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Abstract: Adoption of zero-tillage practices with residue retention in field crops has been introduced
as an alternative soil-management technique to counteract the resource degradation and high produc-
tion costs derived from intensive tillage. In this sense, the biophysical models are valuable tools to
evaluate and design the most suitable soil-management technique in view of future climate variability.
The aim of this study was to use the ARMOSA process-based crop model to perform an assessment
of tillage (T) and no-tillage (No-T) practices of durum-wheat-cropping systems in the Campania
region (South of Italy) under current and future climate scenarios. First, the model was calibrated
using measurements of soil water content at different depths, leaf area index, and aboveground
biomass in the T and No-T treatments during the 2013–2014 season. Then, the model was further
applied in the T and No-T treatments to future climate data for 2020–2100 that was generated by the
COSMO-CLM model using the RCP4.5 and 8.5 paths. Results of the calibration depicted that the
model can accurately simulate the soil-crop-related variables of both soil-management treatments,
and thus can be applied to identify the most appropriate conservation agricultural practices in the
durum-wheat system. The simulation of soil water content at different depths resulted in small
relative root mean square errors (RRMSE < 15%) and an acceptable Pearson’s correlation coefficient
(r > 0.51); and the goodness-of-fit indicators for simulated LAI and AGB resulted in acceptable
RRMSE (RRMSE < 28%), and high r (r > 0.84) in both soil-management treatments. Future climate
simulations showed that No-T management will deliver 10% more wheat yield than the T, with an
annual average 0.31% year−1 increase of soil organic carbon, and an increase of 3.80% year−1 for N
uptake, which can diminish the N leaching. These results suggest that No-T could be implemented
as a more resilient management for farming system in view of climate uncertainty and scarcity of
resources. Therefore, these findings support the potential of the ARMOSA model to evaluate the
soil-crop response of the durum-wheat system under different management conditions and to design
appropriate soil-management practices for current and future climate predictions.

Keywords: climate change; conservation agriculture; crop-based model; durum wheat; soil spa-
tial variability
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1. Introduction

The degradation of land and ecosystem services caused by intensive tillage agricultural
practices has prompted an alternative farming paradigm known as conservation agriculture [1].

Conservation agriculture (CA) is an aggregate of best management practices that is
built on three linked principles: minimum soil disturbance (i.e., no-tillage; No-T), preser-
vation of a permanent soil organic cover, and crop rotation and diversification [2]. These
practices are meant to counteract soil degradation and enhance microbial biomass and
water infiltration by minimum tillage. Meanwhile, mulching could diminish soil evapora-
tion and runoff, enhance topsoil organic matter, and improve the stability of surface soil
aggregates [3–6]. Moreover, No-T practices reduce production costs by decreasing fuel
consumption and thus, greenhouse emissions [1,7].

Consequently, all these practices should sustain and increase crop productivity, and
water and nutrient use efficiency, which would be translated into raising the farmer’s
income. However, there is still the belief among farmers that CA practices can cause yield
penalties, which is preventing their adoption and spread [1,8,9]. Moreover, it is important to
bear in mind that the benefits of CA previously stated may not be visible in the short term,
but rather in the medium- and long-term results [7,9]. In addition, much research has been
carried out about the effects derived from converting to CA, which highlighted diverse
responses according to local characteristics. Thus, the overall outcomes demonstrated
the need to design site-specific soil-management practices to translate their potential into
environmental and economic benefits [7].

The CA farming system has grown in recent years at a global scale, with CA crop-
land representing 12.5% of the total global cropland in 2016, with an increased tendency.
Specifically, CA was implemented in 45% and 32% of the total cropland in USA and South
America, respectively [1]. In addition, although the Common Agricultural Policy of the
European Union (CAP, Rural Development Programme 2014–2020) promoted the adoption
of CA, there has not been a sustained and broad adoption of these practices in European
agriculture, and CA farmland represents only 5% of the EU’s total cropland [1]. Specifically,
in the case of Italy, the part of arable land that farmers declared would be dedicated to No-T
practices represent around 6% of the total Utilized Agricultural Area, according to the last
available agriculture census [10], which has been grant-supported by the rural develop-
ment programmes of the Italian administrative regions [11]. Therefore, these agricultural
practices are still in a developing phase in Italy, with constraints for implementation in a
lack of know-how and the mindset that CA would lead to yield penalties [9].

The future CAP (2023–2027) has listed CA as an agricultural practice supported by
the new so-called eco-scheme instrument, as these practices foster climate mitigation
and prevent soil degradation. Therefore, farmers that promise to implement CA in their
cultivation practices will be rewarded by this new instrument of the CAP policy [12].

The durum-wheat crop cultivated in the Campania region represents 4.4% of the
national surface (i.e., 1.21 million ha) and 4.5% of the national production (4.2 × 106 kg) [10].
In the Campania territory there are three main milling industries, which represent 3% of the
total national industries, with a producing capacity of more than 2 × 105 kg; and 15 pasta
industries, which represent 13% of total national production. In Italy, semolina production
reached 4.2 × 106 kg in 2020 (an increase of 9% compared to 2019) and 3.85 × 106 kg were
used for pasta making [13].

Italy is the second highest-producing country in the world of durum wheat (4.2 × 106 kg),
after Canada (5.2 × 106 kg); and the first in Europe, which accounts for 49.4% (8.5 × 106 kg)
of the total EU production [14]. Among the Italian regions, Puglia (25.2% of the total
national production) represents the top producer, reaching about one million tons, while
Campania is listed in the eighth place [10].

In the Campania region, the most common method for wheat cultivation is by conven-
tional tillage (T), while direct seeding is barely spread and is decreasing [9]. The impact
of T is especially considerable in terms of energy and environmental factors in the hilly
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and mountainous areas of Campania because they predispose the land to water and wind
erosion, that lead to a loss of fertility in cultivated land.

An increase in the severity and frequency of drought and floods events, changes in
precipitation, temperature, and the carbon dioxide concentration in the atmosphere have
been forecast for the Mediterranean region [15–17]. This variability in the climate is predicted
to have effects on soil water availability, carbon storage, and in crop yields and quality.
Consequently, it is paramount to study farm management strategies that maintain agricultural
production at environmental and economically viable levels. Among these strategies, CA
is being fostered as valuable mitigation and adaptation practices to environmental changes
that are affecting farming systems [7,18,19]. Farmers have been able to adopt CA strategies in
different agri-environmental characteristics to cope with climate variability [20].

Field tillage experiments are time-consuming, expensive, laborious, and require specific
expertise skills. Thus, properly calibrated crop process-based models may be used to evaluate
the impact of diverse soil-management techniques on crop productivity and water–nutrients
dynamics to identify the most appropriate and site-specific soil-management strategies [1,6,21].

Some studies have employed crop-based models to evaluate the effects of different CA
practices on crop performance, soil–water balance, and nutrients dynamics under different
agro-environmental conditions [19,22–24]. However, these studies showed that most of the
available crop models are not able to simulate accurately the long-term effects of the differences
between CA and T [25]. Authors argue that this fact may be due to missing specific modules
(i.e., a tillage module) in the models to depict the effects of CA operations on soil variables [4];
and flexibility in defining farm management practices that change season by season [25].

Process-based crop modeling has been coupled with weather projections to gain
knowledge on the effects of climate change on agricultural production, and thus identify
the most appropriate CA strategies [20]. In this way, crop modeling could provide insight
on mitigations and adaptations to climate change by recognizing proper conservation
agricultural practices [26].

The ARMOSA model is a process-based cropping system model that has been proved
to be suitable for field crops and to simulate different soil-management practices under
diverse environmental conditions [7,27,28].

The overall objective of the study was to evaluate the effect of two different soil-
management practices—T and No-T—on durum-wheat productivity and soil-related vari-
ables in the Mediterranean climate in current and future scenarios by using the ARMOSA
model (Figure 1).

Figure 1. Storyline of the methodology applied.
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The specific objectives consisted of (i) calibration of the parameters of the crop growth
model for durum wheat under T and No-T soil-management techniques in a hilly Mediter-
ranean region; and (ii) forecast wheat productivity, soil organic carbon (SOC) stock, and
nitrogen (N) uptake under two contrasting climate-change scenarios for T and No-T
soil management.

2. Materials and Methods
2.1. Site Description

The field data acquisition was conducted during the period 2013–2014 (October–June)
in the durum-wheat field located in Scampitella (Campania, Italy 535 m a.s.l.). The durum-
wheat field (Triticum durum Desf., var. Iride) covers 8.5 ha with a crop density of 350 viable
seeds per m−2. The selected farm is a representative durum-wheat farm in the Campania
region in terms of farm size, economical dimensions, and agronomic and soil-management
practices [10].

The experimental area was located in two sites, with different soil-management
strategies, which were used for field monitoring. The T treatment (1.5 ha; 41◦08′77′′N,
15◦33′80′′ E) involved ploughing in summer at 40 cm depth using a subsoiler, and in au-
tumn at least two secondaries tillage using a disk harrow for seedbed preparation. The No-T
management (No-T) (7.0 ha; 41◦08′59′′ N, 15◦33′79′′ E) started in the 2008–2009 growing
season. A non-selective herbicide treatment was used (i.e., glyphosate at 3 L ha−1) for weed
control, and after 7–10 days the durum wheat was sown with a specific seeder “Directa”
300 (:MASCHIO GASPARDO S.p.A., Campodarsego, PD, Italy) for undisturbed soil.

Before sowing and for both treatments, the basal fertilization was 36 kg N ha−1 and
42.24 P ha−1 (200 kg ha−1 of di-ammonium phosphate, DAP, 18-46-00), while during the
initial tillering and stem-elongation stages of the durum wheat, 46 kg N ha−1 (100 kg ha−1

of urea 46-00-00) and 42 kg N ha−1 (200 kg ha−1 of sulfate of ammonia, SOA, 21-00-00) were
applied, respectively. In both techniques, the management of crop residues was envisaged.
The latter were chopped directly in the field by the combine harvester during harvesting
(21 June 2014) and buried in the T treatment with ploughing and kept on the surface in the
No-T treatment.

The climate is typically Mediterranean, with annual rainfall varying between 600 and
1000 mm, most of which falls in fall and winter; average monthly temperatures vary from
7 ◦C to 27 ◦C, respectively, from January to July (Figure 2).

2.2. Soil Characterization

A geophysical scan of the farm soils using the electromagnetic induction (EMI) (GSSI:
Nashua, NH, USA) sensor was performed to investigate the spatial variability of the
field experimental farm. The EMI sensor allowed us to obtain aggregated information on
the spatial variability of soils through the volumetric measure of the apparent electrical
conductivity of soils.

The Profiler EMP-400 conductivity meter (GSSI: Nashua, NH, USA) was used to assess
the soil’s apparent electrical conductivity. The Profiler used three frequencies at 5, 10, and
15 KHz in vertical dipole mode (VDM). The Tx and Rx coils were spaced 1.22 m apart with
a depth of investigation of 1.95 m. The instrumentation was placed on a PVC sled and
was towed by a tractor placed at about 5 m to avoid interference phenomena and data
alteration. The use of the sled maintains a constant distance of the instrument from the
ground to perform the acquisition faster and more easily.

The data obtained were filtered to eliminate any outliers, and then were subjected to
variographic analysis and interpolated by ordinary kriging.

The pedogenetic horizons recognized in the opening of the soil profiles were sampled
for the chemical–physical and hydrological analyses in the two plots located in the T
and No-T field, respectively. Chemical analyses were conducted according to the Official
Methods for Soil Chemical Analysis developed by the Italian Ministry of Agriculture and
Forestry Policies [30]. The soil organic matter was determined by oxidation with potassium
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dichromate solution in the presence of sulfuric acid following the Walkley–Black method.
The pH values were determined in H2O (soil/water suspension 1:2.5) and in KCl 1 M (soil
suspension/solution 1:2.5). The CEC was determined according to the BaCl2 method at pH
8.2 and triethanolamine. The total carbonate content was determined by acid solubilization
and gas-volumetric determination of CO2, which takes place by treating a fine soil sample
with hydrochloric acid and measures with the Dietrich–Fruehling calcimeter. The electrical
conductivity was determined on aqueous extract, with water–soil ratio of 5:1.

Figure 2. Daily acquired climatic variables at the weather station located in the experimental site
in 2013 and 2014: (a) maximum (Tmax) and minimum (Tmin) temperatures, (b) precipitation and
Hargreaves-reference evapotranspiration (ETo) [29], and (c) wind speed at 2 m height (u2).

The soil texture was measured by a laser diffractometry granulometer (Malvern
Mastersizer 2000:Malvern, UK).

The hydraulic properties were carried out by laboratory analyses on undisturbed
samples taken in each of the soil horizons. First, soil samples were saturated, then (i) the
saturated soil water content, θs, was measured by a gravimetric method and (ii) the satu-
rated hydraulic conductivity, ks, was measured using the falling head permeameter [31].

Subsequently, after inserting three tensiometers at different depths in the soil sample,
an automatically recording of the pressure head and the weight of the sample during a
1-dimensional evaporation process, allowed us to get three h(t) time series for the three
different depths where the tensiometers were inserted and one averaged for the whole
soil sample times series, θ(t) [32]. From this information the water retention curve was
obtained by applying an iterative method [33]. Additional points of the dry branch of the
water retention curve were determined using a dewpoint potentiometer (WP4-T, Decagon
Devices, Washington, DC, USA). Finally, these water retention data were parameterized by
fitting measured data to the van Genuchten model [34].

2.3. Field Monitoring

The dates defining the crop phenological stages and the corresponding BBCH decimal
code for the growth stages of durum wheat, following the Zadocks scale [35], are indicated
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in Table 1 for the crop-growing season of the study. The planting date of the two fields took
place on 26 October 2013 using the Iride cultivar of durum wheat, and the harvest date
took place on the 21 June 2014 in both fields (i.e., 236 days after sowing, DAS).

Table 1. Days after sowing (DAS) and BBCH of the crop growth stages.

Crop Growth Stages

Season Sowing Emergence Tillering Stem
Elongation

Ear
Emergence Flowering Begin Grain

Filling
Physiological

Maturity Harvest

2013–2014 0 31 103 141 165 184 206 224 236
BBCH scale 00 09 29 35 55 65 73 89 99

Table 2 illustrates the several variables measured in the experimental field.
A weather station (Watchdog 2900ET—Spectrum Technologies) was set up next to the

experimental site for the hourly automatic acquisition of precipitation, air temperature at
2 m height, relative humidity, wind velocity, and solar radiation.

Plant biophysical characteristics (e.g., leaf area index, aboveground biomass) were
measured starting from the tillering stage of wheat and up to harvest following the
phenological stages indicated in Table 1 to characterize the response of the plant to the
two cultivation methods.

Eight aboveground biomass samples were taken from an area of 0.51 m2 (1.02 × 0.5 m),
which included six contiguous rows. The sampling at harvest was taken from an area of
1 m2 within each test area and used to measure the following parameters: height of the
plant (cm, excluding awns), total weight of biomass and grain (g m−2), and harvest index
(weight of grain/total weight of biomass × 100).

The leaf area index (LAI) was measured by using LAI Licor 2000(LI-COR Inc.: Lincoln,
NE, USA). Three random subareas of each experimental field were selected of 0.09 m2

(0.3 × 0.3 m), for a total number of nine samples in each field.
Once the LAI measurements were completed, the plant material collected was used

for the estimation of the aboveground biomass (AGB) by drying in an oven at 65 ◦C until a
constant weight was reached. Until 11 April, the plant material was mainly leaves. After
this date, when stems and spikes were well-differentiated, the plant was separated into
the different fractions. The total aboveground biomass was obtained by adding up the
component fractions.

Rooting depth was measured on 7/2, 18/3 and 30/4/14 by trenching in the soil.
Subsequent excavations did not show substantial differences compared to the observation
on 30/4, therefore the measurements of the rooting depth were discontinued.

Three random test areas of 21 m2 each (7.0 × 3.0 m) were selected in each field to
measure at harvest the grain yield (kg ha−1 adjusted to 13.0% moisture).

Two automatic stations were set up for data acquisition of soil water content by using
the time domain reflectometry (TDR) technique. The stations adopted consisted of a
Campbell TDR100 time domain reflectometer, to which are connected, through a system of
SDMX50SP Campbell coaxial multiplexers, 12 probes.

The TDR probes were installed at 0–15, 20, 30, 40, and 50 cm depth according to the
recognized pedological horizons. The probes were self-built and calibrated to determine
the exact length of the cable and the electrical length, thus the probes were of the three-
wire type with steel waveguides varying between 10 cm and 15 cm in length. The data
acquisition and recording were carried out by a CR10X Campbell datalogger (Campbell
Scientific: Logan, UT, USA). The waveforms were collected every 4 h starting from 18
November 2013 until 26 June 2014.
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Table 2. Field measured variables to be used in the model simulations.

Field Monitoring

Variable Method Frequency Number of
Measurements Type

Meteorology

Minimum/maximum air
temperature (◦C)

Local meteorological
station

Daily 730 ContinuousRelative humidity (%)
Global solar radiation (MJ m−2)

Precipitation (mm)
Reference evapotranspiration

(mm)
Hargreaves ETo

method Daily 730 Continuous

Soil Volumetric soil water content
(m3 m−3)

Time domain
reflectometry sensor Daily 460 (T)

548 (No-T) Continuous

Crop
Leaf area index (m2 m−2) LAI Licor 2000 At each

phenological stage 6 Discontinuous

Aboveground biomass (Kg ha−1) Oven drying At each
phenological stage 9 Discontinuous

2.4. Climate Scenarios

Future climate scenarios were obtained by using the high-resolution regional climate
model (RCM) COSMO-CLM [36] employing a spatial resolution of about 11 Km at European
level with optimization at Italian scale, able to employ a spatial resolution of 0.0715◦

(about 8 km). These last model data were validated, resulting in agreement with different
regional high-resolution observational datasets, in terms of average temperature and
precipitation [37] and in terms of extreme events [38].

In particular, two different simulations were performed by employing two standard
IPCC (Intergovernmental Panel on Climate Change) RCP4.5 and RCP8.5 greenhouse gas
(GHG) concentrations [39]. Specifically, the RCP4.5 scenario shows stabilization in the GHG
emissions, while the RCP8.5 scenario has a rapid increase of the GHG concentration. The
initial and boundary conditions for running RCM simulations with COSMO-CLM were
provided by the general circulation model CMCC-CM [40], whose atmospheric component
(ECHAM5) has a horizontal resolution of about 85 km. For both future climate scenarios,
the period considered in the simulation was 2020 to 2100 and the solar global radiation was
calculated using the RadEst 3.00 software (FAO, ISCI: Rome, Italy) [41]. Specifically, the
Campbell/Donatelli radiation model implemented in RadEst was used.

Observed weather data over the period 2000–2020, provided by the Protezione Civile
della Regione Campania http://centrofunzionale.regione.campania.it/ (accessed on 20
Semptember 2021) was used as reference climate to check the climate scenario forecast. For
that period, the annual mean rainfall was about 829 mm and the mean air temperature was
about 13.4 ◦C, with reference to the Ariano Irpino site (Campania region, Italy), which is at
28 km distance from the experimental site and at the same elevation.

2.5. ARMOSA Model
Model Description

The ARMOSA model simulates soil- and crop-related variables in response to agricul-
tural management and pedoclimatic conditions. The model runs at a daily time step and
consists in three main modules: (1) crop growth and development; (2) soil water dynamics;
(3) C and N cycling.

The crop-growth simulation was based on the gross C absorption following the
WOFOST approach [42] with a substantial improvement: the canopy was divided into
five layers with different light interception. For each crop, 65 parameters needed to be set.
During previous model applications [43–45], most of these parameters’ values had been
set. In the present study, the most sensitive parameters (i.e., potential gross C adsorption,

http://centrofunzionale.regione.campania.it/
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specific leaf area index (LAI), four cardinal temperatures for crop growth) were set using
the measured data from the field experiment with an objective function based on yield and
LAI. As for the crop development, the model calculates the growing degree days (GDD),
the development rate (used in the assimilate partition and LAI estimation), and the ver-
nalization factor. BBCH scale is used to indicate the crop stages. In this analysis, the GDD
requirements and the base temperature, optimal minimum and maximum temperature,
and cut-off temperature for each stage were defined based on the observed dates of the
durum wheat. The crop development is based on GDD, which were calculated by applying
a trapezoidal rule that is similar to the rule described by [46]. Photosynthates partitioning
among plant organs is specific for each BBCH stage.

Water content was simulated for each soil layer by a daily bucket module where
the soil profile is divided into layers, usually 5 cm thick. Each layer accumulates water
until it reaches the field capacity; above this level, the model tries to transfer the water in
excess to the layer below within the limit of the hydraulic conductivity. The water that
cannot infiltrate the lower layer (because it exceeds the hydraulic conductivity, or the lower
layers is already at saturation) is retained up to the saturation level. The water that tries
to infiltrate from the top into a layer that is already at saturation point bounces back and
(proceeding from the bottom to the top of the profile) can remain above the soil surface for
the rest of the day. This module calculated the daily soil water content in each 5-cm layer as
the results of the water input (rain and irrigation), water uptake by roots, and percolation.
The simulation was strictly dependent on soil properties.

C- and N-related processes were simulated for each soil layer and implemented
following the approach of the SOILN model [47], with the difference that each input of
C and N was considered independently, with each one having its own decomposition
rate and fate. The input could be of three types, to which correspond three types of
organic C and N pools: stable, litter, and manure. Crop residues, being the input of the
litter pool, decompose based on the tillage type, depth of soil incorporation, crop type,
and organs. Mineral pools are carbon dioxide, ammonium, and nitrate. Mineral and
organic pools were daily calculated for each layer as the results of soil processes, which
are immobilization, mineralization of the organic pools C and N, nitrification, crop uptake,
nitrate leaching, denitrification, atmospheric deposition, ammonium volatilization, and
nitrous oxide emissions. The processes were driven by the temperature and water level,
which affected the microbial activity. The inputs were manure (e.g., dairy or swine slurry,
dairy dung, digestate, sewage sludge) or litter (i.e., crop residues or green manure). The
soil temperature was simulated according to [48,49] (SWAT model); it was mainly driven
by crop biomass, litter, the stable fraction of SOC, and SWC.

The model input requirements in the current study considered the following data:
(a) Soil data: soil properties (i.e., sand—%, silt—%, clay—%, bulk density—Mg m−3,

SOC and N in stable, litter, and manure fractions—kg ha−1, van Genuchten–Mualem
equation parameters) are required for each pedological horizon. The horizons were further
split into 5-cm layers for the daily estimation of the soil-related variables. In each layer, the
state variables were water availability and percolation, evaporation, soil organic C and N in
the three main pools (i.e., stable, litter, manure), ammonia, and nitrate. ARMOSA computed
the daily values of bulk density and van Genuchten–Mualem equation parameters as
affected by SOC content and tillage operations.

(b) Daily weather parameters were required as input data to compute the reference
evapotranspiration (mm d−1) with the Hargreaves-reference evapotranspiration equa-
tion [29]. The required parameters were rainfall (mm), minimum and maximum air tem-
perature (◦C), wind speed at 2 m height (m s−1), and solar global radiation (MJ m−2).

(c) Crop data: the crop rotation had to be set and for each crop sown and harvested,
dates had to be entered. The input for crop-residues management was the percentage of
residues biomass retained and the soil depth of incorporation.

(d) Tillage date, type (perturbation and mixing effect), and soil depth had to be defined
for each tillage event.
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(e) Fertilization: either mineral or organic fertilizers had possibly been applied. The
amount of kg N ha−1, day of the year (DOY) of application, depth of application, the type
of fertilizer (ammonium and nitrate content, C/N ratio for organic fertilizers) had to be set.

2.6. Model Parametrization and Calibration

The model was calibrated for the prediction of the soil water content (SWC), leaf area
index (LAI), and the aboveground biomass (AGB) collected in the two experimental sites
located in Scampitella (South of Italy). Therefore, the ARMOSA model was calibrated using
the set of measured data collected on the tillage (T) treatment and on the no-tillage (No-T)
treatment of the durum-wheat-cropping system during the 2013–2014 crop growing season.

The calibration methodology followed a trial-and-error procedure to minimize, with
an iterative process, the error propagation in the simulated processes, as described in [50].
The trial-and-error procedure consisted, first, of finding the soil hydraulic parameters in
the T and No-T management treatments for the different soil depths, until the variation
of the differences in SWC sim—SWC field became negligible with few deviations from
one iteration to the successive. This calibration of hydraulic properties was required for
field applications to consider the well-known deviation between laboratory-measured and
field-measured hydraulic properties [51–53].

Secondly, the same method was developed for the crop phenological stages and crop
parameters in the T and No-T treatments, until low estimation errors were obtained, with
negligible differences in successive iterations for the phenological dates, LAI, and AGB
field data. Therefore, the same values of the crop calibrated parameters were used in the T
and No-T treatments.

The performance of the model was assessed graphically and using the following
goodness-of-fit indicators, which were employed and suggested in former modeling stud-
ies [27,50,54].

For all the indexes, Oi and Pi relate to observed and predicted values for all studied
variables and O and P are the mean of the observed and predicted variables, respectively.

(a) the Pearson’s correlation coefficient (r) [55] is a measure of the degree of association
between simulations and observations. It varies between 0—no agreement and 1—full
agreement between the simulated and observed data:

r =

 ∑n
i=1(Oi −O)(Pi −O)[

∑n
i=1
(
Oi −O)2

]0.5
[
∑n

i=1
(

Pi − P
)2
]0.5

, (1)

(b) the relative root mean square error (RRMSE) [56] is a measure for the accuracy of the
predictions, which needs to be equal or close to 0, evidencing a perfect match between
the simulated and observed variables.

RRMSE =

[
1
n ∑n

i=1(Oi − Pi)

O

]0.5

, (2)

(c) the average absolute error (AAE) represents the average error size associated with the
estimations, and it varies between 0—perfect match and positive infinitive—no match
between the simulated and measured values:

AAE =
1
n ∑n

i=1|Oi − Pi| (3)

(d) the percent bias (PBIAS) [57] indicates the trend of the model predictions to be larger
or smaller than the equivalent observed: positive values indicate an underestimation
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bias, while negative values correspond to an overestimation bias and values close to
zero indicate the absence of trends:

PBIAS = 100
∑n

i=1(Oi − Pi)

∑n
i=1 Oi

, (4)

(e) the efficiency index (EF) proposed by [58] varies between negative infinity and 1.0,
whose positive values indicates that the model is a better forecast than the average of
measured values:

EF = 1− ∑n
i=1(Oi − Pi)

∑n
i=1
(
Oi −O

) , (5)

The calibrated model was run with the two climate scenarios RCP4.5 and RCP8.5, and
the crop phenological stages were modified according to the climate trend observed (i.e.,
higher temperatures and lower rainfall events). Previous research predicted an elongation
of the crop-growing season in future periods, and thus the model needs to be modified
accordingly for future scenarios [18,59].

As a matter of fact, in this study, the sowing and harvesting dates were kept the same
as those observed in the monitoring year. The flowering stage was anticipated and the time
for grain maturity reduced to elongate the wheat growth cycle by adjusting the thermal
requirements in growing-degree days from the tillering to the flowering stage and from
watery ripeness to physiological maturity.

The following output parameters were analyzed in the model application: predicted
grain yields, SOC content, N uptake, and water- and nitrogen-stress indexes; to verify their
long-term trends and stabilities under the two soil-management techniques.

The one-way ANOVA model was applied to data, considering annual results as
replicates, to find differences between T and No-T, and the homogeneity of variances was
tested using Levene’s mean-based test [60] following the suggestions of [61].

3. Results
3.1. Soil Survey Results and Plot Definition

A preliminary scan of the two fields was performed by EMI sensors to investigate the
soil variability in both fields and, thus, define the experimental plots.

Most of the area—excluding some spots—showed similar values of ECa between the
range 60–80 ms cm−1. This homogeneous response of the soil profile cannot be directly
reflected in a soil homogeneity, because the ECa is an integrated value that depends on many
factors such as soil texture, layering, water content, and salinity—different combinations of
which can produce similar results. Therefore, two profiles were open in zones showing the
same value of ECa, respectively in the T and No-T field (black circles in the Figure 3), on
the base of this first hypothesis on homogeneity.

Both soil profiles are Calcic Vertisols according to the World Reference Base (WRB)
classification system [62]. In Table 3 the main characteristics of the soil profiles are reported.
Only minor differences arose between the two profiles in genetic horizons, pH, carbonates,
and CEC. Hence, the possible differences in the results obtained in the two experimental
plots cannot be attributed to differences in soils but—reasonably—only to the different
tillage of the upper layer, i.e., conventional and no-tillage.

Table 3. Soil profile characteristics for T and No-T experimental sites.

Site Soil Profile Depth pH (H2O) O.C (%) CaCO3 (%) E.C (ms cm−1) C.E.C (meq/100 g)

T

Ap1 0–10 8.4 1.4 12.4 275 39
Ap2 10–40 8.4 1.3 10.9 183 33
Bss1 40–65 8.7 0.9 12.3 315 36
Bss2 65–90 8.8 0.8 18.9 392 29
Bss3 90–105 8.8 0.6 20.5 564 34
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Table 3. Cont.

Site Soil Profile Depth pH (H2O) O.C (%) CaCO3 (%) E.C (ms cm−1) C.E.C (meq/100 g)

Bw 105–120 8.8 0.6 18.7 697 24
CB 120–150 8.8 0.5 24.9 789 28

No-T

Ap1 0–10 8.1 1.2 10.5 252 33
Ap2 10–45 8.3 1.1 10.1 177 33
Bss1 45–100 8.4 0.7 13.3 372 31
Bss2 100–120 8.5 0.7 17.4 317 31
2Bss 120–130 8.5 0.5 18.2 271 31
2CB 130–160 8.5 0.4 22.2 271 23
2C 160–170 8.6 0.5 29.1 247 18

O.C = Organic carbon; E.C = electric conductivity; C.E.C = cation exchange capacity.

Figure 3. Maps of apparent electrical conductivity (ECa) measured at the Scampitella field.

According to these preliminary results, the experimental plots of T and No-T were
selected near to the profiles, and their location is reported in Figure 3 with a black circle.

3.2. Parameter’s Calibration of the Durum Wheat Crop Growth Model

The ARMOSA model was calibrated using SWC measurements, LAI, and AGB in both
T and No-T treatments for the entire crop-growing season.

Figure 4 shows the match between measured and simulated SWC values during the
crop-growing season 2013–2014 at 0–15-cm (n = 123), 20-cm (n = 133), 40-cm (n = 194),
and 50-cm (n = 194) depths regarding the T treatment. The results show that the temporal
variations of both measured SWC and estimated SWC are reasonably well-described for the
whole period and for the four depths. Moreover, the model responded well to the peaks
and absence of rainfall events.

The calibration indicators for the four soil depths and the entire soil profile are reported
in Table 4. Overall, the goodness-of-fit indicators performed well for the four soil depths and
along the soil profile, with slight differences between the more superficial and the deepest
soil layer. The Pearson’s correlation coefficient r values were high in the 0–15-cm, 20-cm, and
50-cm depths (r = 0.91–0.88) and acceptable in the 40-cm depth (r = 0.51), which indicates that
the model represented with good accuracy the variability of the SWC in each layer.

The model underestimates the SWC at 20 cm with a PBIAS of 13.1%, while smaller
PBIAS values (0.6–2.4%) were found in the other depths with no trend of under- or over-
estimation of the simulated values. Estimation errors are small in all depths, as indicated
by the RRMSE < 16% and AAE < 0.05 m3 m−3. The Nash and Sutcliffe efficiency index EF
was high for the superficial layer (EF = 0.79), acceptable in the 20-cm layer (EF = 0.23), and
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negative for the deepest layers (EF = −0.05; −0.43), which means that the mean square
error was higher than the measured data variability.

Figure 4. Soil water content measured with TDR (SWC measure, •) and simulated with ARMOSA
(SWC sim, —) for (a) 0–15-cm, (b) 20-cm, (c) 40-cm, and (d) 50-cm depths during the crop-growing
season 2013–2014 in the T treatment.

Table 4. Calibration indicators relative to the SWC (SWCsim) simulated with the ARMOSA model
compared to the SWC obtained from TDR measurements (SWC measure) for 0–15-cm, 20-cm, 30-cm,
40-cm, and 50-cm depths and for the entire soil profile (0–50 cm) in the T and No-T treatments.

Depths (m)
Treatments

T No-T

r

0–15 0.90 0.83
20 0.88 0.82
30 NA 0.79
40 0.51 NA
50 0.91 −0.49

0–50 0.86 0.83

PBIAS (%)

0–15 2.4 −6.7
20 13.1 7.8
30 NA 1.1
40 1.4 NA
50 0.6 0.4

0–50 3.5 0.9

RRMSE (%)

0–15 8.04 12.11
20 15.83 12.56
30 NA 9.2
40 8.73 NA
50 4.92 3.11

0–50 9.34 9.1
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Table 4. Cont.

Depths (m)
Treatments

T No-T

AAE (m3/m3)

0–15 0.02 0.03
20 0.05 0.03
30 NA 0.03
40 0.03 NA
50 0.02 0.01

0–50 0.03 0.03

EF

0–15 0.79 0.55
20 0.23 0.32
30 NA −0.47
40 −0.43 NA
50 −0.05 −1.15

0–50 0.59 0.59

As in the T treatment, calibration results showed good agreement between simulated
and measured SWC data at 0–15-cm (n = 125); 20-cm (n = 128), 30-cm (n = 169), and 50-cm
(n = 186) depths for the No-T treatment. The simulated SWC followed the temporal SWC
measured (Figure 5), and the statistical indicators depict similar ranges as the ones for the
T treatment (Table 4).

Figure 5. Soil water content measured with TDR (SWC measure, •) and simulated with ARMOSA
(SWC sim, —) for (a) 0–15-cm, (b) 20-cm, (c) 30-cm, and (d) 50-cm depths during the crop-growing
season 2013–2014 in the No-T treatment.

The r coefficient was near to 1.0 in the more superficial depths, which indicates a good
linear correlation between the simulated and measured data sets in the first three depths
investigated (r = 0.83–0.79). Contrarily to that observed in the T treatment, the r index at
50 cm is lower than those in the upper layers. The PBIAS results were acceptable and did
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not perform any significant over- or underestimation trend of the model output in any of
the soil layers. Estimation errors RRMSE and AAE were in the same range as the ones in
the T treatment for each soil layer investigated.

In the same line, the EF index performed similar values that those in the T treatment
output, which depicted satisfactory EF in the upper layers (EF = 0.55–0.32) and negative
value in the lower layers (EF = −0.47;−1.15).

Measurements of LAI and AGB for the whole crop-growing season in the T and No-T
management methods were used for further calibration of ARMOSA. Figure 6 represents
simulated LAI and AGB obtained with the calibrated model parameters compared with
the measured LAImeasure and AGBmeasure data, and Table 5 reports the statistical indices
outcomes from the model calibration. The results illustrate that the simulated LAI and
AGB adequately fits the measured variables.

Figure 6. Crop leaf area index (LAImeasure, N) and aboveground biomass (AGBmeasure, N) measured
and (LAIsim −; AGBsim −) simulated with ARMOSA for durum wheat under T (a,c) and No-T (b,d)
management during the crop-growing season 2013–2014.

The model calibration indices (Table 5) are acceptable for LAI and good for AGB pre-
dicted values. In both treatments, the Pearson’s correlation coefficient r is high (0.98–0.84)
for LAI and AGB, which reflects high correlation of the simulated and measured variables.
In the same way, the estimation errors RRMSE and AAE are acceptable for the LAI and
small for the AGB variable.

The PBIAS is small for the AGB variable and LAI in the No-T but indicates an over-
estimation by the model of the LAI measured values (−18.2%) in the T treatment. This
may be related to the fact that the LAI measured values in the No-T management were
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1.25–1.50 times higher than the ones in the T management, which may cause the overesti-
mation of the LAI in the No-T management.

Table 5. Calibration indicators associated with the LAI (LAIsim) and AGB (AGBsim) simulated with
the ARMOSA model compared to the LAI (LAImeasure) and AGB (AGBmeasure) obtained from field
measurements for durum wheat under the T and No-T management methods.

LAI AGB

T No-T T No-T

r 0.84 0.92 0.96 0.98
PBIAS (%) −18.2 13.3 1.3 11.4

RRMSE (%) 28.07 24.11 15.92 16.27
AAE (m2/m2) 0.84 0.70 836 1370.12

EF −0.74 0.74 0.93 0.91

Similarly, the EF index regarding the LAI calibration in the T is negative (−0.73), which
could be due to the small difference between the minimum and maximum measured values
of LAI. The predicted values could not simulate the small range of measured values, but
the simulated curve fitted the pattern of the measured values.

On the other hand, the EF index of the AGB prediction is high (EF = 0.93–0.91),
which shows that the simulations of AGB have a small error with respect to the variance
of observations.

According to this statistical evaluation, the calibration of ARMOSA for durum wheat
cultivated with T and No-T was performed satisfactorily, even better than similar experi-
ments [3,4,21].

3.3. Simulations with Climate-Change Scenarios

The simulation results obtained by the ARMOSA model for the two climate scenarios
during the 2020–2100 period, three timeframes (2020–2040, 2040–2070, 2070–2100), and the
two soil-management treatments are presented in Figure 7 as box-plot graphs. The average
yields of the No-T treatment are 5.2% and 11.4% higher than the T treatment yield in the
4.5 and 8.5 climate-change scenarios, respectively, when considering the period 2020–2100.
The difference of the average yield between the two soil-management techniques is not
statistically significant (p > 0.05) in the RCP4.5 scenario but is statistically significant in the
RCP8.5 scenario (p < 0.05).

The yield difference between the two soil-management treatments becomes more
pronounced as time advances, and is always higher in the No-T treatment. For instance,
yield difference reaches the minimum in the two scenarios during the 2020–2040 timeframe
(0.37% and 4.12% in the 4.5 and 8.5 RCP scenarios, respectively), and it will be maximum
during 2040–2070 in the RCP8.5 scenario (15%) and in 2070–2100 considering the RCP4.5
scenario (12%).

It could be observed from Figure 7 that the yield variability is slightly higher in the No-
T management in comparison to the T in both scenarios and for each timeframe considered.
However, this difference is not statistically significant (p > 0.05) in any case considered,
as shown by the Levene test. In addition, the largest variability of the average yield is
observed in the RCP8.5 scenario in both soil-management techniques.

The evolution of the total SOC in the first 30 cm of soil along the future period for
both climate scenarios (Figure 8) is improved when the No-T treatment is implemented in
durum wheat in this pedoclimatic context. The SOC content remains constant during the
first years of implementation of the No-T management, then starts to increment constantly
with an average annual growth rate of 0.19% year−1 in the RCP4.5 scenario and 0.20%
year−1 in the RCP8.5 scenario, until it reaches a constant value. On the contrary, the use
of T management in durum wheat will produce a constant reduction of the soil carbon
content with an average annual growth rate of −1.32% year−1 in the RCP4.5 scenario
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and −1.35% year−1 in the RCP8.5 scenario, until it reaches a minimum value around
10,000 kg ha−1 SOC.

Figure 7. Boxplot of durum-wheat grain yield under T and No-T management in the analyzed
climate scenarios and their respective time periods (a) 2020–2100, (b) 2020–2040, (c) 2040–2070, and
(d) 2070–2100.

Figure 8. Simulated total soil organic carbon (SOC) at 30 cm under T and No-T for the RCP4.5 (a) and
RCP8.5 (b) climate-change scenarios during the period 2020–2100.

As a matter of testing, we calculated the relationship of the SOC in both treatments,
ISOC = SOCT/SOCNo-T, as measured at the beginning of the experiment in 2013, measured
after 8 years in 2021, and modeled for both RCP scenarios for 2013 and 2021. The results
are reported in Table 6.
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Table 6. ISOC between T and No-T SOC in the 2013 and 2021 seasons, measured and simulated for
both climate scenarios.

Measured 2013 Simulated 2013
RCP4.5

Simulated 2013
RCP8.5 Measured 2021 Simulated 2021

RCP4.5
Simulated 2021

RCP8.5

108% 75% 75% 84% 62% 60%

Consequently, the different trends in the SOC in the two soil-management systems
of durum wheat under these pedoclimatic conditions can be predicted by the ARMOSA
model for future climate projections.

The N uptake will be much higher when the No-T technique is used, depicting an
annual average change of 3.55% year−1 in the RCP4.5 scenario and 3.18% year−1 in the
RCP8.5 scenario, which at the same time will reduce the N leaching (Figure 9). The No-T
system will not experience N stress, although the uptake is higher in this management
(Table 7). On the other hand, the system under T will not absorb as much N as the No-T,
depicting 1.57% year−1 and 1.73% year−1 of average annual change, respectively for the
RCP4.5 and RCP8.5 scenarios; and thus, it won’t be able to produce much more yield, as
explained previously.

Figure 9. Simulated nitrogen uptake under T and No-T for the (a) RCP4.5 and (b) RCP8.5 climate-
change scenarios during the 2020–2100 period.

Table 7. Simulated average water-stress index and average nitrogen-stress index under T and No-T
for the RCP4.5 and RCP8.5 climate-change scenarios during the 2020–2100 period.

Average of Water-Stress Index Average of Nitrogen-Stress Index

T RCP4.5 0.66 0.96
No-T RCP4.5 0.58 1.00

T RCP8.5 0.68 0.94
No-T RCP8.5 0.61 1.00

Table 7 shows the N and water stresses that the crop system will experience in the
future period. Neither technique will give any important stress. The difference in water
stress between the two techniques will be small, although there may be more stress in
the No-T treatment because the crop system will produce more, and, thus, consume more
water. The residues kept in the soil decrease the evaporation process and the crop may be
able to use water more efficiently, which may lead to a higher water consumption, and,
thus, a slightly higher water-stress index.

4. Discussion
4.1. Performance of ARMOSA with Durum Wheat under Tillage and No Tillage Techniques

The crop-growth ARMOSA model was successfully calibrated as suggested by the
goodness-of-fit indicators, for durum wheat cultivated with T and No-T soil-management
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techniques. Therefore, the model—for this pedoclimatic environment— could function as a
good predictor of the durum-wheat yield as well as the SWC, N-leaching, and change in
SOC dynamics to evaluate the effects of different soil management.

Specifically, the model performed better for the SWC in the 0–15-cm, 20-cm, and 30-cm
depths, while for the 40-cm and 50-cm depths the model showed negative EF values, which
indicates that it was not able to accurately predict the variance of the measured variable in
both soil-management treatments. The negative EF value in the deepest soil layers could
be explained by the fact that the soil bucket model better represents the processes within
the root system, because the model simulates the root’s water uptake and the transpiration,
but it does not simulate the drainage. Consequently, the bucket model could present more
difficulties in modeling the processes that occur in the deepest soil layers.

The model results for SWC are comparable in terms of accuracy with previous studies
that simulated SWC using different process-based models for wheat and field crops cul-
tivated following T and CA. For instance, Perego et al. (2013) [27] found close statistical
indicators (r = 0.68, RRMSE = 6.28, EF = 0.52) when calibrating and validating ARMOSA
for SWC at different depths in the Lombardia plain (North Italy). Near the same experi-
mental area, Bonfante et al. (2010) [63] compared three physically based models (SWAP,
MACRO, and CropSyst) on two sites that were cultivated with maize using conventional
and minimum tillage. The authors found similar goodness-of-fit indicators to the ones in
our study—specifically, the EF was negative in the deepest soil layers, which was attributed
to the simplification of the complex water flow mechanisms through the soil profile by
the models. In addition, the authors found higher absolute errors at the 0–15-cm depths
as in this study, which was related to the higher inaccuracy of the TDR in the superficial
layers [63].

Liu et al. (2013) [6] found a slightly higher number of estimation errors (nRMSE =
15.3–20.0%) than the in this study, in calibrating the DSSAT model in a soybean–maize
crop rotation cultivated with T and CA. The authors stressed that the poorer agreement in
some simulation years can be related to potential outliers in the SWC measurements. In the
same line, Devkota et al. (2015) [4] evaluated the DSSAT model in a rice–wheat rotation
under zero tillage and water-saving strategies in Central Asia. The authors reported a
close number of estimation errors (nRMSE = 6–8%) compared with this study for different
soil depths.

Shafeeq et al. (2020) [21] predicted the SWC in the 0–45 cm of the soil profile during the
flowering stage of durum wheat using HYDRUS 2D, with similar goodness-of-fit indicators
to those used in our study. However, these authors presented fewer measured data (n = 18)
of SWC than in our study, with measurements taken solely during the flowering stage.
Consequently, ARMOSA could be used as a tool to see the changes that diverse soil
management may cause in the SWC at different soil depths.

The ARMOSA calibration indicators for LAI and AGB that were obtained in this study
are generally comparable with previous simulation studies for durum wheat and field crops
under T and CA. Perego et al. (2013) [27] used ARMOSA to predict crop variables for field
crops in six different sites from the Lombardia plain (Italy), with similar goodness-of-fit
indexes for AGB (r = 0.97, RRMSE = 11.18, EF = 0.94) and LAI maximum value (r = 0.72,
RRMSE = 8.24, EF = 0.37).

Bechini et al. (2006) [64] parameterized the CropSyst model [65] for winter wheat by
using data sets of four monitoring sites from the Lombardia plain. The calibration indicator
RRMSE for the AGB was in the same range as the one in our study, (RRMSE = 9–30%) but
AGB was underestimated during the growth period (PBIAS = 21%). The authors attributed
this underestimation of crop growth rates to the linear relationship adopted by the model
between the average air temperature and radiation dependent biomass accumulation,
which may not represent accurately a biological phenomenon.

Ahmed et al. (2016) [18] evaluated the CERES and APSIM [66] models for five wheat
cultivars under rainfed conditions in Pakistan. The authors reported comparable estimation
errors (RRMSE < 10%) for the maximum LAI and AGB.
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Comparable to our study, Corbeels et al. (2016) [22] calibrated the DSSAT model [67]
for maize grown with T and was validated in the No-T with mulch treatment. The authors
reported high overestimation (PBIAS = −51%) in simulating the AGB of maize during
the calibration process. The authors argued that this could be due to the large variability
in the measured AGB for a certain season, which feature the DSSAT model was not able
to capture.

As depicted in the Figure 6, the LAI measured was higher in the No-T by 1.5 units,
which difference has been acceptably well-reproduced by the model output in the calibra-
tion process. Similar outcomes were reported by Shafeeq et al. (2020) [21] in durum wheat
under No-T and residue management. The predicted values could not simulate the small
range of measured values, but the simulated curve fitted the pattern of the measured values.
Using the same model, Valkama et al. (2020) [28] found low EF and correlation coefficient
when calibrating and validating ARMOSA with SOC content for different soil-management
treatments in Almalybak (Kazakhstan). The authors suggested that the reason could be
that the fewer measurements did not capture the trends of soil carbon evolution. Therefore,
the ARMOSA model is able to reproduce the changes in crop features that the No-T and T
applications could produce.

A key point in using the ARMOSA model to investigate the possible impacts of the
two trials (T and No-T) relies on the detailed field investigation of the soil spatial variability.
Many of the papers reported above are missing a deeper knowledge of the soil differences
between the experimental fields. These researches assume a priori homogeneity of the soil
and therefore, they mix the management effects with the soil variability. In addition, papers
applying statistical techniques to reduce the spatial variability (e.g., randomized blocks)
produce a smoothing of the results, thus hampering the model calibration.

Even if our analysis indicates the No-T system as an interesting approach, the farmer’s
decision was based on the use of the herbicide glyphosate. Nevertheless, the scientific
community has been working for years in developing alternatives to this herbicide, based
on natural products and improved management techniques. A set of alternative techniques
to perform CA without glyphosate are already available [68]. Moreover, in Europe, where
cropping of GMO crops is not allowed, the glyphosate can be used only in pre-sowing,
when it is easier to replace its use with mechanical weeding, or with very shallow tillage,
such as disk harrowing.

4.2. Application of ARMOSA in T and No-T Managements under Two Future
Climate-Change Scenarios

The future climate-change scenarios project an increase in temperature and decrease
in rainfall in the south of Italy [69]. Therefore, finding feasible solutions to carry resilient
and sustainable agriculture becomes imperative.

The application of the ARMOSA crop-based model in durum wheat cultivated with T
and No-T managements forecast higher average yields when the No-T is used in both the
RCP4.5 and RCP8.5 scenarios. This difference in yield will be 5% higher for the 4.5 scenario
(p > 0.05) and 11% in the 8.5 scenario (p < 0.05) for the 2020–2100 period. The bigger and
more statistically significant yield difference in the RCP8.5 compared to the RCP4.5 could
be related to the prediction of higher increase of annual temperature and reduction in
precipitation in the RCP8.5, as highlighted in previous studies about the climate-change
effects on wheat yield [20,44,70]. In this way, No-T management may become more crucial
as the climate forecast becomes more extreme.

Moreover, similar results on yield difference between soil-management techniques
have been reported in literature [3,19,71]. In the same line as in our study, Bahri et al.
(2019) [3] used the APSIM model to predict the effect of T and No-T with residue re-
tention on wheat productivity in Tunisia in future climate scenarios. The study con-
cluded that No-T with residue retention can increase wheat yield by 15% compared to T
under climate-change conditions.
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Simulations depicted slightly higher yield variability in the No-T compared to the T
treatment in each of the timeframes analyzed, although the variability experienced in the
No-T management becomes narrower with time. This finding is consistent with the results
reported in Bhari et al. (2019) [3], who predicted higher yield instability, and, at the same
time, higher yield increase in wheat systems cultivated with CA practices than the ones
with T, which presented more stability of yields, but a yield decrease over time.

This lower yield variability in the T management may be explained by the fact that
T is mainly implemented to increase and stabilize crop productivity by homogenizing
the agroecosystem. T breaks up the soil surface and makes uniform the soil substrates to
which it is applied, while fields under No-T practices are smoothed and compacted by
the weather conditions [72]. In this sense, the T management may act as a buffer to the
weather variability and produce more stable yields. Consequently, these results show how
the two soil-management techniques respond differently under the same pedological and
meteorological conditions.

Results of the simulations evidenced an increase of about 0.20% year−1 in the evolution
of SOC in the first 30 cm and 3.5% year−1 of N uptake in the durum wheat cultivated with
No-T. On the other hand, the T management would cause a decrease of 1.33% year−1 of
SOC and lower N uptake of 1.6% year−1 for the 2020–2100 period. This result agrees with
the outcome of Valkama et al. (2020) [28], whose authors calibrated and validated ARMOSA
with SOC measurements in three different sites (i.e., South of Finland, South of Kazakhstan,
and North of Italy) that were cultivated with conventional and CA principles. The authors
highlighted a decline of SOC in T systems (with an annual range between 1.17–0.6% year−1)
whereas the SOC slightly increased in No-T treatment (0.35–0.45% year−1) in field crop
systems in the three experimental sites. In addition, the authors pointed out the significant
role of cover-crop-based farming systems in SOC storage, which will increase it with an
annual sequestration rate of 0.71–0.95% year−1.

Moreover, the effects of intensive soil T on the N cycling and N losses through leaching,
which may lead to a higher N stress index in wheat-cropping systems, have been reported
in several studies carried on future climate periods [3,4].

The improved water use efficiency of field crops under CA, which can be reflected in a
higher water-stress index, has been observed previously in the Mediterranean climate [3,19,73].

Therefore, the T system is not a sustainable management system, judging by the
evolution of the SOC content and N leaching in the future period, while on the other hand,
using the No-T management will enhance the SOC accumulation and prevent N losses.
In this way, the No-T system with residues on the soil in durum wheat will constitute a
proper management method to lower the N leaching and to enhance the content of SOC.
These characteristics enhance to sequestrate atmospheric CO2 emissions, improve soil
fertility, and soil water-holding capacity, and thus, as observed previously, will increase
crop yield [7,28,59].

Consequently, cropping systems with enhanced soils characteristics derived from
No-T management are more resilient to the effects of climate change, as reflected by the
results of this study.

5. Conclusions

The ARMOSA model was effectively calibrated for the durum-wheat crop system
grown under tillage and no-tillage techniques in the Campania region, using SWC data, LAI,
and AGB measurements. Estimation errors were small, with RRMSE averaging 10.67% for
SWC at different depths, 26% for LAI, and 16% for AGB simulations. In addition, the model
was further applied for the T and No-T management methods using the RCP4.5 and RCP8.5
climate-change scenarios. These simulations depicted the importance of implementing
No-T management in durum-wheat cultivation to counteract climate change. The No-T
will maintain higher yields than the T technique, will preserve and improve SOC along the
years, and enhance the N uptake, thus diminishing N leaching.
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Therefore, these results suggest the appropriateness of ARMOSA model to quantify
the effects of different soil-management techniques on soil-crop related variables of durum
wheat system under current and future climate.

Further studies are suggested to include the three principles of CA in the model
simulations—for instance, diverse crop sequences and associations, permanent soil cover,
and minimum soil disturbance. The potential role of adopting simultaneously these
principles is crucial to achieve C sequestration, and to improve soil moisture and nutrient
availability, among other matters.

However, the most suitable soil-management techniques are site-specific to achieve
more benefits. In this sense, simulation models such as ARMOSA are important instruments
to assist decision-making in a certain context to assess the effectiveness of soil-management
techniques prior to their implementation, also in the view of future climate change.
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