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Abstract: Invasive weeds of the Asteraceae family are widespread in the world. Arbuscular mycor-
rhiza (AM) is one of the main factors contributing to the successful distribution of these species that
is most clearly manifested in the subfamily Asteroideae. The benefits of plant-AMF symbiosis are
most significant under unfavorable biotic and abiotic conditions. The specificity of the relationship
between arbuscular mycorrhizal fungi (AMF) communities and plants and is determined at the
presymbiotic stage. The AMF colonization level is higher in invasive species than in native ones, but
AMF communities associated with Asteraceae invasive species are less diverse. AMF communities of
Asteraceae invaders often include fewer common species (e.g., species belonging to Diversisporales).
Invaders also reduce native AMF species richness in new areas. Arbuscular mycorrhizal fungi can
form mycorrhizal networks that allow the redistribution of nutrients in plant communities. The
most significant influence of AMF associated with invasive Asteraceae plants is seen in the forma-
tion of soil and rhizosphere microbiota, including the suppression of beneficial soil bacteria and
fungi. This review could be useful in the development of practical recommendations for the use of
AMF-based fertilizers.

Keywords: arbuscular mycorrhizal fungi community; invasive weeds; Asteraceae; common mycorrhizal
networks; Glomeromycota; biotic and abiotic factors

1. Introduction

In the context of world economic globalization and the rapid increase in food demand
due to world population growth, invasive weeds have become a serious threat to various
ecosystems worldwide. Such invasions become a significant economic and ecological risk
factor, providing irreparable damage to agricultural biocenosis. Among the most harmful
invasive plants, there are more than three dozen Asteraceae species [1,2]. Many invasive
weeds not only produce allelopathic compounds and allergenic species themselves but
also may be hosts for pests and pathogens, which are transferred to agricultural crops
from these new habitats [3]. One of the features of most invasive Asteraceae species,
including dangerous and quarantine plants such as Ambrosia artemisiifolia L., Ambrosia
trifida L., Bidens frondosa L., Helianthus tuberosus L., Solidago canadensis L., Solidago gigantea
Aiton, etc., are arbuscular mycorrhizal fungi (AMF) mutualism and mycorrhizal networks
formation which facilitates their successful distribution and anchoring in new territories
(Table 1) [4–8].
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Table 1. AMF colonization level of different Asteraceae species.

Asteraceae Species Life Cycle AMF Colonization
Level * Invasive/Native References

Cardueae

Carduus acanthoides L. biennial/perennial medium native [9]

Carduus tenuiflorus Curtis annual/biennial medium native [10]

Centaurea scabiosa L. perennial medium introduced [11]

Centaurea stoebe (=Centaurea maculosa) L. biennial/perennial medium invasive [12]

Cichorieae

Cichorium intybus L. perennial high native/introduced [13]

Lactuca serriola L. annual/biennial medium native [14]

Sonchus arvensis L. perennial low pres [15]

Taraxacum officinale (L.) Weber ex
F.H.Wigg. perennial high pres [16]

Senecioneae

Senecio vernalis Waldst. and Kit. biennial low native [17]

Tussilago farfara L. perennial medium native [18]

Anthemideae

Achillea millefolium L. perennial medium native [19]

Artemisia vulgaris L. perennial medium native [18]

Matricaria discoidea (=Matricaria
matricarioides) DC. annual medium native/introduced [20]

Tanacetum vulgare L. perennial high native [21]

Astereae

Aster squamatus (Spreng.) Hieron. annual medium introduced [14]

Baccharis halimifolia L. perennial low native [22]

Erigeron annuus (L.) Desf. annual high invasive [23]

Erigeron bonariensis (=Conyza bonariensis)
L. annual medium introduced [15]

Erigeron canadensis (=Conyza canadensis)
L. annual medium invasive [23]

Solidago canadensis perennial high invasive [23]

Solidago gigantea perennial high invasive [24]

Solidago nemoralis Aiton perennial medium native [25]

Millerieae

Galinsoga quadriradiata (=Galinsoga
ciliata) Ruiz and Pav. annual medium invasive [26]

Galinsoga parviflora Cav. annual low invasive [27]

Eupatorieae

Ageratina adenophora (Spreng.) R.M.King
and H.Rob. perennial medium invasive [28]

Coreopsideae

Bidens frondosa annual
low native [29]

high invasive [23]
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Table 1. Cont.

Asteraceae Species Life Cycle AMF Colonization
Level * Invasive/Native References

Bidens tripartite L. annual medium introduced [30]

Heliantheae

Ambrosia artemisiifolia annual medium invasive [31]

Helianthus annuus L. annual high invasive [21]

Helianthus tuberosus perennial medium introduced [32]

high invasive [23]

Parthenium hysterophorus L. annual medium native [27]

Rudbeckia laciniata L. perennial high invasive [24]

Xanthium albinum (Widder) Scholz and
Sukopp annual high invasive [23]

* low (<30%), medium (30–70%), high (>70%); assessed by histochemical method, based on counting the number
of arbuscules, vesicles, and the length of mycelium.

The arbuscular mycorrhiza (AM) is formed by the fungi of the subphylum Glom-
eromycotina in the phylum Mucoromycota [33]. Their phylogeny has changed several
times in the last two decades [33,34]. Earlier most of the AMF belonged to the major
genus Glomus, but now many former Glomus species are assigned to other genera [35].
Nevertheless, this order Glomerales, which includes most of these genera, is still major in
AMF communities (>70%).

There are lots of plant–AMF association benefits. First of all, it has better nutrient deliv-
ery, including phosphorus, nitrogen, sulfur, and microelements [36–41]. Mycorrhized plants
are also more resistant to fungal diseases and pests [42–44]. One of the key factors affect-
ing the effectiveness of mycorrhizal protection is the environmental conditions [42,45–47].
Under favorable environmental conditions and high availability of nutrients, arbuscular
mycorrhiza does not have a significant effect on plant development, however, under ad-
verse conditions of various nature, its effect becomes significant [8,47–49]. Symbiosis with
arbuscular mycorrhizal fungi affects plant growth, increases their immunity, and helps them
better tolerate drought, flooding, soil salinization and heavy metal pollution [26,48,50–53].

Research conducted on Chongming island, China, showed that the spread of Canadian
goldenrod S. canadensis in arid areas was accompanied by increased AMF colonization,
while such an effect was not observed in wet lowlands [48]. The success of plant AMF
colonization may also depend on soil conditions. In the case of invasive ragweed A.
artemisiifolia the highest degree of root mycorrhization was observed in disturbed areas,
such as roadsides and wastelands, while the minimum percentage of mycorrhization was
observed in natural conditions and in cultivated areas [54].

Invasive plants are colonized with AMF better compared to native plants. This was
shown in A. artemisiifolia, R. laciniata, and S. gigantea [24,55]. The AMF community can
influence the invasion of species by changing the competitive relationship between invasive
and native species through changes in the abundance of AMF and their species composition.
The invasion of some plants is usually accompanied by a decrease in the diversity of AMF
species, but these remaining fungi help the invader. That was also shown in Asteraceae in
the field [24,55,56]. As a result, native plants, dependent on mycorrhizal symbiosis, reduce
or even lose their competitive advantage in the invaded area. Moreover, depending on
the phytobiome and other biotic factors, the competitiveness of either invasive or native
species may increase [57–59].

It is worth noting, that along with the physiological features of the development of
invasive species (lengthening of the growing season, increase in the size of leaves, the
number and viability of seeds, the formation of monodominant thickets, etc.), the synthesis
of allelopathic compounds and other factors, and the success of expansion into new ter-
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ritories by these species is determined by the ability to form arbuscular mycorrhiza and
mycorrhizal networks [4–8]. Allelochemicals reduce the survival and regeneration of native
plants and have a significant impact on the microbial community of the rhizosphere, due to
the processes of decomposition, metabolization of labile and recalcitrant substrates, modifi-
cations of soil enzyme activity, etc. [60–67]. It was shown that allelochemical compounds,
produced by S. canadensis, inhibit the colonization of native plants Echinochloa crusgalli,
Kummerowia striata, and Ageratum conyzoides by AMF and change the AMF community [68].
Traditionally, allelopathy is considered to be a separate, independent mechanism of plant
invasion. However, we suppose that in the case of invasive Asteraceae species this may be
a first step in the two-step invasion. Thus, the release of allelochemical compounds leads to
the weakening of the native flora, both directly—allelopathically and indirectly—through
the suppression of their mycorrhizal symbiosis [68–70]. This leads to a change in the
composition of the AMF community, which, in turn, may allow invasive plants to form
their own effective symbiosis with AMF, further increasing their competitive potential. The
main objective of the study was to determine the effects of AMF in symbiosis with plants
on the spread of invasive Asteraceae weeds and to define its features. We compared AMF
communities in native and invasive Asteraceae species, identified features of symbiotic
relationships between AMF, and assessed their soil microbiota.

2. Invasive Asteraceae Species Associated with AMF

In Central Europe and European Russia, there are such associated AMF invasive
species of the Asteraceae family such as fleabane E. canadensis, ragweed A. artemisiifolia,
Jerusalem artichoke H. tuberosus, stickseed B. frondosa, goldenrod S. canadensis, pineap-
ple weed M. discoidea, daisy Symphyotrichum x salignum (Willd.) G.L.Nesom, common
cocklebur Xanthium orientale L., quick weed Galinsoga parviflora, spherical muzzle Echinops
sphaerocephalus L., and others [32,71–76]. It is important to point out that the majority of
noxious invasive Asteraceae species belong to the subfamily Asteroideae (Figure 1). It
was shown that these species have the highest level of AMF colonization among other
subfamilies [20,24].
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Depending on abiotic factors, host–plant species, and the presence of other species, the
types of relationships may vary from mutualism to parasitism [46,78]. For invasive Aster-
aceae species, it is a powerful symbiosis. The nature of these interactions is determined by
the plant species and the AMF community [79]. An analysis of the occurrence of fungal
species associated with plants of the Asteroideae subfamily showed that invasive species
from the tribes Anthemideae, Astereae, Cardueae, Gnaphalieae, Cichorieae, Senecioneae,
and Heliantheae are often associated with such genera as Glomus, Claroideoglomus, Rhi-
zophagus, Septoglomus, Funneliformis, Paraglomus, Diversispora, Acaulospora, Archaeospora,
Scutellospora, and Pacispora [80]. This hypothesis is confirmed by data on a high level
of arbuscular mycorrhizal fungus colonization of invasive Asteraceae species obtained
in the Czech Republic, including E. canadensis, S. canadensis, R. laciniata, G. parviflora, A.
artemisiifolia, etc. [20].

Along with widespread species of fungi, there are fewer common representatives
of the Diversisporales order. The most frequent AMF associated with Asteraceae plants
belongs to the genus Glomus. However, the AMF community of the invasive Asteroideae
weeds in most cases contains Diversisporales in the field (Table 2). We suppose that the
species of Diversisporales may be the key partners in the mutualistic relationships between
invaders and AMF.

Table 2. Asteraceae plant species whose distribution is enhanced by AMF.

Host-Plant Species Associated AMF Community References

Brown knapweed Centaurea jacea L.

Glomus sp.

[81]
Claroideoglomus sp.
Diversispora sp. **
Acaulospora sp. **
Archaeospora sp.

Thistle Cirsium purpuratum (Maxim) Matsuma.

Acaulospora sp. **

[82]
Rhizoglomus sp.
Rhizophagus sp.

Diversispora sp. **

Canadian fleabane Erigeron canadensis (=Conyza canadensis)

Glomus versiforme

[23,83,84]

Funneliformis caledonius
F. mosseae

Rhizophagus intraradices
Septoglomus constrictum

Claroideoglomus claroideum
C. etunicatum

Diversispora eburnean **
Diversispora sp. **

Canadian goldenrod Solidago canadensis

Septoglomus constrictum

[23,75]

Funneliformis mosseae
F. geosporus

Claroideoglomus claroideum
C. etunicatum

Oehlia diaphana
Glomus versiforme

Acaulospora excavate **
A. mellea

Diversispora sp.

Shaggy soldier Galinsoga quadriradiata

Glomus spp.

[23]
Claroideoglomus claroideum

Funneliformis mosseae
Septoglomus constrictum *
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Table 2. Cont.

Host-Plant Species Associated AMF Community References

Crofton weed Ageratina adenophora (=Eupatorium adenophorum)

Claroideoglomus etunicatum

[85,86]
Funneliformis geosporus
Rhizophagus aggregatum
Diversispora arenaria **

Annual forb Bidens pilosa
Septoglomus viscosum

[31]Septoglomus constrictum
Glomus perpusillum

Devil’s beggarticks Bidens frondosa

Claroideoglomus claroideum

[23]
Claroideoglomus drummondii

Septoglomus constrictum
Diversispora sp. **

Common ragweed Ambrosia artemisiifolia

Funneliformis mosseae

[31,55]

Glomus reticulatum *
Glomus perpusillum

Septoglomus constrictum *
Septoglomus viscosum

Unundentidied spores

Jerusalem artichoke Helianthus tuberosus

Funneliformis mosseae

[23]
Claroideoglomus claroideum

Septoglomus constrictum
Diversispora sp. **

Cutleaf coneflower Rudbeckia laciniata

Glomus macrocarpum

[24]

Acaulospora cavernata**
Claroideoglomus claroideum

Funneliformis mosseae
Pacispora franciscana **

Rhizoglomus fasciculatum
Scutellospora dipurpurescens **

Septoglomus constrictum

Cocklebur Xanthium albinum

Funneliformis mosseae

[23,87]
Claroideoglomus claroideum

Septoglomus constrictum
Rhizoglomus microaggregatum

* soil samples. ** genera of order Diversisporales.

2.1. The Nature of Symbiotic Relationship between Invasive/Native Plants and AMF Communities

The plant–AMF symbiosis is mediated through plant and fungal metabolites (primary
and specialized metabolites, phytohormones) that ensure partner recognition, colonization,
and the establishment of a symbiotic association. During pre-symbiotic communication,
root released quercetin and 2-hydroxy fatty acids lead to compound-specific morphological
AM fungal responses. Then strigolactone and cutin monomers (1,16-hexadecanediol and
16-hydroxyhexadecanoic acid) trigger hyphopodium development on the root surface. It
has been established that the specificity of the relationship between AMF communities
and plants is determined at the presymbiotic stage [78,79]. Phytohormones are involved
in the plant–AMF regulation interactions as signaling molecules. They act from the early
recognition of AMF in the soil to the final formation of mycorrhiza as strigolactones, auxins,
abscisic acid, brassinosteroids, and gibberellic acid [88–92]. Auxin is necessary both for the
early stages of fungal growth and for the differentiation of arbuscules, while gibberellic
acids modulate the formation of arbuscules [91]. During the initial colonization, plant–AMF
interactions are facilitated through the regulation of signaling and carotenoid pathways.
Phytohormones can modulate plant immunity by altering the balance of jasmonate and
salicylic acid signaling pathways, to promote phytohormone gibberellic acid. The AMF
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symbiotic association influences the primary metabolism of plants to increase the level of
sugars and metabolites of the tricarboxylic acid cycle and to facilitate photosynthates sharing.

Along with the changes in the primary metabolism, the formation of arbuscular
mycorrhiza also affects the synthesis of specialized metabolites. AM has a positive effect
on the production of specialized metabolites either by increasing plant biomass or by
stimulating metabolite biosynthetic pathways. AMF–plant symbiosis provides benefits
for sucking pests by altering the plant immunity with phytohormones and influencing
primary and specialized metabolites [93,94]. For example, pyrrolizidine alkaloids—the
major defense compounds of plants in the Senecio genus, are synthesized in response to
AMF colonization.

2.2. Arbuscular Mycorrhiza and Soil Microbiota

The most significant influence of arbuscular mycorrhiza is seen in the formation
of soil and rhizosphere microbiomes. Thus, a community of certain microorganisms is
formed in the hyphosphere of AMF (mycorrhizosphere). In this case, the mycorrhizosphere
is a narrow area of soil around the hyphae, where physical, chemical, and biochemical
conditions differ from the rest of the soil volume due to the influence of hyphal exudates [95].
This effect of AM fungi can be compared with the formation of the soil rhizosphere by plants.
Due to their apparently close ecological interactions, mycorrhizospheric microorganisms
can be assigned to the so-called «second genome» of AMF, which significantly contributes
to the attraction and nutrient turnover [95]. The microbiome of the mycorrhizosphere
is unique compared to other microbial communities and is characterized by less species
diversity, but a larger number of cultivated bacterial species [96]. In turn, the taxonomic
composition, abundance, and diversity of bacterial and fungal communities also influence
the relationship between the host plant and mycorrhizal fungi. For example, the analysis
of the rhizospheric microbial community of greater burdock Arctium lappa L. (Asteraceae)
showed an exceptionally low ratio of AMF (0.05%) in the presence of a diverse bacterial
community. According to the authors, the key factors that led to this result are a more
diverse and numerous bacterial community and soil characteristics. For example, there
are differences in the composition of the bacterial communities of Gigaspora margarita and
Gigaspora rosea, as well as six strains of AMF belonging to the species Funneliformis mosseae,
F. coronatum и Rhizophagus intraradices. No correlation between the taxonomic status of
fungi has been established [97,98]. Bacteria of the mycorrhizosphere are divided by their
functions into «mycorrhiza helper bacteria» (MHB), which promote spore germination,
mycelium growth and mycorrhiza formation, and «plant growth-promoting rhizobacteria»
(PGPR). The PGPR provide an increase in available nutrients, protection and resistance
to stress plants, improving their growth characteristics, as well as bacteria that combine
the characteristics of MHB and PGPR [99–105]. The presence of Paenibacillus sp. in the
mycorrhizasphere of Rhizophagus irregularis led to an increase in the amount of nitrogen
from chitin [64,66,67,106,107]. Under field conditions, the synergistic effects promote
the growth of sunchoke H. tuberosus by Rhizophagus intraradices KKU-Wh and Klebsiella
variicola UDJA102 × 89−9 [32]. A growth-stimulating effect was also observed with
the combined action of the endophytic Exserohilum rostratum NMS1.5 and AMF Glomus
etunicatum (=Claroideoglomus etunicatum) UDCN52867 [108]. It is interesting to note that a
decrease in the proportion of arbuscular mycorrhiza fungi was accompanied by an increase
in the proportion of asco- and basidiomycetes [65]. In general, invasive plants have a
significant impact on local soil pathogens, which, in turn, affects the success of their spread
in new territories [43]. There are soil bacteria that can inhibit the development of extra-
radical mycelium of AMF. Thus, the influence of AMF on the ecosystem depends on the soil
microbiome [109]. Gigaspora rosea (Diversisporales) suppresses the beneficial soil bacteria
Pseudomonas putida and fungi Trichoderma pseudokoningii [110,111].

The increase in disease and pest resistance, as well as the increased growth of plants
colonized by arbuscular mycorrhiza, is the result of complex interactions between plants,
pathogens and AMF. For example, mycorrhized plants of various families showed resistance
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to soil phytopathogens Aphanomyces, Cylindrocladium spathiphylli, Fusarium, Macrophomina
phaseolina, Phytophthora, Pythium, Rhizoctonia, Sclerotinium, Verticillium, Thielaviopsis basicol,
and nematodes Heterodera, Meloidogyne, Pratylenchus и Radopholus [42–44]. It was shown
that the resistance of Leucanthemum vulgare (Vaill.) Lam. (Asteraceae) to pathogens is not
associated with changes in the root architecture and depends on the species composition
of the AMF community [112]. It is supposed that there are many possible mechanisms to
exhibit plant immunity against pathogens and pests. For example, the resistance of myc-
orrhized plants to soil pathogens may be associated with a nonspecific immune response
that occurs in host plants, changes in the hormonal status of plants, and the endophytic
community of microorganisms [45,113,114]. Arbuscular mycorrhiza is involved in sig-
naling between infected and healthy plants, thereby contributing to the expression of PR
protein genes (PR1, PR2, PR5) in uninfected plants and the formation of immune responses
in plants [115].

2.3. Common Mycorrhizal Networks

AMF can also influence the dynamics of plant communities through the formation of
mycorrhizal networks [116–119]. Mycorrhizal networks or common mycorrhizal networks
(CMN) are networks of hyphae of mycorrhizal fungi that simultaneously colonize the
root systems of some plants. A necessary condition for the formation and functioning of
a mycorrhizal network is the ability of neighboring plants to be colonized by the same
mycorrhizal fungi. The impact on intraspecific and interspecific competition is carried out
due to the redistribution of mineral nutrients between plants, as well as the exchange of
various signal and allelochemical compounds [120–130]. The structures of mycorrhizal
networks depend on the species composition of plants growing in this area, and, in some
cases, on their anatomical features (leaf size, etc.) [7,129]. Thus, a study conducted with
22 plant species formed in different communities showed that in the presence of several
host plants, arbuscular mycorrhiza fungi prefer certain species [7].

The formation of arbuscular-mycorrhizal networks is shown for such Asteraceae plants
as Canadian goldenrod S. canadensis, and common chicory C. intybus [72]. Plants connected
by mycorrhizal networks exhibit greater plasticity in response to adverse external factors.
This is manifested by a change in the growth rate of roots and shoots, the processes of
photosynthesis and nutrition, and the occurrence of plant defense reactions. In the event of
a stressor, plants associated with the CMN can exchange warning signals about the stress
sources [131]. The laboratory experiments have shown the ability of mycorrhizal networks
to redistribute nutrient flows between connected plants. The mycorrhizal network, con-
necting invasive S. canadensis and native Kummerowia striata (Thunb.) Schindl. (Fabaceae),
enhanced the growth of Canadian goldenrod and the influx of nitrogen and phosphorus
compounds. At the same time, the growth and the number of available nutrients decreased
in K. striata [72]. Thus, due to the uneven distribution of nutrients, arbuscular mycorrhizal
fungi are able to change plant communities, facilitating the invasion of some species. It
is interesting to note that nitrogen compounds are most often supplied by CMN to big
photophilous plants [129].

3. Discussion

One of the important factors in the spread of invasive Asteraceae is the plant-associated
AMF community. As a result of symbiotic relationships, weeds receive serious advantages
over native species. These advantages are most significant under unfavorable biotic and
abiotic conditions. The formation of arbuscular mycorrhiza improves nutrition (including
phosphorus, nitrogen, sulfur, trace elements), and water supply, increases stress resistance
of plants, and reduces their susceptibility to diseases and attractiveness for leaf-eating
insects, including the increased synthesis of specialized plant metabolites. The influence
of AMF and mycorrhizal networks on the soil microbiota, as well as the suppression of
phytopathogens and nematodes, are important.
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AMF communities associated with invasive and native plants have a number of signif-
icant differences. Firstly, the AMF community of Asteraceae invasive species is less diverse.
Invaders also decrease AMF species richness in invaded ecosystems [24,56,132]. Secondly,
the rate of AMF colonization of invaders is higher than that of native species [55]. Thirdly,
AMF communities of Asteraceae invaders often include fewer common species (such as
species of the order Diversisporales). Species of Diversisporales are quite difficult to iden-
tify by morphological features since the diversity of spores is high. The suppressive effect
of Gigaspora rosea (Diversisporales) on soil bacteria and fungi was shown, while representa-
tives of the order Glomerales generally demonstrate a synergetic effect on plants [110,111].
The question of whether there is an interaction between the AMF communities of invasive
and native plant species remains open. Unfortunately, all commonly used approaches
have some weaknesses. The classical histochemical method of assessment of fungal col-
onization through calculating the length of hyphae and the number of arbuscules and
vesicles may reduce the value due to the fact that some AMF genera do not form arbuscles
or form mainly exomycelium. These species are stably present in the AMF community
associated with invasive weeds and may play a key role in the symbiosis. A discrepancy
between the level of AMF colonization obtained by the histochemical method and the level
of expression of genes, the products of which are involved in symbiosis, was revealed
(Krukov unpublished). Therefore, the assessment of the level of colonization by physio-
logical and biochemical plant parameters may lead to correction of existing conclusions
and hypotheses.

It should be noted that most studies on mycorrhiza are carried out in vitro by in-
oculating test plants or their seeds with a spore suspension of well-known arbuscular
mycorrhizal fungi, such as Funneliformis mosseae, Rhizophagus intraradices, and several
Glomus spp., which are commonly used in agricultural biotechnology. The relationships
between them and agricultural plants are well studied, so they are often used as the basis
for fertilizers [101,102,108]. Species of Diversisporales order are used for these purposes in
rarely cases. The peculiarities of these interactions are studied poorly.

Although such studies show the positive effects of mycorrhiza on plants overall, due
to the limited number of species used, they do not reflect situations in nature, especially in
complex ecosystems with large numbers of potential interactions between their components
(Figure 2). There are few studies that reveal the features of plant–AMF interactions in
natural conditions. This is due to the complexity of the planning and methodological base
of such experiments. In our opinion, a combination of several approaches is necessary,
specifically histochemical, molecular and biochemical approaches.

It is also necessary to take into account the relationship of AMF with the soil bacterial
community [117,118]. Despite the large number of articles pointing to the possibility of
synergy with the simultaneous use of bacteria-based fertilizers and AMF, it is also important
to consider which types of fungi and bacteria are used in the fertilizer. Otherwise, the
opposite effect to the expected one can be achieved.

CMNs can greatly enhance the capabilities of invasive plants associated with AMF.
For example, they may form friendly phytobiota, redistribute excess nutrients and water,
or signal about threats [115,125–128]. The species composition of AMF involved in CMN
is poorly understood. However, in our opinion, the data on the species composition is
extremely important, since they determine the specificity of these relationships.

It should be noted that the identification of AMF species associated with invasive
plants is rather complicated. It is difficult to distinguish them by morphological features,
since they are located inside plant cells, and are capable of forming anastomoses. They
also may not be cultivated on artificial nutrient media. When using molecular methods
of AMF DNA identification, there is a risk of contamination with the genetic material
of the soil mycobiota or the host plant. Another difficulty lies in the fact that the loci
traditionally used for fungal identification have high interspecific and intraspecific genetic
polymorphism [47,133,134]. Many authors associate the solution to these problems with a
wider introduction of new generation sequencing (NGS) methods into the research process
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and a more thorough analysis of genome and transcriptome data [135–137]. At the same
time, the identification of key AMF genera associated with invasive plants, in our opinion,
would make it possible to develop probes for their rapid identification and quantification by
molecular methods. This is necessary to effectively control the number of AMF-associated
invasive weeds.
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4. Conclusions

Thus, one of the important factors in the spread of invasive Asteraceae is the plant-
associated AMF community. As a result of symbiosis, weeds receive serious advantages
over native species. These advantages are most significant under unfavorable biotic and
abiotic conditions.

It has been shown that the species of the host plant determine the species composition
of the AMF communities. In turn, the AMF communities closely interact with soil biota.
The influence of AMF communities on the phytocenoses as a whole is still insufficiently
known. There is an opinion that AMF communities are rather «passengers» than «drivers»
of Asteraceae invasions [138]. However, there are other opinions on this matter, and
emerging data do not support this [57,132].

Cultivation of Asteraceae such as H. annuus, and H. tuberosus can affect the soil and
rhizosphere microbiota. It is also necessary to monitor invasive Asteraceae weeds as A.
artemisiifolia, B. frondosa, S. canadensis, etc. because these species have a significant impact on
ecosystems. Thus, this factor of invasion must be considered while planning agrotechnical
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measures to limit the distribution of weeds, developing measures for the conservation of
native plants, and using AMF-based fertilizers.
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