally
more accurate than those of yield for single years, and also reduced the risk of having
predictions with poor performance.
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