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Abstract: Pod phenotypic traits are closely related to grain yield and quality. Pod phenotype detection
in soybean populations in natural environments is important to soybean breeding, cultivation, and
field management. For an accurate pod phenotype description, a dynamic detection method is
proposed based on an improved YOLO-v5 network. First, two varieties were taken as research
objects. A self-developed field soybean three-dimensional color image acquisition vehicle was
used to obtain RGB and depth images of soybean pods in the field. Second, the red–green–blue
(RGB) and depth images were registered using an edge feature point alignment metric to accurately
distinguish complex environmental backgrounds and establish a red–green–blue-depth (RGB-D)
dataset for model training. Third, an improved feature pyramid network and path aggregation
network (FPN+PAN) structure and a channel attention atrous spatial pyramid pooling (CA-ASPP)
module were introduced to improve the dim and small pod target detection. Finally, a soybean
pod quantity compensation model was established by analyzing the influence of the number of
individual plants in the soybean population on the detection precision to statistically correct the
predicted pod quantity. In the experimental phase, we analyzed the impact of different datasets
on the model and the performance of different models on the same dataset under the same test
conditions. The test results showed that compared with network models trained on the RGB dataset,
the recall and precision of models trained on the RGB-D dataset increased by approximately 32%
and 25%, respectively. Compared with YOLO-v5s, the precision of the improved YOLO-v5 increased
by approximately 6%, reaching 88.14% precision for pod quantity detection with 200 plants in the
soybean population. After model compensation, the mean relative errors between the predicted and
actual pod quantities were 2% to 3% for the two soybean varieties. Thus, the proposed method can
provide rapid and massive detection for pod phenotyping in soybean populations and a theoretical
basis and technical knowledge for soybean breeding, scientific cultivation, and field management.

Keywords: soybean pods; phenotyping; soybean population; dynamic detection; YOLO-v5; RGB-D

1. Introduction

The pod phenotype is an important agronomic soybean trait [1]. As a leaf homol-
ogous organ [2], the pod is an essential factor in determining grain yield and quality
of the grain [3,4]. The accurate and rapid acquisition of soybean pod physiological and
ecological traits is of great significance for soybean breeding, yield estimation and field
management [5]. Traditional crop phenotype acquisition methods are mainly measured
manually, which has the disadvantages of subjective error, low efficiency, and high labor
cost. In particular, it is difficult to analyze crop group phenotyping on a large scale.
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In recent years, with the development of computer and machine vision technology,
plant high-throughput phenotyping technology has become a hotspot in agricultural
information engineering research [6]. Currently, phenotyping collection platforms are
divided into indoor and field types depending on the operating environment. Indoor
phenotyping collection is used for plants collected from a field or cultivated in a greenhouse.
For example, an automated plant phenotyping system that consists of a digital camera and
an automated platform can automatically collect and analyze sequential images of soybean
plants [7]. For large-scale genetic and management studies to capture plant growth, a
low-cost greenhouse-based high-throughput phenotyping platform has been built to collect
growth-related image-derived phenotypes [8]. Through a combination of a rotated image
scanning platform and a deep-learning-based computer vision pipeline, a cost-effective
phenotyping platform was built to generate and analyze large datasets of maize ear and
kernel phenotypes [9].

Indoor phenotyping collection platforms can precisely collect physiological traits
of a single plant or organ to avoid shielding between plants, but they cannot replace
field phenotyping collection for features in complex field environments. In addition,
indoor phenotyping collection cannot reflect the characteristics of crop populations in the
natural field environment. According to different carriers, the types of field phenotyping
collection platforms include unmanned aerial vehicle (UAV) remote sensing [10], vehicle-
mounted [11], and fixed positions in a field [12]. For example, multiple light detection and
ranging sensors are fixed on the front of a high-clearance tractor to achieve collecting crop
phenotyping with the tractor running in the field [13]. Shafiekhani et al. [14] developed
a robotic architecture for plant phenotyping, which consists of an autonomous ground
vehicle and a mobile observation tower. This platform can collect high-throughput plant
phenotyping in the field. Herzig et al. [15] attached red–green–blue (RGB) and multispectral
cameras to a UAV to collect vegetation indexes and various morphological traits of crops
for yield prediction. These studies on crop phenotyping collection in the field have played
an important role in the development of crop phenotyping technology, mainly focusing on
canopy, vegetation cover and group growth traits. It is still difficult to achieve a detailed
phenotyping collection in the field, such as soybean pods distributed from the bottom of
the stems to the canopy during crop reproductive stages.

Recently, with the development of deep learning and digital image processing technol-
ogy, target detection technology has been applied to crop canopies, key organs, diseases,
and insect pests, such as soybean pod phenotyping detection [16], tomatoes [17], and
strawberries [18]. Detection algorithms based on deep learning are mainly divided into
two categories: one category includes two-stage algorithms, which are represented by
the region-convolutional neural network (R-CNN) [19], faster R-CNN [20], and mask R-
CNN [21,22], of which the operating speed is so slow that it is difficult to meet the real-time
requirements for crop phenotyping detection. The other category includes single-stage
algorithms, which are represented by the single shot multibox detector (SSD) [23], and the
you only look once (YOLO) algorithm [24], which can meet the real-time requirements but
have comparatively lower detection precision. In target detection tasks in agriculture, the
YOLO series algorithms [25,26] play an important role in single-stage algorithms, which
compromise between speed and precision. Guo et al. [27,28] used an improved YOLO-v4
algorithm by fusing the K-means algorithm and an improved attention mechanism to
detect the number of soybean pods of a single plant. Li et al. [29] proposed an improved
YOLO-v5 algorithm based on a shallow feature layer to overcome the field environment
noise to meet the practical requirements of wheat ear detection and counting. Ren et al. [30]
and Pathoumthong et al. [31] proposed an improved YOLO-v5 algorithm by introducing
an attention mechanism, which adds a squeeze-and-excitation (SE) module to the backbone
network for the detection of crop stomata.
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Although the above algorithms have been optimized according to plant physical and
ecological traits in the process of transferring general object detection to plant phenotyping
detection, these methods, which were mainly for phenotyping detection of a single plant
and its key organs in a laboratory, are inadequate for detecting small target features in
complex field environments. Phenotypic detection for key organs, such as pods below the
canopy of the soybean population, has some problems, such as the crisscrossing of multiple
plants and the shelter of leaves and pods. At present, it is not systematic to detect the phys-
iological phenotype of the soybean population growth process, especially due to the lack of
automatic consecutive detection methods for pod phenotyping in soybean populations in
the field. Therefore, we propose a dynamic detection method for phenotyping pods in a
soybean population based on an improved YOLO-v5 network.

The remainder of the paper is organized as follows. Section 2 presents the proposed
method for processing soybean pod images and the specification of the improved process.
Section 3 presents the experiments and results. Section 4 offers a discussion of the proposed
method. Section 5 concludes the paper.

2. Materials and Methods

To effectively detect the phenotypic traits of soybean pods in the field, the Longken
3401 and Heihe 43 soybean varieties were taken as research objects, and a dynamic detection
method for phenotyping pods in soybean populations is proposed in this paper based on
an improved YOLO-v5 network. In this study, depth cameras and a servo drive system
were used to build a field soybean three-dimensional color image collection vehicle to
obtain soybean pod images in the field. Based on mixed depthwise convolution (MixConv),
the feature pyramid network and path aggregation network (FPN+PAN) of YOLO-v5
was optimized by applying a multilayer small size convolution kernel to each channel
group in the MixConv. Through the fusion of red–green–blue (RGB) and depth images,
the ability to distinguish foreground and background in soybean fields was improved to
avoid interference from multiple plants. At the same time, a method for detecting the
number of pods in the soybean population in the field was developed by introducing a
compensation algorithm to improve the precision of the evaluation of the number of pods
in the soybean population.

2.1. Experimental Materials and Data Acquisition
2.1.1. Experimental Materials

The test samples were cultivated in Jianshan Farm, north of Heilongjiang Province,
China. The varieties for testing were Longken 3401 and Heihe 43, which are indeterminate
and subindeterminate podding habit soybean strains, respectively. The cultivation of
Longken 3401 requires approximately 108 days from emergence to maturity, and the active
accumulated temperature of≥10 ◦C is approximately 1900 ◦C. The plants were unbranched,
with an average height of approximately 920 mm, and the pods were slightly curved,
sickle-shaped, and brown at maturity. The cultivation of Heihe 43 requires approximately
115 days from emergence to maturity, and the active accumulated temperature of ≥10 ◦C is
approximately 2150 ◦C. There were no branches on the plants, of which the average height
was approximately 750 mm and the pods were long-shaped and gray at maturity. In this
experiment, the testing varieties were planted in the middle of May every year at the farm
experimental plot located at 125◦38′ E longitude and 48◦87′ N latitude.

2.1.2. Construction of the Image Collection Platform

A field soybean three-dimensional color image acquisition vehicle was constructed
based on an image acquisition, drive, and control system to dynamically collect digital
image data of soybean pods in the field (as shown in Figure 1). The system consisted of
three depth cameras, a graphic computer, a servo cylinder, two servo linear slide rails,
four drive wheels, a homemade main frame with a height of 2100 mm, and a rechargeable
battery. We used three Azure Kinect DK sensors (Microsoft Corp., Seattle, WA, USA) as
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the color and depth cameras, which were installed at the end of a servo cylinder fixed on
the top of the frame and the servo linear slide rails fixed on two sides of the frame. The
computer, monitor and battery were all installed in the upper corner of the frame to avoid
interference with crops below. The top depth camera 3 was moved up and down over
the crops by controlling the servo cylinder to locate the acquisition area as well as collect
canopy phenotypic traits. The side depth cameras 1 and 2 moved up and down beside
plants in the field via the automatic movement of the sliders on servo linear slide rails 1 and
2, as controlled by the computer control system, to achieve the pod phenotyping collection
of entire soybean plants from the bottom of the stems to the canopy in the field. Each of
the wheels supporting the frame was driven by a servo motor, and the power of all the
electrical equipment was supplied by a battery on the vehicle. The dynamic detection for
phenotyping of pods in soybean populations could be completed while the vehicle with
depth cameras moved in a row of soybean plants.
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Figure 1. Field soybean three-dimensional color image acquisition vehicle. (a) Drawing of the
structure; (b) Photo of the structure in situ.

2.1.3. Data Acquisition

The phenotypic traits of soybean pods from the full seed stage (R6) to the beginning
maturity stage (R7) have an important influence on soybean yield and quality [32]. It is very
important to accurately obtain the phenotypic traits of soybean pods in this growing period
for target trait gene location and selection in soybean breeding. The image data of the test
samples (as shown in Figure 2) were collected by using our image acquisition vehicle from
the R6 to R7 stages of soybean growth from 2020 to 2022 to ensure data reliability. The
soybean population in the experimental area was divided into 10 groups, each of which
included varying numbers of plants from 20 to 200. Each testing group was planted at an
interval of 500 mm, and there was no vegetation coverage on separation areas between
groups. In the process of image acquisition, the depth camera, which was fixed on the top
of the vehicle, was used to automatically locate the acquisition area to ensure that the entire
group data were collected by detecting whether there was vegetation coverage in the area.
The side cameras were used to collect the soybean pods of each row of plants in various
groups. The collected depth image data were used to limit the distance from the targets
to the image sensor to reduce the interference of complex backgrounds and improve the
ability to distinguish the foreground and background in soybean fields.
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Figure 2. Samples of RGB and depth image data.

2.2. Data Preprocessing

Based on the previously established data collection method, we obtained 3500 RGB
images and a corresponding number of depth images. To accurately remove the complex
background area in RGB images through depth image data and retain the effective target
area, feature matching based on edge shape information was used to fuse each RGB
image and corresponding depth image because they had significantly similar graphic edge
features. We used a wavelet multiscale edge detecting algorithm [33] to extract edge images
and feature points from two images to be registered, determined the rotation angle between
the two images based on the angle histogram of feature point pairs, and then matched the
feature points of the two images using an edge feature point alignment metric.

The feature point sets extracted from Igray(x, y) and Idepth(x, y) of the

images to be registered were set to Pgray = {pi | pi =
(

pi
x, pi

y

)T
, i = 1, 2, · · · , N} and

Pdepth = {qj | qj =
(

qj
x, qj

y

)T
, i = 1, 2, · · · , N}, then any feature point pair was

(
pi, qj

)
,

i, j = 1, 2, · · · , N. θpi and θqj were the vector directions of pi and qj, respectively; then, H(θ)
in the angle histogram of feature point pairs indicates the number of corresponding feature
point pairs

{
pi ⇔ qj

}
in Pgray and Pdepth when the angle differentials are ∆θ. Hence, if the

value of H(θ) is maximum at ∆θ = θ, the rotation angle is θ between images Igray(x, y)
and Idepth(x, y).

We supposed that igray(x, y) and idepth(x, y) corresponded to sub feature images that

were extracted from edge images Iedge
gray and Iedge

depth (as shown in Figure 3), in which the
extraction for the sub feature image idepth(x, y) was in relation to the estimated rotation
angle θ.
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The edge feature point alignment metric is defined as follows.

A
(

pi, qj, θ
)
=

1

ε
(

igray, idepth

) , (1)

where:

ε
(

igray, idepth

)
=

σ2
gray,depth

σ2
depth

+
σ2

depth,gray

σ2
gray

, (2)

σ2
gray =

1
M·N ∑(x,y)

(
igray(x, y)− µgray

)2, (3)

σ2
depth =

1
M·N ∑(x,y)

(
idepth(x, y)− µdepth

)2
, (4)

µgray =
1

M·N ∑(x,y) igray(x, y), (5)

µdepth =
1

M·N ∑(x,y) idepth(x, y), (6)

where σ2
gray and σ2

depth are the variances of igray(x, y) and idepth(x, y), respectively, and

σ2
gray,depth is the expected variance of the corresponding pixel gray value set of image

idepth(x, y) relative to the gray value of igray(x, y). Similarly, σ2
depth,gray is the expected

variance of the corresponding pixel gray value set of images igray(x, y) relative to the gray
value of idepth(x, y).

Equation (2) is a mutual variance that reflects the stability of the gray levels of the two
images. It can be seen that the more similar the content of the two images is, the smaller
their mutual variance is. The registration does not require a linear correlation between the
gray levels of the two images, nor is it affected by the difference in the gray level properties
of the two images. Figure 4 shows that the angle histogram of the feature point pairs has
obvious peaks in a certain angle difference, while the number of corresponding points is
few in other angle differences, so that the angle differences can be accurately obtained.
Through the fusion of the RGB and depth images, we finally obtained soybean plant images
with no background to reduce interference from overlapping plants during detection. The
LABELIMG software was used to label the images into a visual object classes (VOC) dataset,
including object position, anchor frame size and labels of different forms of pods.
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The labels of pods with different morphologies are represented by numbers; that is, an
empty pod was represented by 0, a pod with one seed was represented by 1, a pod with
two seeds was represented by 2, a pod with three seeds was represented by 3, and a pod
with four seeds was represented by 4. The classification of the different morphologies of
pods is shown in Figure 5. The total number of all labeled pods is 28,725, in which the
largest number was pods with three seeds, accounting for 44.67% of the total, followed by
pods with two seeds, four seeds, one seed, and empty pods (as shown in Figure 6). There
were no pods with five or more seeds in the testing samples.
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To obtain a well-performing neural network model and improve model generalization
ability, the original images were adjusted for brightness, horizontal flipping, and saturation,
randomly cropped, scaled, and arranged. Then, we combined the enhanced data with the
original data into a dataset with a total of 14,000 images. The flow of image data processing
is shown in Figure 7.
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2.3. Detection Algorithm Principle

Through research and analysis of the YOLO-v5 network model, to improve the de-
tection capability for small targets in complex environments, we proposed an improved
YOLO-v5 network model by introducing an improved FPN+PAN structure and channel
attention atrous spatial pyramid pooling (CA-ASPP).

2.3.1. The YOLO-v5 Network Model

YOLO-v5 is the fifth version of the YOLO algorithm. According to the difference in
network width and depth, YOLO-v5 is subdivided into YOLO-v5s, YOLO-v5m, and YOLO-
v5l, in which YOLO-v5s is the version with the smallest network width and depth [34].
Other versions of YOLO-v5 are the result of widening and deepening the network according
to a certain proportion based on YOLO-v5s [35]. Wang et al. used a YOLO-v5s model to
detect apple fruitlets. The method achieved an 87.6% and 95.8% recall and accuracy for
apple detection in orchards, respectively [36]. Since YOLO-v5s is small in size and requires
low computing power, it can be deployed and applied with low configuration hardware
equipment on field soybean image acquisition vehicles.

The basic idea of YOLO-v5 was to separate the augmented data of input images into
S × S cells, and that each cell generates prediction boxes. The location of the prediction box
was determined by the cell of the detected target center and the two adjacent cells through
position regression. Additionally, the probability of whether the prediction box has a target
and the probability that the target belongs to a certain category was calculated. For targets
of different sizes, YOLO-v5 used three detection heads to predict large, medium, and small
targets in the image on three feature maps of different scales, which improved the detection
ability of small targets. For the output of the model, YOLOv5 used the nonmaximum
suppression (NMS) algorithm to filter the detection results of the three heads to obtain the
optimal target prediction boxes.

2.3.2. Improved YOLO-v5 Network Model

The original YOLO-v5 network has a high accuracy in the detection of large objects,
such as pedestrians and vehicles. However, it does not perform well for objects that are
relatively small or dense, such as the phenotyping of pods in soybean populations. This is
because YOLO-v5 uses a path aggregation method to build the FPN+PAN neck network
structure, integrate low-layer location information and high-layer semantic information,
and uses the cross-stage partial bottleneck with a three convolutions (C3) module to extract
features from the fused information.

However, when the FPN structure up samples from top to bottom, the path aggregation
uses many features extracted earlier in the backbone network. Then, when extracting
features, the FPN does not use a convolution kernel that can expand the receptive field
and transfers features to the PAN network structure through path aggregation to predict
targets. Due to the low network depth of the low-layer positioning information in the early
stage of the network, there is an insufficient receptive field for small targets in complex
environments, which leads to low detection accuracy of small targets and insufficient ability
to distinguish between the background and foreground.

Therefore, based on YOLO-v5, an improved FPN+PAN structure is proposed by
introducing a mixed depth convolution (MixConv) [37] to further improve the FPN+PAN
structure. By further expanding the receptive field, the model can more accurately locate
and identify phenotypic information of pods in soybean fields. We used a multilayer 3 × 3
convolution kernel instead of the large convolution kernel in MixConv to improve the
receptive field and avoid a sharp increase in the model (as shown in Figure 8a,b). Then,
the improved MixConv operation was used to replace the convolution operation in the
convolution, batch normalization, and sigmoid-weighted linear unit (CBS) modules to
construct mixed depth convolution, batch normalization, and sigmoid-weighted linear
unit (MCBS) modules. Finally, the MCBS module was introduced into the C3 module
to construct a C3Mix module. The module structure of the C3Mix module is shown in
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Figure 8c. First, the feature map F1 was input into two CBS modules with a kernel size of
1 × 1 to obtain feature maps F2 and F3 by compressing the number of channels to prevent
the number of channels from being too high after the concatenation operation, causing the
size of the model to become larger. A CBS module with a kernel size of 1 × 1 was used
for feature map F2 to learn the cross-channel correlation and spatial correlation to realize a
linear combination between channels and to enhance nonlinear characteristics. Then, the
MCBS module was used to extract features under different receptive fields to obtain the
feature map F4 by looping N times. Finally, after concatenating feature maps F3 and F4, the
output feature map F5 of this module was obtained using a CBS module with a kernel size
of 1 × 1 to change the number of channels of the concatenated feature. Through the C3Mix
module, we enhanced the receptive field of the model and obtained the detailed positioning
information of targets under different receptive fields, thereby improving the model’s
positioning ability and the ability to distinguish between the background and foreground.
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In dynamic detection for phenotyping pods, the model should detect all pods as often
as possible. Therefore, the recall index of the model is very important. The original YOLO-
v5 has difficulty meeting the requirements for recall in this case, partly because the repeated
use of max pooling in the spatial pyramid pooling (SPP) module loses many target details,
resulting in individual targets being considered background and cannot be detected. Based
on atrous spatial pyramid pooling (ASPP) [38], we propose channel attention atrous spatial
pyramid pooling (CA-ASPP), in which a channel attention (CA) mechanism is introduced
to improve the model’s ability to extract multiscale detail features. The CA structure is
shown in Figure 9a. The CA-ASPP network structure is shown in Figure 9b.

The channel number of the feature map inputted in CA-ASPP is squeezed by a CBS
model with a kernel size of 1 × 1 to generate feature map F1. Considering the loss of target
details in the max pooling operation, we applied atrous convolution instead of pooling.
The kernel size can be changed by adjusting the atrous rate. Feature maps F2, F3, and F4
were obtained by applying a 3 × 3 filter to feature map F1 with different atrous rates. In
fact, they were the results of resampling to feature map F1 at different scales, and they
were similar in different channels. Thus, we applied a channel attention module [39] to
exploit the interchannel relationship of features. Average pooling and max pooling are
used in the channel attention module to squeeze the spatial dimension of the input feature
map F1 to aggregate the spatial information. The spatial information was then forwarded
to a shared multilayer perceptron (MLP). After the output feature vectors were merged
using elementwise summation, the sigmoid function was used to generate the weights
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of each channel. We took the weights to constrain each channel of feature maps F1, F2,
F3, and F4 using elementwise multiplication and concatenated them to generate feature
map F5. Finally, to avoid a large channel number after concatenation, we squeezed the
channel number of feature map F5 using a CBS model with a kernel size of 1 × 1 again to
generate the output feature. The CA-ASPP module obtained abundant multiscale semantic
information through atrous convolution and focused on the importance of different features
through channel attention to further enhance the semantic information.
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To enable the positioning accuracy and identifiability of the model for soybean pods, a
coordinate attention (CA) mechanism was introduced into the improved network model.
First, a global pooling operation was performed in the width and height directions of
the input feature map. Feature maps with a global receptive field were obtained, and
the precise position information was encoded. The double direction feature maps were
concatenated to generate coordinate attention in which the operation included convolution,
batch normalization, and an activation function. We used a convolution operation with
a 1 × 1 convolution kernel for the concatenated feature map according to the original
width and height of the feature map to obtain two feature maps with the same number of
channels as the original. After the sigmoid activation function, the attention weights of
the feature map in height and width were obtained. Finally, the original feature map was
weighted by multiplication, and the final feature map with attention weight in the width
and height directions was obtained. Through the CA mechanism, the channel attention
was decomposed into a one-dimensional feature encoding process in the horizontal and
vertical directions. Direction sensing information and spatial location information were
embedded into the generated feature map. Using this method, it was possible to capture
not only channel information but also direction sensing information and location sensitive
information so the model could more accurately locate and identify objects in the region
of interest (ROI). The architecture of the improved YOLO-v5 for soybean pod detection is
shown in Figure 10.
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The binary cross-entropy (BCE) loss was applied in the calculation of confidence loss
and classification loss in the original YOLO-v5. However, due to the significant imbalance
between positive and negative samples of the target detector in the single-stage algorithm,
the number of negative samples was much higher than that of positive samples, which
leads to the loss calculation being dominated by negative samples and ultimately leading
to a poor model training effect. The loss tends to learn from a large number of similar
simple samples, which makes the training effect of difficult classification samples with
complex sample distribution poor. Finally, the training time of the target detection model
was usually longer. A loss function with faster convergence speed would help improve the
training speed and obtain a better model faster. Therefore, the calculation of the confidence
loss and classification loss in the improved YOLO-v5 model presented in this paper was
executed using polynomial loss (PolyLoss) [40] based on focal loss. PolyLoss is a unified
polynomial framework for the focal loss and BCE loss. The PolyLoss framework is shown
in Equation (7). For the negative samples dominating the loss calculation caused by the
high number of negative samples, we used α to balance the weights of the positive and
negative samples. For the poor training effect of the BCE loss on hard-to-classify samples,
we used γ to increase the loss of samples classified difficultly to make the loss function
pay more attention to samples classified difficultly. To improve the convergence speed
of the model, the term αtε(1− Pt)

1+γ was added to further increase the loss and greatly
accelerate the convergence speed.

LPoly−L = −αt(1− Pt)
γ log(Pt) + αtε(1− Pt)

1+γ, (7)

where the value of αt is α and the value of Pt is P(x), which represents the prediction result
of the model for a positive sample, the value of αt is 1− α and the value of Pt is 1− Pt for a
negative sample.

With the PolyLoss, the model convergence could be accelerated. At the same time,
more samples classified difficultly could be detected, and the recall rate could be improved
due to the enhanced learning of difficult classification samples.
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3. Results
3.1. Test Environment and Parameters

The soybean image VOC dataset was divided at 80%, 10%, and 10%, into training,
validation, and test datasets, respectively. The training and validation datasets were input
into the network for training. Adaptive momentum estimation (Adam) was applied to
optimize the training model. The main model training parameters were set as follows:
learning batch size = 32, momentum = 0.9, weight decay = 0.0005, and learning rate = 0.001.
The main hardware parameters for the experiments were an Intel Core i7 9700 CPU (Intel
Corp., Santa Clara, CA, USA), 16 GB random-access memory (RAM), Nvidia GeForce RTX
A3000 GPU (Nvidia Corp., Santa Clara, CA, USA), and 6 GB video memory capacity. The
compute unified device architecture (CUDA) version was 11.2. The operating system was
Ubuntu 18.04 LTE (Canonical Ltd., London, UK). The integrated development environment
(IDE) was Visual Studio Code. The programming language was Python 3.8, and the deep
learning framework was PyTorch 1.8 (Linux Foundation, San Francisco, CA, USA). The
detailed environment parameter configuration is shown in Table 1.

Table 1. Test environment configuration.

No. Parameter Configuration

1 CPU Intel Core i7 9700K
2 GPU Nvidia GeForce RTX A3000, 6 GB VRAM
3 RAM 16 GB DDR4 3200 MHz
4 GPU accelerated environment CUDA 11.2
5 Operating system Ubuntu 18.04 LTE
6 IDE Visual Studio Code 1.72.2
7 Deep learning framework PyTorch 1.8
8 Benchmark model YOLO-v5s
9 Computer vision library OpenCV 4.5

3.2. Evaluation of Model Performance

To test the effectiveness of the improved model for soybean pod detection, we used
the intersection over union (IOU) to evaluate the accuracy of the model according to the
coincidence rate of the output box and the label box [41]. Because soybean pod targets
are small, the IOU threshold value was set to 0.5 to reduce the loss of partial targets in
detection. The precision, recall rate, mean average precision (mAP) @0.5 and mAP@0.5:0.95
were introduced in this study as evaluation indexes.

To comprehensively evaluate the model and to provide a basis for the selection of the
optimal model, a weighted evaluation model OPT was established as follows.

IOU =
area

(
BP ∩ Bgt

)
area

(
BP ∪ Bgt

) , (8)

PR =
TP

TP + FP
× 100%, (9)

RE =
TP

TP + FN
× 100%, (10)

AP =
∫ 1

0
PR(r)dr, (11)

mAP =
1

Nclass
∑Nclass

i=1 APi, (12)

OPT = w1·PR + w2·RE + w3·mAP@0.5 + w4·mAP@0.5 : 0.95, (13)

where BP and Bgt are the predicted anchor and actual anchor of a target, respectively, and
IOU is the degree of overlap between the two anchors. PR and RE represent the precision
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and recall rate, respectively. TP, FP, and FN represent the number of correctly detected,
incorrectly detected, and missing frames, respectively. The AP value represents the area
under the precision–recall (P–R) curve. The mAP value was obtained by averaging all AP
categories, and Nclass represents the total number of types detected. wi (i = 1, 2, 3, 4) refers
to the weight of each parameter.

3.3. Analysis of Model Training for Different Datasets

To analyze the effectiveness of using soybean RGB-depth fusion images to distinguish
the background to improve the soybean pod detection model in a complex field environ-
ment, we used the RGB image and RGB-D fusion image datasets to train YOLO-v5s and the
improved YOLO-v5 network. The subset ratio, labels, target positions, and classification of
both image datasets were completely consistent. Compared with the training RGB image
dataset, the difference was that the soybean image background in the RGB-D dataset was
eliminated based on depth image data before the dataset was input into the network model,
where the depth image data are three-dimensional point cloud data that only contain the
distance and position information from the targets to the sensor without RGB data.

Figure 11 shows that as the number of iterations increased, the training loss value
of the model gradually decreased. The box loss indicates whether the detection target is
covered by the predicted bounding box. The object loss is a measure of the probability
that the detection target exists in the region of interest. The classification loss represents
the ability to correctly predict a given object category. The smaller the loss values of these
three indexes are, the more accurate the prediction of the model in each index. After
50 iterations, the loss values of the improved YOLO-v5 and YOLO-v5s on the RGB-D
dataset, and the improved YOLO-v5 and YOLO-v5s on the RGB dataset decreased slowly.
When the number of iterations reached approximately 200, the loss curve was almost flat.
Compared with the improved YOLO-v5 and YOLO-v5s on the RGB-D dataset, the loss
values of the improved YOLO-v5 and YOLO-v5s on the RGB dataset were significantly
higher, so the predictions of these two models were relatively low, which can also be clearly
seen in Figure 12. Therefore, in the complex background environment of soybean fields,
network models based on only training RGB image datasets could not meet the soybean
pod recognition requirements. This is because the complex background of stems, branches,
leaves, etc., in a field will seriously affect the feature recognition of soybean pods, which is
the main factor affecting the recognition accuracy of soybean pods in the field. In contrast,
processing the background in RGB-D images through depth data can significantly improve
soybean pod feature recognition within the recognition range.
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Figure 12. Training process curves. (a) Precision for models, (b) recall for models, (c) mean average
precision at 0.5 for models, and (d) mean average precision at 0.5 to 0.95 for models.

Under the same testing parameters, the RGB-D dataset was used to train the improved
YOLO-v5 and YOLO-v5s networks. From Figure 12, compared with the improved YOLO-
v5 and YOLO-v5s based on the RGB dataset, the improved YOLO-v5 and YOLO-v5s based
on the RGB-D dataset had significant improvement in the recall rate and precision for
soybean pod target detection, where the recall increased by approximately 32% and the
precision increased by approximately 25%. The precision of the improved YOLO-v5 based
on the RGB-D dataset was approximately 6% higher than that of YOLO-v5s based on the
RGB-D dataset. This is because our improved FPN+PAN structure and CA-ASPP module
in the network improved the small target detection ability and distinguished between the
background and foreground.

3.4. Analysis of Dynamic Detection Phenotyping of Pods in the Field

We applied the improved YOLO-v5 model to the soybean pod phenotyping detection
system on the field soybean image acquisition vehicle to carry out field experiments for
testing and analyzing the model performance by comparing model prediction values and
manual measurement values. Some biological characteristics of the experimental objects,
experimental locations, and conditions were discussed in Section 2.1 of this paper.

Considering the influence of the soybean population on the test data, the experimental
soybean populations of Longken 3401 and Heihe 43 in the experimental area were separately
divided into 10 groups. The number of individual plants in each group ranged from 20 to
200. In testing, the classification and quantity of soybean pods were detected by manual
measurement and identification model prediction.

The identification model detection process was dynamic as the vehicle moved and the
Kinect DK sensor on a servo linear rail moved up and down. To ensure that the soybean
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pods are detected as accurately as possible, the target position was dynamically tracked
to avoid repeated counting of the same target during detection. The partial pod dynamic
detection is shown in Figure 13.
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Figure 13. Dynamic detection phenotyping of pods in the field. (a) The image sensor running to the
upper part of the soybean population for detection; (b) The image sensor running to the lower part of
the soybean population for detection.

Table 2 shows that the prediction values from the identification model are obviously
lower than the manual measurement values. The main influence in detecting soybean pods
is that dense plants often overlap and cover pods. However, after statistical data analysis,
when the total number of soybean populations tested is small at the R6 stage, the rate of
missed detection of soybean pods fluctuates between 30–50%. With the increase in the num-
ber of individuals in the soybean population for detection, the deviation is basically stable
at approximately 20% (as shown in Figure 14a). By establishing the correlation between
the predicted value and the manually measured value, the coefficient of determination
between the predicted average value of the number of soybean pods per plant of the two
varieties and the manually measured average value was 0.9752 with a certain bias when
the total number of soybean plants in the tested soybean population was more than 140 (as
shown in the shaded area in Figure 14b).

Table 2. Soybean pod number test results for each test group.

No. of Test Group
Total Number of

Soybean Plants in
Each Test Group

Average Number of Soybean Pods per Plant of Different Varieties

Longken 3401 Heihe 43 Longken 3401 Heihe 43

Identification Model Prediction Values
(pcs/per Plant)

Manual Measurement Values
(pcs/per Plant)

1 20 12.23 13.31 23.62 27.62
2 40 10.21 18.36 21.81 29.10
3 60 8.19 16.22 21.03 28.27
4 80 11.00 14.87 22.54 27.79
5 100 13.27 17.13 20.18 30.41
6 120 14.05 21.21 23.57 29.30
7 140 18.29 23.83 23.71 29.01
8 160 19.83 22.62 25.43 30.22
9 180 21.71 24.50 27.87 30.18

10 200 20.52 25.38 26.65 30.44
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Figure 14. Relation between identification model prediction values and manually measured values
of two varieties. (a) The change curve of the average number of pods in the test groups; (b) Linear
correlation between the identification model pod number prediction and the manually measured
values of the two varieties.

Therefore, we tried to establish a soybean pod quantity compensation model as follows
for a dynamic detection system to statistically correct the pod prediction quantity. To verify
the effectiveness of the soybean pod quantity compensation method, Equations (14)–(17)
were used to calculate the relative error and mean relative error between the predicted and
manually measured pod quantity values.

Ppod =
Ppod

Mplant
+ K, (14)

K =
Mpod − Ppod

Mplant
× Ppod, (15)

Pi =
|xi − xi|

xi
× 100%, (16)

R =
1
m ∑m

i=1 pi × 100%, (17)

where Ppod represents the average number of pods per plant predicted by the identification
model, Ppod represents the total number of pods predicted by the model, Mplant represents
the total number of individual plants in the soybean population within the detection range,
K is the pod quantity compensation factor, and Mpod is the actual total number of pods
manually measured. Pi represents the relative error in the calculation of the average number
of pods per plant, R represents the mean relative error in the calculation of the average
number of pods per plant, xi represents the predicted value of the average number of pods
per plant, xi represents the manually measured value of the average number of pods per
plant, and m represents the number of plants of each test variety group.

Thus, we can correct the number of pods predicted using the soybean pod quantity
compensation model. Each classification pod quantity can be rectified according to the
proportion of pods of each category to the total number of pods. Figure 15 shows that after
pod quantity compensation, the coefficient between the predicted average value and the
manually measured average value of different classification pod numbers was 0.9866. From
the predicted number distribution of different classification pods per plant in partially
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tested soybean plants of Heihe 43 and Longken 3401 (as shown in Figure 16), the number
of pods with three seeds was largest, followed by pods with two seeds, four seeds, and one
seed. The category with the fewest pods was empty pods. The average number of pods per
plant of Heihe 43 was 22.64% higher than that of Longken 3401. The trend of the predicted
value of the number of pods was basically consistent with that of the manually measured
value. According to Equation (17), the mean relative errors between the predicted and
manually measured numbers of pods were 2.12% for Heihe 43 and 2.74% for Longken 3401.
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4. Discussion

This paper presented a method for dynamic pod phenotyping detection in soybean
populations based on an improved YOLO-v5 network, including pod classification, quan-
tity, and number distribution of different classification pods in soybean populations. To
reduce the impact on model detection accuracy from the complex background of the natural
environment, we established an RGB-D dataset by using the fusion of RGB and depth
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image data to train the network model. Although the detection accuracy of the model in
a leaf-covering and pod-overlapping situation will be affected, the soybean pod quantity
compensation algorithm proposed in this paper can statistically correct the number of pods
to improve the prediction accuracy to a certain extent.

To verify the effectiveness of the proposed method, YOLO-V5s, Faster-RCNN, SSD
and our improved model were used to detect pods in the soybean population from the R6
to R7 stages without applying the compensation method under the same test environment
and same training dataset. The detection results are shown in Table 3. In this soybean
growing stage, soybean leaves are still relatively dense, which is the main factor affecting
the detection of pods in the field. Therefore, the prediction accuracies of all four models
were generally low.

Table 3. Comparison of model detection results.

Number of Plants in
Soybean Population Experimental Model

Evaluation Indicators (Unit: %)

Precision Recall mAP@0.5 mAP@0.5:0.95

20

Improved YOLO-v5 82.72 74.54 81.26 52.43
YOLO-v5s [35] 77.13 73.92 76.47 50.17

Faster-RCNN [20] 76.65 71.39 73.15 47.24
SSD [23] 71.49 67.08 68.26 45.58

80

Improved YOLO-v5 83.50 74.63 80.95 51.75
YOLO-V5s [35] 81.14 71.57 77.02 47.32

Faster-RCNN [20] 74.82 70.34 71.33 46.50
SSD [23] 71.95 68.87 69.43 44.21

140

Improved YOLO-v5 86.26 77.66 85.31 53.20
YOLO-V5s [35] 81.91 74.33 81.12 51.19

Faster-RCNN [20] 76.76 72.00 73.12 45.99
SSD [23] 71.09 67.51 70.08 42.16

200

Improved YOLO-v5 88.14 78.35 87.87 58.53
YOLO-V5s [35] 82.10 74.97 82.90 54.67

Faster-RCNN [20] 75.98 71.26 74.55 48.35
SSD [23] 72.11 69.73 70.70 43.40

When the number of plants in the soybean population tested was relatively large, the
prediction accuracies of the models were slightly improved due to the exclusion of the
influence of individual plant differences, and the precision improvement of our model was
relatively obvious, reaching a precision of 88.14% and a recall rate of 78.35%. This was
because our model is more sensitive to the perception of small soybean pod targets. The
results showed that our proposed method improved the model’s detection ability. The
effectiveness of this method was verified, and good experimental results were obtained.

5. Conclusions

The accurate of phenotyping description of pods in soybean populations in a natural
environment is of great significance to soybean breeding and soybean yield and quality
estimation. In this paper, a dynamic detection method for phenotyping pods in soybean
populations in the field based on an improved YOLO-v5 network was proposed, including
the pod classification, quantity, and number distribution of different classification pods
in soybean populations. According to the experimental results, the conclusions can be
summarized as follows:

(1) The complex background of the natural environment greatly affected the detection
of phenotypic traits of soybean pods. An RGB-depth fusion method to distinguish
background could effectively improve the model performance for detecting soybean
pods in complex field environments. Compared with network models trained on the
RGB dataset, the recall and precision of models trained on the RGB-D dataset were
increased by approximately 32% and 25%, respectively.

(2) The improved YOLO-v5 network model established by introducing the improved
FPN+PAN structure and CA-ASPP module had the further ability to detect small
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targets and distinguish between the background and foreground. Compared with
YOLO-v5s, the precision of the improved YOLO-v5 increased by approximately 6%,
reaching 88.14% precision for pod number detection for the 200 plants in the soybean
population tested.

(3) A soybean pod quantity compensation model was established by analyzing the influ-
ence of the number of individual plants in the soybean population on the detection
precision of models to statistically correct various pod prediction quantities. The test-
ing showed that after compensation calculation, the mean relative errors between the
predicted and actual pod numbers were 2% to 3% for the two tested soybean varieties.

The method proposed in this paper solves the problems of low efficiency, precision,
and sample size of soybean phenotypes collected by manual sampling in the field, which
provides technical support for the scientific regulation and big data analysis of ecological
and morphological traits in soybean variety breeding, cultivation, and management. Al-
though our improved YOLO-v5 network achieved good results for phenotyping detection
of soybean pods in soybean populations, the ecological differences of soybean varieties in
different growth periods still have a certain impact on the phenotyping detection of pods.
In addition, to some extent, the compensation method proposed is affected by different
models and varieties. In future research, we will continue to expand our research to in-
clude more soybean varieties, improve compensation methods, and optimize the network
performance to increase the scope of application.
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