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Abstract: Agriculture consumes an important ratio of the water reserve in irrigated areas. The
improvement of irrigation is becoming essential to reduce this high water consumption by adapting
supplies to the crop needs and avoiding losses. This global issue has prompted many scientists to
reflect on sustainable solutions using innovative technologies, namely Unmanned Aerial Vehicles
(UAV), Machine Learning (ML), and the Internet of Things (IoT). This article aims to present an
overview of the use of these new technologies in the analysis of the water status of crops for
better irrigation management, with an emphasis on arboriculture. The review demonstrated the
importance of UAV-ML-IoT technologies. This contribution is due to the relevant information that
can be collected from IoT sensors and extracted from UAV images through various sensors (RGB,
multispectral, hyperspectral, thermal), and the ability of ML models to monitor and predict water
status. The review in this paper is organized into four main sections: the use of UAV in arboriculture,
UAV for irrigation management in arboriculture, IoT systems and irrigation management, and ML
for data processing and decision-making. A discussion is presented regarding the prospects for smart
irrigation using geospatial technologies and machine learning.

Keywords: irrigation; UAV; IoT; machine learning; arboriculture

1. Introduction

The last 60 years have seen remarkable developments in the use of water resources
in agriculture in response to population growth and the increased demand for food. The
world’s population has grown from 2.5 billion in 1950 to 7 billion today, the area under irri-
gation has doubled, and water withdrawals have tripled due to the massive development
of water infrastructure [1]. In recent years, most countries in the world have suffered from
water stress and drought. Due to the huge lack of precipitation and the high demand, water
resources are decreasing dangerously, endangering the food security of many countries.
The World Resources Institute has recognized Morocco as one of the countries most affected
by water stress, such that by 2040 the level of water stress will reach 80%, which is too
high for an agricultural country for which the agriculture consumes 73% of its water re-
sources [2]. Improved irrigation scheduling—which involves determining the appropriate
time to irrigate, the amount of water to apply, and the duration of the irrigation process to
ensure a balance between water use and crop response [3]—is becoming essential to reduce
the very high consumption by matching supplies to crop needs and avoiding losses. This
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problem at the global level has led many scientists to think about sustainable solutions
to improve irrigation water consumption through innovative technologies, including Un-
manned Aerial Vehicles (UAV), as well as two interesting concepts for more flexibility and
automation, namely Artificial intelligence (AI) and Internet of Things (IoT) [4–11].

UAVs in agriculture are not only capable of filming to perform a visual field inspection
to identify weeds or pest damage but also have the ability to be equipped with various
sensors that facilitate the analysis of a complete dataset: nitrogen level, chlorophyll, biomass,
and moisture, etc. Artificial intelligence, in this role, is a huge and constantly evolving
field. The abilities to predict, estimate, and train decision-making systems make it a
practical solution for complex phenomena such as irrigation scheduling. The focus is
currently on Machine Learning (ML), which allows for the optimization of certain human
activities through soil and crop monitoring, and predictive analysis. In order to feed these
algorithms, the process consists in collecting data, thanks to soil mapping performed with
UAV, or thanks to cameras and sensors planted in the ground or installed on tractors. Due
to the development of wireless sensors (such as thermal sensors, moisture sensors, and
light sensors) used in agriculture and the development of transmission technology, the
concept of the Internet of Things has generated a lot of interest in data collection and
irrigation automation.

The UAV-ML-IoT combination has allowed us to talk today about connected and smart
agriculture. In this context, the objective of this article is to provide an overview of the
progress made in the use of these three innovative technologies in irrigation management,
with a focus on arboriculture. The review includes a survey of the published papers and
existing solutions. Irrigation management is discussed in detail based on three major
components: water requirement estimation and crop water status assessment, UAV and
IoT for data collection, and ML for data processing and analysis. In addition, the benefits,
challenges, and trends are discussed.

The article is organized as follows: In Section 2, a general overview of the use and
applications of UAVs in arboriculture is given. Section 3 discusses the factors related to crop
water status and their relationships with the different indices extracted from UAV images.
Section 4 covers the potential and architecture of IoT systems in irrigation management
by presenting a set of examples in order to arrive at a general structure, as well as looking
at trends in combined UAV-IoT usage. Section 5 is dedicated to ML algorithms for data
processing, focusing on the algorithms recently used to link the indices extracted from UAV
images to the factors affecting the crop water status, and furthermore to the usefulness of
dashboards and geographic information systems (GIS) in data visualization and decision
support through examples. Section 6 examines the benefits, challenges, and trends in a
discussion format. Section 7 concludes the paper.

2. Use of UAV in Arboriculture

The important distinction in the use of UAV is between the UAV itself (the platform)
and the equipment carried (the payload). This is the purpose of the study, along with
the characteristics of the area that dictate the type of sensors, the platform to be used,
and the methodology to be adopted. The types of UAV used can be divided into three
main categories: rotary-wing, fixed-wing, and VTOL (Vertical Take-off and Landing) (see
Figure 1). For fixed-wing UAVs, the gravimetric lift is provided by the presence of one
or more hard wings. The specific shape of the wings generates lift when the aircraft is
subjected to relative wind. In addition, their takeoff requires an initial horizontal speed,
such that it is necessary to initiate them to start their flight. Rotary-wing UAVs are a subset
of rotorcraft. The term rotorcraft is used in aviation to define aircraft that use rotating wings
to generate lift. Rotorcraft can have one or more rotors. UAVs using rotary systems are
almost always equipped with several small rotors, which are necessary for their stability,
hence the name “rotary-wing system”. Typically, these UAVs use at least four rotors to
keep them in flight [12]. The VTOL UAVs were developed to combine the benefits of both
rotary-wing and fixed-wing craft. A rotary-wing can perform vertical takeoff and landing,
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but its wing rotor cannot pass the velocity of sound [13]. The choice of a type depends on
several important criteria, such as hovering and vertical takeoff, the difficulty of piloting,
mechanical and electronic complexity, the cost and difficulty of repairs, and finally the
flight distance and autonomy [12].

Figure 1. (a) Fixed-wing Unmanned Aerial Vehicles (UAV) (Tuffwing Mapper) [14]; (b) rotary-wing
UAV (quad-rotor Parrot Anaf) [15]; (c) VTOL UAV (Tron) [16].

Regarding sensors, the most commonly used examples for agricultural purposes are
the following: hyperspectral, multispectral, RGB, and thermal sensors (see Figure 2). The
hyperspectral imaging sensors are indeed able to capture more details in a large number of
narrow and contiguous bands, which should be preferred when detecting the chemical and
physical properties of the objects of study [17]. The multispectral imaging can capture both
spectral and spatial data in a few spectral bands. The RGB imaging can provide spectral
information in all three spectral bands of the visible spectrum. Thermal sensors measure
the radiation emitted by the surface of an object and convert it into temperature [18].

Figure 2. (a) Thermal camera (Flir vue pro) [19]; (b) multispactral camera (Parrot sequoia) [20];
(c) heperspctral camera (Rikola hyperspectral imager) [21]; (d) RGB camera (Sensfly S.O.D.A) [20].

The images from these sensors are then processed for analysis using photogrammetry
techniques, which involves the precise reconstruction of a scene or object from several
images, or through the calculation of vegetation indices (VI), which use different combina-
tions or mathematical transformations of at least two spectral bands of the electromagnetic
spectrum. They are designed to maximize the contribution of vegetation characteristics,



Agronomy 2022, 12, 297 4 of 20

and they can provide reliable spatial and temporal information about crops. The choice of
the sensor, particularly for UAV applications in arboriculture and irrigation management,
is more related to the choice of indices to be retrieved. RGB, multispectral, and hyperspec-
tral sensors are commonly used to calculate canopy reflectance indices. The length and
number of bands used to generate these indices favor one over the other. Thermal sensors
are more suited for indices depending on the temperature of the leaves/canopy. More
information on these indices will be provided in the sections that follow.

The diversity of platforms and sensors discussed above (See Figures 1 and 2) has
motivated many research groups to explore and adopt UAVs into their agricultural practices
in order to meet specific needs [22–26]. UAVs have found applicability in a variety of
agricultural study areas, one of which is arboriculture, where there is growing interest in
this segment of technology, particularly because of the high-resolution data that can be
collected flexibly in a short time and for a relatively low price. In addition, UAVs have
an important role to play in filling the gaps in the data collected using manned aircraft
(airplane, or helicopter) or satellite remote sensing, whilst having many advantages both
in research and in various practical applications, especially in arboriculture, as well as in
agriculture in general. Table 1 summarizes the main research works in the last decade
dealing with the use of UAV in arboriculture for various purposes. All of the indices used
in the cited works are mentioned in Table 2, according to the type of sensor operated.

Table 1. Examples of studies addressing the use of UAV in arboriculture.

Reference Study Area Crop Type Drone Type Sensor Type Calculated
Indices/Outputs

Purpose of the
Study Results

[4] Jumilla
(Spain) Sweet cherry Rotating-wing Multispectral NDVI/OSAVI/DVI/

NDRE/TRRVI
Estimate the water

status of trees
NDVI resulted in the strongest
relationship with Ψ (R2 = 0.67)

[22] North-East
(Portugal) Chestnuts Rotating-wing Multispectral

NDVI/GNDVI/GRVI/
NDRE/OSAVI/

TCARI/RDVI/SR/
ExNIR/ExRE

Identify the
phytosanitary

problems affecting
each tree

The ability of VIs to automatically
detect phytosanitary problems
with an accuracy rate between

86% and 91%.

[5] San Joaquin Valley
(USA) Pomegranate Rotating-wing Multispectral NDVI/Kc

Estimate the
actual crop evapo-

transpiration

Existence of a strong correlation
between Kc and NDVI during the
growing season with R2 = 0.955.

[23] Torino
(Italy)

Pedunculate
oak Rotating-wing RGB

Multispectral TRI Tree risk assess-
ment/management

The adoption of UAV has shown
an economic optimization of the

costs of ground
control/investigation campaigns

by approximately 69%.

[24] Ubirajara
(Brazil) Orange Fixed-wing Multispectral LNC

Improve inference
of leaf nitrogen

content

The methodology adopted shows
an improvement in the

discrimination of leaf nitrogen in
orange trees with high accuracy

(overall 87.6%).

[25] Mersin
(Turkey) Citrus Fixed-wing RGB DSM Citrus detection

The approach is able to count
most citrus fruits without manual
intervention with high accuracy

of 94.9%.

[26] Lahti
(Finland) Spruce Rotating wing Hyperspectral

RGB
DSM/CHM

The reflectance of trees

Mapping of bark
beetle damage at

the tree level

The survey methodology based
on hyperspectral imagery

allowed extraction of single trees
with an accuracy of 74.7% and
separation of healthy and dead

trees provided a producer
accuracy of 90% and a Cohen’s

kappa of 0.80.

[6] Murcia
(Spain)

Almond,
Orange

Lemon, Peach
Apricot

Fixed-wing Thermal CWSI
Evaluation of the
variability of the

water status

The relationship between CWSI
and Ψ gave high values (R2

between 0.64 and 0.92) except
in lemon.
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Table 2. Calculated indices in each study according to sensor type.

Sensors Index Equations Applications

Multispectral NDVI NDVI = NIR − R
NIR + R

The index is used to measure biomass. As it is used to quantify forest cover
and leaf area index [27]

Multispectral GNDVI GNDVI = NIR − V
NIR + V

The Index uses visible green instead of visible red and near-infrared. It is
useful for measuring photosynthetic rates and monitoring plant stress [27].

Multispectral NDRE NDRE = NIR − RE
NIR + RE

The index sensitive to leaf chlorophyll content relative to soil background
effects. This index can only be formulated when the red edge band is
available [28].

Multispectral GRVI GRVI = V − R
V + R

The index allows visualization of vegetation cover and distinction between
green vegetation and other cover types [28].

Multispectral RDVI RDVI = NIR − R√
NIR + R

The index aims to linearize the relationships between the index and the
biophysical parameters [29].

Multispectral
ExNIR ExNIR = 2 × NIR − V − R − RE The Indices are proposed by Pádua and al (2020) [22]. These customized

vegetation indices are developed taking into account the strong influence of
the RE and NIR bands. They are inspired by the Excess Green Index (ExG).ExRE ExRE = 2 × RE − V − R − IR

Multispectral TCARI/OSAVI
TCARI = 3[(RE − R) − 0.2 (RE − V) × RE/R] TCARI is for chlorophyll content estimation [30] and OSAVI is an index that

minimizes the effect of soil brightness [31].OSAVI = NIR − R
NIR + R + L × (1 + L)

RGB TGI TGI = −0.5 × ((R − G) × 0.19 − (R − B) × 0.12) The index is based on reflectance values at visible wavelengths. It is a good
indicator of chlorophyll content in areas of high leaf cover [32].

Thermal CWSI CWSI =
Tcanopy−Twet

Tdry−Twet

The index is used to visualize crop water stress. It ranges from 0 to 1 (values
close to 1 are related to high stress levels) [33].

Legend: VI: Vegetation indices; GNDVI: green normalized difference vegetation index; NDVI: normalized
difference vegetation index; TRRVI: red-range transformed vegetation index; NDRE: normalized difference red-
edge index; GRVI: green–red vegetation index; RDVI: re-normalized difference vegetation index; ExNIR: excess
NIR; ExRE: excess RE; TCARI: chlorophyll absorption transformed into a reflectance index; OSAVI: optimized
soil-adjusted vegetation index; CHM: canopy height model; LNC: leaf nitrogen content; CWSI: crop water stress
index; DSM: digital surface model; Kc: crop coefficient; TRI: tree risk index; R2: correlation coefficient; Ψ: water
potential. NIR, R, RE, B and V are pixel values in the channels near infrared, red, red edge, blue and green,
respectively. L = 0.5. Where T canopy is the surface temperature of the canopy and reference surfaces, Twet and
Tdry which are completely wet or dry, in order to simulate the maximum and minimum leaf transpiration under
the exposed environmental conditions.

The analysis of all of the studies cited in Table 1 shows a description of the state
of the art of UAVs’ applications in arboriculture. It proves that UAVs are increasingly
being adopted in agricultural practices, particularly in arboriculture. The adoption of this
technology has contributed significantly to the treatment of several problems, which have
targeted several types of fruit trees (citrus, sweet cherry, almond, peach, pomegranate) and
have been conducted in different regions in America, Asia, and Europe (USA, China, Spain,
Italy, Brazil, and Turkey, etc.), related to different aspects:

1. The detection of plant diseases and their physiological problems [22,24,26]. Traditional
methods of detecting disease and stress in many crops rely on human screening, which
is time-consuming, expensive, and in some cases impractical or prone to human error.
The analysis of vegetation indices (see Table 2), from low-altitude, high-resolution
aerial imagery taken by UAV, can potentially be used for stress detection in different
crops. It can also help in the detection of new diseases at an early stage that cannot
be detected by human scouts. The principle is based on the fact that leaves reflect a
lot of light in the near-infrared (IR) range. When the plant becomes dehydrated or
stressed, the leaves reflect less IR light, but the same amount in the visible range. As
such, the mathematical combination of these two signals can help differentiate a plant
from a non-plant, or a healthy plant from a diseased plant [34]. The early detection of
disease could be a major application of pilotless systems.

2. The counting, height, and classification of trees [23,25,35]. UAV RGB, multispectral
and hyperspectral imagery helps to create index maps, which can differentiate the
ground from grass or forest, and can detect plants. It can also perform the construction
of digital surface models and digital terrain models (DTM) through these images.
They will allow us to obtain information on the height of the trees by obtaining the
model of the height of the canopy by applying

CHM = DSM − DTM (1)
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3. Yield monitoring [35]. There are strong correlations between the crop yield and
vegetation indices measured at certain stages of the crop. Therefore, monitoring crop
growth at key stages will help us to provide an accurate estimate of the crop yield,
and help to solve problems that hinder normal crop growth (water stress, diseases,
physiological problems, etc.) quickly.

4. Tree risk assessment/management [23]. The integration of UAV imagery can greatly
enhance a decision-making system (DMS) aimed at managing tree risk, especially
in extensive settings. The DMS is indeed called upon to identify the most critical
situations, allowing the optimization of ground surveys. Information from UAV
images and existing maps can be considered as the main inputs. A tree risk index
(TRI) map is the expected outcome. A tree risk index (TRI) can be obtained using the
QTRA (Quantified Tree Risk Assessment) method, which uses tree risk components
reported from the best practices defined by the International Society of Arboriculture—
Quebec [36]. Tree risk is made up of the probability of failure (stability index), potential
impact, and target exposure. The system quantifies the independent probabilities
of the three components, calculating their product for comparison with a generally
accepted level of risk.

5. Irrigation management and crop water status [4–6]. This aspect will be analyzed in
detail in the next section.

This wealth of applications in arboriculture confirms that UAVs are indispensable in
modern agriculture. While the potential for UAV use is significant, there are still several
notable barriers to their advancement, such as the cost of acquisition and the quality of the
data captured. Data quality is crucial, and should be the priority for UAV use decisions and
other aspects, such as the speed and flexibility of a UAV. Finally, the widespread adoption
of new technologies is forcing farmers to adapt and modernize their production practices
to obtain the best returns on these investments.

3. UAV for Irrigation Management in Arboriculture

Irrigation management involves the determination of the proper time to irrigate and
the amount of water to apply, as successful irrigation depends on a delicate balance between
water application and crop response [3]. The water supply must be accurately calculated as
well, in an attempt to match the water demand with any amount.

The operation of defining the irrigation schedule and the amount of water to be
applied is based mainly on the spatial and temporal monitoring of the water status of
crops. Currently, the use of imagery acquired by UAV represents one of the most common
methods used. The vast majority of methods based on UAV-acquired imagery and dealing
with water status monitoring attempt to train models by transforming the information
contained in the imagery into a variable that is highly correlated with well-established
ground measurements. The main measurements discussed in the literature (see Table 3) are
evapotranspiration [5], water potential, and stomatal conductance [4,7,8,37–39]. In addition
to these measurements, the contribution of other factors should be considered—such as
the local weather patterns, soil types, estimated root depth, and irrigation method [3]—in
order to arrive at models with a correlation coefficient (R2) close to 1.

• Evapotranspiration. The term “evapotranspiration” was coined to represent the combi-
nation of the two phenomena of evaporation and transpiration. The evaporation is the
phenomenon of water changing from a liquid state to a vapor state. The evaporation
of a water surface, a pond or a lake, or the surface of soil are examples. Transpiration
is the phenomenon of evaporation of water by trees through stomata [40]. The water
requirement of a tree is the amount of water needed to make a tree mature. A tree
requires between 400 and 1000 kg of water to produce one kg of dry matter [40]. These
water requirements and the actual evapotranspiration are identical under standard
conditions [3]. The actual evapotranspiration of a crop is calculated as follows [41]:

ETc = kc × ET0 (2)
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where kc is the single-crop coefficient, ETc is the actual crop evapotranspiration, and
ET0 is the reference evapotranspiration, i.e., the evapotranspiration of an ideal plant
stand with water available at will.

• Leaf water potential and stomatal resistance. Leaf water potential and stomatal
resistance are important traits that influence tree–water relationships. They in turn
depend on the relative fluxes of water through the tree in the soil-tree-atmosphere
environment [42]. The two gradients can be defined as follows:

• The water potential (Ψ) represents the potential of water to leave a given com-
partment. In plant physiology, it is used to determine the direction of the water
exchange between different parts of the tree (organs, cells . . . ), and between the
tree and its environment (soil and atmosphere). It is the physiologically relevant
integrator of the drought effects of plant tissues [43].

• The stomatal conductance (g) is the measure of the rate of passage of carbon
dioxide into or out of water vapor through leaf stomata.

The indices derived from the UAV images represent the second input of the models
(see Table 3). These indices are classified into two categories: the reflectance indices and the
indices based on the leaf/canopy temperature.

3.1. Reflectance Indices

The reflectance indices processed are in the form of two categories:

• Vegetation indices (NDVI, NDRE, SR, OSAVI . . . ) [4,5,7,39]. Generally, these are
related to tree structural traits and vegetation characteristics. They can provide reliable
spatial and temporal information about crops. These indices showed a clear correlation
with variables such as crop factor, stomatal conductance, and water potential in most
of the studied crops (see Table 3).

• Photochemical reflectance index and the normalized photochemical reflectance index
(PRI and PRInorm) [39,44–46].

PRI =
R550 − R531

R550 + R531
; PRInorm =

PRI

RDVI× R700
R670

(3)

PRI is an index that takes into account changes in xanthophyll concentration due to
water stress. The PRInorm is an improvement of the PRI index over water potential
and stomatal conductance; it not only takes into account changes in xanthophyll
concentration due to water stress (PRI) but also generates a normalization considering
the chlorophyll content, sensitivity to chlorophyll, and stress-induced reduction in the
canopy leaf area [46]. The PRInorm showed an improved ability to detect water stress
compared to other greenness and structure indices [46].

3.2. Indices Based on Leaf/Canopy Temperature

The extraction of the temperature of the leaves/canopy, through thermal sensors,
can have an observable effect on the estimation of the water status of crops, especially in
arboriculture. This effect has been observed through several studies that have collected
thermal indices for different crops, such as peach, vineyard, olive, and almond, etc. On the
other hand, the Crop Water Stress Index (CWSI) represents the most widely used index.
Following Idso et al., 1981 [33], the CWSI ranges from 0 to 1 (values close to 1 are related
to high stress levels). This index showed better agreement with Ψ and g on most of the
studied fruit trees (see Table 3) [8,47,48].

CWSI =
Tcanopy − Twet

Tdry − Twet
(4)
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where Tcanopy is the surface temperature of the canopy and reference surfaces, and Twet
and Tdry are completely wet or dry in order to simulate the maximum and minimum leaf
transpiration under the exposed environmental conditions.

Table 3. Examples of studies addressing water status monitoring using UAV imagery in arboriculture.

Reference Type of Crop Model Inputs Results

[5] Pomegranate NDVI Kc R2 = 0.999

[7] Vineyard IVs combinés Ψ R2 = 0.83

[4] Sweet cherry NDVI Ψ R2 = 0.60

[49] Almond NDVI Ψ R2 = 0.7

[39]

Peach NDVI Ψ R2 = 0.72

Peach R700/R670 Ψ R2 = 0.88

Apricot
TCARI/OSAVI Ψ R2 = 0.88

TCARI/OSAVI G R2 = 0.77

Almond
TCARI/OSAVI G R2 = 0.65

PRI Ψ R2 = 0.53

Orange R700/R670 G R2 = 0.62

Peach
R700/R670 G R2 = 0.93

PRInorm Ψ R2 = 0.72 to 0.88

[44] Olive PRI Ψ R2 = 0.84

[8]
Peach CWSI Ψ R2 = 0.72

Peach CWSI G R2 = 0.82

[47]
Vineyard CWSI Ψ R2 = 0.69

Vineyard CWSI G R2 = 0.70

[48]
Olive CWSI Ψ R2 = 0.60

Olive CWSI G R2 = 0.91

The indices presented in Table 3, in general, provide valuable information, but they
require further processing to quantify the information to be managed. The digital mapping
information on the crop water status allows spatial and temporal statistics to be calculated
and stress levels for each crop to be determined, allowing the assessment of the average
stress values and average water requirements. This is particularly important for the
management of irrigation systems.

4. IoT Systems and Irrigation Management

The common definition of the IoT is defined as follows: the Internet of Things is a
network of physical objects interconnected via the Internet. A unique identifier connects the
objects so that the data can be transferred. The basic goal of an IoT system can be divided
into four sections: the identification, detection, processing, and transmission of information.
The key technologies in each section are, respectively, radio frequency identification (RFID),
sensors, a smart chip, and a wireless telecommunications network. The design of IoT
systems varies from system to system based on the intended application of the system,
and the level of efficiency and security to be achieved. The most basic architecture is a
three-layer architecture:

• The perception layer: this layer gives each object a physical meaning. It consists of data
sensors in various forms, infrared (IR) sensors, or other sensor networks (temperature,
humidity, etc.). This layer collects useful information about objects on devices and
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converts them into digital signals that are then transmitted to the network layer for
further action.

• The network layer: the purpose of this layer is to receive useful information in the
form of digital signals from the perception layer, and to transmit it to the processing
systems through transmission technologies such as WiFi, Bluetooth, WiMaX, Zigbee,
GSM, and 3G, etc., with protocols like MQTT, IPv4, IPv6, and DDS, etc.

• The application layer: this layer is responsible for the IoT application for all types of
fields according to the processed data [50].

4.1. Architecture of IoT-Based Irrigation Systems

Presently, IoT is becoming established as a new industrial revolution in all sectors of
agricultural activity, especially in irrigation management, while remote monitoring systems
have been proposed to manage irrigation in an optimized way by applying the right dose
at the right place at the right time. In this paragraph, we present examples of systems
with the proposed composition [51–56] (see Table 4) that will provide a comprehensive
view of smart irrigation management systems based on IoT technology, and will arrive at a
generalized structure of its systems.

Table 4. Examples of irrigation management systems based on Internet of Things (IoT) technology.

Reference Composition Operation

[51]

Sensors/devices Humidity and temperature
sensors/Water pump The sensor first reads the soil moisture level data. When the humidity

level is below the desired level, the humidity sensor sends the signal to
the raspberry pi and sends an alert message that notifies the water
pump to turn on and provide water.

Processing system Raspberry Pi

Transmission supports Bluetooth

Control interface Mobile app

[52]

Sensors/devices Humidity and light sensors/Water pump The sensor first reads the soil moisture level data to identify the level of
soil dryness. The node then sends the information using a radio
transceiver to the base station. The base station then sends both data,
moisture level, and exposed light, to the storage server, which is a cloud
server. After the treatment, the water pump will turn on and provide
water.

Processing system Arduino + cloud server

Transmission supports Radio waves

Control interface Cloud web server + Mobile app

[53]

Sensors/devices Humidity and light sensors/Water pump The Raspberry Pi computer makes the decision to supply water or not
based on all the data received from the sensors. If the conditions are
met, the raspberry Pi commands the relay module to turn on the water
pump for a specified time, after which the computer commands the
relay module to turn off the pump.

Processing system Arduino + Raspberry Pi

Transmission supports GSM and GPRS

Control interface Mobile app

[54]

Sensors/devices Humidity sensors, temperature/Water
pump, Servomotor The humidity and temperature sensors are combined with the input

pins of the controller. The water pump and actuator are coupled to the
output pins. If the sensors deviate from the defined range, the
controller switches the pump on.

Processing system Arduino

Transmission supports GSM

Control interface Not mentioned

[55]

Sensors/devices Humidity and temperature
sensors/valves, water meter IRRIX receives sensor data once a day from the data logger. IRRIX in

turn transmits to the data logger the irrigation rates for each sector, in
mm, for the new day. The data logger starts the irrigation and ends it
when it has measured the programmed rate.

Processing system Data logger + IRRIX web platform

Transmission supports 3G

Control interface Web platform

[56]

Sensors/devices

Humidity and temperature
sensors/pumping system, main, branch

and collector (feeder) pipes, Lateral
booms, valves, water meters, pressure
and flow regulators, automatic devices,

backflow preventers, vacuum valves, air
release valves, Filtering system, Chemical

injection equipment, Drippers

The smart humidity sensor monitors both the humidity and the
temperature of the air. The ratio of the humidity of the air to the highest
amount of humidity at a particular air temperature is known as relative
humidity. This Relative humidity hence becomes an essential
component in the operation of water pumping systems.

Processing system
A smart system built using the

Field-Programmable Gate Array
Technology (FPGAs) and HDL language

Transmission supports Radio waves

Control interface Not mentioned

[57]

Sensors/devices weather station node/soil moisture and
soil electrical conductivity sensors The remote server receives the environmental data through the ZigBee

and GPRS network, and the weather data directly through the GPRS
network. The remote server then allows using the deep learning
algorithm long short-term memory (LSTM) to improve the prediction
of soil moisture and electrical conductivity.

Processing system Remote server

Transmission supports ZigBee/GPRS

Control interface Webserver



Agronomy 2022, 12, 297 10 of 20

Analyzing the different examples cited in Table 4, generally, the architecture of irriga-
tion systems based on IoT technology takes the structure detailed in Figure 3.

Figure 3. Generalized structure of the architecture of IoT-based irrigation management systems.

An irrigation management IoT solution is based on three levels of components that
include the sensors/actuators, the gateway, and Cloud computing:

• Sensors and actuators—all of the systems mentioned include sensors to collect data
on physical quantities such as luminosity, temperature, and soil moisture. The ac-
tuators remain a complementary technology to the sensors; they convert electrical
energy into motion or mechanical energy, which is used to control the water pump.
A microcontroller (Arduino, in most systems) includes a processor, memory, input,
and output devices on a single chip. The role of a microcontroller is to process the raw
data captured by the sensors and extract useful information.

• The gateway—gateways have the role of connecting sensors or sensor nodes with the
outside world, and have the ability to perform local processing on the data before
transmitting it to the Cloud. The data can be transmitted between all of the processing
system counterparts via transmission media such as WiFi, Bluetooth [50], WiMaX,
Zigbee [57], GSM [54], and 3G [55], with protocols such as IPv4, IPv6, MQTT, or
DDS, etc.

• Cloud computing—three forms of IoT cloud are available: the cloud infrastructure,
cloud platform, and software cloud. Some systems have used a cloud [52,55], while
other systems are based totally on local processing [51,53,54]. Regarding cloud comput-
ing, it is an optional choice that may be used to lighten the load of work for the cloud.
This processing can be performed at the local nodes before relaying the information to
the cloud (Fog Computing); at the network edge, at gateways, or at intermediate nodes
(Edge Computing); or can be performed locally in the sensor node (Mist Computing).

4.2. Combination UAV and IoT in Irrigation

UAVs have the potential to be part of an IoT solution for irrigation management by
performing several tasks [9,58–61]. The tasks in which these aircraft can intervene are
classified into two categories according to the communication between the UAV and other
system parts.

Tasks with direct communication with the system include real-time communication
between UAV and sensors, which is now available with the development of federated
wireless smart sensors (WSN) which communicate with the UAV. The use of UAVs with
intelligent ground-based WSNs is proven to be a robust and efficient solution for data
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collection, monitoring, and analysis. The advantage lies in online data collection and
relaying to a central monitoring point, while effectively managing the network load and
latency through optimized UAV trajectories [58]. The GS-UAV-SC (GS for ‘Ground Sensors’,
and UAV-SC for ‘Unmanned aerial vehicle small cells’) model, proposed by Duangsuwane
et al. 2020 [9], represents a perfect example. The GS-UAV-SC (Figure 4) is a soil moisture-
monitoring sensor, which is connected to the UAV to stream data over the Internet in order
for the data to be stored and calculated on the cloud platform. The farmer/user can further
control the UAV in its movements around the field to collect all of the data from each sensor.

Figure 4. Illustration of UAV and WSN [9].

On the other hand, a UAV can function as an energy controller. Especially with the fact
that most wireless sensors in the IoT environment are facing the limited energy problem,
the way in which to provide sustainable energy to these sensors has become a challenge. In
this context, Liu et al. 2019 [59] presented a UAV to swap energy among wireless sensors
by adapting the optimal resource allocation approach based on dynamic game theory
(Figure 5).

Figure 5. Illustration of the system proposed by [59].
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In tasks with non-direct communication with the system, a UAV can play the role of
a versatile sensor for an IoT system by providing it with a set of external data extracted
from UAV images after treatments. Data such as the plant height [60] can be used by the
system to estimate the growth phase of the fields, and to provide them with the doses that
suit with this phase.

The advantage lies in the use on large farms. The acquisition of several interesting
data in the monitoring of the water status of crops (temperatures, humidity, ETc, water
potential, etc.) requires the use of several sensors to cover the whole area, while a UAV has
the potential to replace some sensors, and to provide the IoT system with these data after
extracting them from the processed images.

5. Machine Learning for Data Processing and Decision-Making

Machine learning has emerged, along with the techniques of Big Data and high
performance computing, to create new opportunities in the field of agrotechnologies
through the implementation of systems that can support decision making in issues such as
irrigation management. In this section, we present a general overview of machine learning
and a specific overview of its use in irrigation management.

5.1. Machine Learning (ML)

“Learning is any process (algorithm) by which a system (model) improves performance
(accuracy) from experience (data). The data may include hidden knowledge that explains
the laws/rules/logic of some complex phenomenon” said Herbert A. Simon. By analyzing
this definition, we can say that machine learning is about automatically extracting relevant
information from data through advanced analysis.

ML has seen a vast development recently through its use in several fields and applica-
tions (media, marketing, medicine, scientific research, agriculture, etc.). This multiplicity
refers to the multiplicity of algorithm models and approaches. These algorithms are
classified mainly according to the nature of the training data [62]: supervised learning,
unsupervised learning, semi-supervised learning and reinforcement learning.

Supervised learning is used to estimate an unknown (input, output) from known
samples (input, output), where the output is labeled; obviously, the machine will learn
faster with known samples. There are two types of such tasks: classification for the
category prediction of an object, and regression for the prediction of a specific point on a
numerical axis. Regression is essentially classification where we predict a number instead
of a category. The most commonly used algorithms are Naive Bayes, Decision Tree, Logistic
Regression, K-Nearest Neighbours, and the Support Vector Machine. In unsupervised
learning, unlike supervised learning, only input samples are given to the learning system.
The data are not labeled. The goal is to model the observations in order to better understand
them. This is often referred to as clustering, dimensionality reduction or generalization.
The most popular algorithms are k-means clustering, mean-shift, DBSCAN, Principal
Component Analysis (PCA), Singular Value Decomposition (SVD), and Latent Dirichlet
Allocation (LDA). Reinforcement learning is based on feedback. Training data is given only
as feedback to a system in a dynamic environment. This feedback between the learning
system and the interaction experience is useful to improve the performance in the task to
be learned.

The performance evaluation of the models obtained by these ML algorithms is essential.
These performances can be evaluated by several analysis techniques, such as the confusion
matrix, the bias-variance trade-offs of the correlation coefficient (R2), the mean square error
(MSE), and the error rate.

5.2. Neural Networks (ANN)

Machine Learning algorithms are in continuous development with the emergence of
neural networks (ANN) and Deep Learning, which are inspired by the human brain, and
are composed of interconnected artificial neurons capable of certain calculations from their
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inputs. The input activates the neurons of the first layer of the network, the output of which
is the input of the second layer of neurons in the network. Similarly, each layer passes its
output to the next layer, and the last layer produces the result. The layers between the
input and output layers are known as hidden layers.

The term Deep Learning refers to multi-layer artificial neural networks (ANNs). It is
considered one of the most powerful tools, and has become very popular in the literature, as
it is capable of processing a huge amount of data. The value of having deeper hidden layers
has recently started to outperform conventional methods in different domains, especially in
pattern recognition [63]. The two popular architectures today are [63] convolutional neural
networks (CNN), which are widely used in all cases involving images and videos, and
recurrent neural networks (RNN), which are best for sequential data such as voice and text.

5.3. ML-UAV and Irrigation in Arboriculture

Irrigation automation faces many implementation problems, notably due to the lack
of reliable and inexpensive sensors for important quantities (temperature, humidity, etc.),
the non-linear nature of the simulation models, and the non-stationary dynamics of crop
water requirements. The use of UAV and ML algorithms, and neural networks in particular,
along with their ability to describe non-linear dynamic phenomena, offer very interesting
prospects for making indirect measurements of water requirements and predictions of their
evolution. ANN is the most adopted approach [5,7,37] to the development of models that
can predict values of other data or that propose descriptions of data related to the water
status of crops.

The popular use of ANN in the literature can be explained by the fact that a well-
trained neural network can simulate the work of any of the algorithms described in this
section. This universality is what has made them very popular in moving beyond classical
ANN to Deep Learning that works more accurately, e.g., in order to solve increasingly
complex problems such as crop water status. It is not enough to add more and more layers
because the huge issue of neural networks, which might cause the problem of the difficulty
of learning, is the growing computational complexity with the number of layers. This
provides evidence of the importance of a well-established architecture.

Speaking of architectures, among the ANN architectures adopted in crop water status
analysis are multilayer perceptron (MLP) [37], with a backpropagation process for weight
calculations. A two-layer feedback network with ten hidden neurons, and a standard two-
layer feedforward network has a sigmoid transfer function in the hidden layer and a linear
transfer function in the output layer structure [7]. A deep stochastic configuration network
(DeepSCN) [5], which was first proposed by Wang et al. in 2017. Compared to other
random learning algorithms, DeepSCNs randomly assign the input weights and biases of
hidden nodes. The output weights are evaluated analytically in a constructive method. This
performs better than other random neural networks in terms of rapid learning, the scope of
random parameters, and the human intervention required [64]. It presented good results
in building a model that links Kc and NDVI in a pomegranate orchard. The performance
of the model was evaluated with the RMSE during training, which was close to 0 (0.046),
with a correlation coefficient R2 close to 1 (0.999) during the model validation [5]. This
provided evidence that NDVI variations from UAV imagery can be used to globally explain
the utility of ML algorithms in addressing complex issues such as crop water status.

5.4. Dashboard and GIS: Approaches to Decision Making

Real-time data representation and the coordination of information from multiple
sensors allow decision-makers to adjust irrigation management strategies in near-real time
and can provide farmers with emergency awareness. Dashboards are frequently used to
monitor and depict this data, either in a general way (mobile application, online platform)
or in a specific way (mobile GIS, web GIS).

Focusing on irrigation management, there are several examples to cite:
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• IRRIX is a web-based platform for irrigation monitoring that consists in the estimation
of crop water requirements using the water balance method [41] and using sensor
feedback to empirically adjust the irrigation rates for each sector [65].

• IMO was developed by Oregon State University and the Natural Resources Conser-
vation Service (NRCS). It explicitly analyzes irrigation efficiency, accounts for spatial
variability in soil properties and irrigation uniformity, performs simultaneous schedul-
ing for all of the fields on the farm, accounts for energy consumption and associated
costs, and uses both ET and soil moisture measurements to improve irrigation accuracy.
IMO was developed specifically to support irrigation management when water supply
or distribution system capacity is limited [66].

• The Irriga System is a mobile application that recommends the depth of water to be
applied to each crop field throughout the harvest season [67].

• IrriFresa is a mobile application that was developed for mobile devices (smartphones
and tablets). This application was developed to update the irrigation schedule in real
time, and to facilitate access to daily irrigation schedules for farmers. The mobile
application is connected to the nearest farm weather station, and then the ET0 values
are downloaded from this weather station to update the initial irrigation schedule
based on the differences between the real-time ET0 values and the historical average
of the time series ET0 over the period considered [68].

• RIMIS can provide information on the uniformity of water distribution, its lack or
excess, which decisions to adopt for the next day, the equitable irrigation supply of
tertiary canals, and the characterization of their irrigation distribution performance
over the season. RIMIS dynamically links a field irrigation demand-forecasting model
for the area irrigated by a canal network into the GIS, as developed with the VBA
programming language in ArcGIS software [69].

• SIMIS is intended for irrigated area management, and was designed to assist in
planning and operations. It was based on a water balance model covering different
modules to model a root zone water balance that was performed in daily time series
steps [70].

• AFSIRS is a GIS and database management system for the authorization and schedul-
ing of irrigation water demand [71].

Water resource management decision making requires crucial knowledge, wisdom,
and critical thinking, as well as interdisciplinary techniques to identify alternative courses
of action and evaluate their effects. The combination of technology and the physical and
life sciences helps managers to understand environmental problems. A dashboard or GIS
system will not guide us to a good decision; it is a whole process. In other words, a decision-
making system (a Dashboard or GIS system, etc.) is still an interactive computer system
designed to help decision-makers use communication technologies, data, documents,
knowledge, and models to accomplish the tasks of the decision-making process.

6. Discussion

The use of new technologies, UAV, IoT sensors, and ML algorithms as data process-
ing approaches, in precision agriculture and irrigation management particularly, offers
a better vision with the possibility to link information to very specific crop locations. In
irrigation management, spatial representation through maps of water stress distribution,
evapotranspiration, and humidity, etc., allows the management of crop water requirements
in a precise way, such that irrigation operations can be conducted by taking into account
the variability and spatial and temporal distribution of these factors (Kc, Ψ, g, T, H, etc.).

The way in which satellites help people’s daily lives is just as important, and the
scope of information that satellites can provide is indispensable. Drones have been proven
to be a reliable alternative when it comes to the collection of information that would
otherwise be provided by satellites more quickly and less expensively. Typically, platforms
collect information in very different ways, at completely different scales. Ultimately, using
one or both depends on the tasks and the specific data to be obtained. In arboriculture,
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UAVs are a very practical tool presenting a medium-to-high performance for multiple
applications [4–6,22–26,35,72]. With the high spatial and temporal resolutions that can
be achieved, they allow the characterization of entire fields with high-quality images to
analyze individual trees. Moreover, they offer the possibility of flying over the fields
at the right time to perform various kinds of experiments. UAVs associated with the
relevant sensors are powerful technologies to obtain accurate information about the spatial
and temporal variations in the soil moisture and vegetation status in order to optimize
irrigation system management. In addition, the cost-effectiveness of UAVs encourages
their adoption by farmers because of economic advantages, including rapid and high-
quality data collection. UAVs provide more suitable details on soil and orchards compared
to satellite imagery and direct field inspection methods, which are tedious, costly, and
time-consuming. The selection of the appropriate UAV platform depends on the type of
application and the characteristics of the study area. More efforts are needed in the future
to encourage end-users in arboriculture to incorporate UAVs into agricultural operations.

Although UAVs have advantages over other technologies, and although their potential
in arboriculture is huge, several challenges and limitations affect their adoption by farmers.
It is a challenging decision to make, as it involves technical, agronomic, and economic
factors. Many UAV platforms and onboard sensors are available in the market. Moreover,
UAVs collect a huge amount of data. Advanced data analytics tools are required to extract
and interpret information from the collected data. Therefore, an investment in time and
money is necessary to learn the required skills for the suitable use of UAVs. Consequently,
farmers require specific information on the technical and economic benefits of UAVs in
arboriculture before adopting them. The issue of training is important in order to identify
the compatibility of UAV technology with the actual practices of the farmers, to ensure
the effective monitoring of the farm, reduce the production costs and provide suitable
information from the UAV to improve the decision making. The automation of processes
is also a requirement to guide the users through all of the steps of flight planning, data
collection, data analysis, and interpretation. More efforts are needed in the future to
encourage end-users in arboriculture to be more open to the use of UAVs.

The adoption of ML algorithms, as a method of processing data extracted from UAV
imagery, comes down to the fact that ML techniques are capable of handling optimization
problems, in addition to handling multidimensional and multivariate data, and extracting
implicit links within huge datasets in a complex environment, such as the relationship
between water requirements and the physical and biological morphology of trees [5,7,37].
In order to identify a ML solution for data processing, especially in irrigation water man-
agement, several factors must be considered, e.g., the physical and biological morphology
of the trees, their dynamic environment (where several factors can intervene such as land
and atmosphere), and the non-linear and non-stationary dynamics of crop water demand.
All of these considerations lead to the use of ANN techniques, particularly deep learning,
which can be explained by the fact that a well-trained deep neural network can have the
ability to describe non-linear dynamic phenomena and provide very interesting prospects
for making indirect measurements of water requirements and forecasting their evolution.
With the availability of a huge amount of labeled data, deep ANN is the most often-used
method in many recent studies. However, the common challenges of ML applications
are the acquisition of relevant data, the availability of existing data, and the quality and
description of the data (metadata, labeled data). Furthermore, the data may have a high
level of irrelevant and redundant information, which might influence the efficacy of the
learning algorithms.

On the other hand, the ability to collect and transfer data, over a real-time network
without requiring human-to-human or human-to-computer interaction, positions the IoT as
an innovative technology for automated and smart irrigation [51–55]. For the architecture of
an IoT irrigation management system, there are different types of sensors, such as humidity
sensors, temperature sensors, and light sensors, etc.; various types of transmission methods,
in particular Wifi, Bluetooth [51], WiMaX, Zigbee [57], GSM [54], and 3G [55]; and protocols
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such as IPv4, IPv6, MQTT, and DDS, etc., which can be used as discussed in Section 4.1.
The choice of sensors and or the configuration generally is directly related to the purpose
behind the system. The method of transmission is related to the range and coverage of
the system, as well as the nature of the transmitter and receiver used. The distinction is
made due to the technical limitations [73] such as interference, such that the deployment
of massive IoT devices for agricultural and other purposes will lead to interference issues
that can result in data loss and reduce the IoT system’s reliability. As well as security
and privacy, a lack of proper security can lead to data loss, privacy bridges, and access
to raw information. Additionally, deploying IoT devices in an outdoor environment will
expose the devices to harsh environmental conditions that can lead to the degradation of
the deployed sensors over time, as well as communication failures. The adoption of the
IoT has several benefits for irrigation in general, such as helping to promote community
irrigation, especially in rural areas. The IoT may be used to promote services that allow
the community to exchange data and information, as well as improving contact between
farmers and agricultural specialists. In addition, the ability to reduce costs and reduce
waste in the application of agricultural inputs, such as water, increases productivity. As
well as the ability to remotely monitor devices and equipment, the ability to know when
and where to irrigate will help save time and money in the inspection of the water status of
large fields compared to personnel physically inspecting the field.

7. Conclusions

The water stress that faces global agriculture requires a scientific intervention to
develop solutions to this problem in order to ensure food security and sustainable devel-
opment by making irrigation management one of the priorities. The papers treated have
shown a significant contribution of UAV-ML-IoT technologies in irrigation management
and the analysis of the water status of crops. This contribution is due to the relevant
information that can be extracted from UAV images through the different sensors (RGB,
multispectral, heperspectral, and thermal), and due to the ability of ML algorithms to
define models for the estimation of water and other requirements by linking ground and
aerial measurements, as shown by the medium-to-high correlation coefficients and the
important role of wirelessly connected sensors in the implementation of smart systems.

The challenge of water scarcity, combined with the utility of these technologies, has
made the development of an integrated Drone-IoT-ML approach to irrigation management
an absolute necessity. Focusing on Morocco and developing countries in general, the
usefulness of these technologies can be emphasised in the face of a set of challenges such
as the difficult financial situation of many farms and the inability of the farmer to use
the information if human interventions are not available. Those challenges are likely to
hinder the widespread adoption of these new technologies by farmers in order to adapt
and modernize their production practices to obtain the best returns on these investments.

Those facts suggest two perspectives for our next works, which are the estimation of
water needs in the case of arboriculture, and the implementation of a system of which the
role will be to balance the estimated water needs and the water provisioning, based on the
Drone-IoT-ML approach.
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Abbreviations

ANN Artificial Neural Networks
CHM Canopy Height Model
CNN Convolutional Neural Networks
CWSI Crop Water Stress Index
DDS Data Distribution Service
DeepSCN Deep Stochastic Configuration Network
DSM Digital Surface Model
DTM Digital Terrain Model
ET Evapotranspiration
ExNIR Excess NIR
ExRE Excess RE
FPGA Field-Programmable Gate Array Technology
GNDVI Green Normalized Difference Vegetation Index
GRVI Green Red Vegetation Index
GS Ground Sensors
GRVI Green Red Vegetation Index
IoT Internet of Things
LDA Latent Dirichlet Allocation
LNC Leaf Nitrogen Content
ML Machine Learning
MLP Multilayer Perceptron
MQTT Message Queuing Telemetry Transport
NIR Near Infrared
NDRE Normalized Difference Red-edge Index
NDVI Normalized Difference Vegetation Index
OSAVI Optimized Soil-adjusted Vegetation Index
PCA Principal Component Analysis
QTRA Quantified Tree Risk Assessment
RDVI Re-normalized Difference Vegetation Index
RE Red Edge
RFID Radio Frequency Identification
RGB Red, Green, Blue
RNN Recurrent Neural Networks
SC Small Cells
SVD Singular Value Decomposition
TRI Tree Risk Index
TRRVI Red-range Transformed Vegetation Index
VI Vegetation Index
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