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Abstract: Lavandula angustifolia Mill. (Lamiaceae family) is commonly exploited in different sectors,
such as cosmetics, perfumery, and medicine because of its phytochemicals. More recently it has
gained attention as an edible flower in the food and beverage industry. Post-harvest technologies can
help producers to increase the functional beverages market, where there is a growing demand for
new products rich in bioactive molecules with beneficial health effects. To maintain lavender flower
properties, bioactive compounds have to be effectively preserved after harvesting and processing.
This study compared an emerging technology, heat pump drying, with a classical drying approach,
i.e., hot air drying, focusing on differences in the total phenolic content, the anthocyanin content,
the phenolic profile, and in antioxidant activity of the dried lavender flowers. Three different Italian
local lavender flower selections (i.e., Susa, Stura, and Tanaro) were analyzed by means of decoction
extraction. Results showed that each one was better preserved in its phytochemical composition by
heat-pump drying. Among the lavender selections, Stura and Tanaro showed the highest values for
phenolics (2200.99 and 2176.35 mg GAE /100 g DW, respectively), anthocyanins (59.30 and 60.74 mg
C3G/100 g DW respectively) and antioxidant activity, assessed through three assays (FRAP, DPPH,
ABTS). Four bioactive compounds were detected by means of HPLC, three in the heat pump dried
flowers’ decoction (quercitrin, ellagic acid, gallic acid), and one in the hot air-dried flowers’ decoction
(epicatechin). Overall, heat pump drying allowed to obtain decoctions richer in bioactive compounds.

Keywords: lavender; decoction; hot air drying; cold drying; phenolics; anthocyanins; antioxidant
activity

1. Introduction

Nowadays the interest in edible flowers is growing, due to the recent studies on their
nutraceutical properties, and thus to the major awareness of consumers [1-6]. Marigold
flowers (Calendula officinalis L.), rose flowers (Rosa L. spp.), violets (Viola odorata L.), saffron
(Crocus sativus L.), carnation (Dianthus caryophillus L.), dandelion (Taraxacum officinale We-
ber), and elder (Sambucus nigra L.) are a few examples of flowers which were consumed
in ancient times and now they are reemerging in culinary preparations [2,7-11]. Flowers
can be rich in phytochemicals, such as vitamins, carotenoids, or phenolics, with antioxi-
dant properties beneficial to human health [11-15], which can be exploited in functional
products, such as functional beverages [16]. Functional beverages, i.e., energy drinks,
sports beverages, functional water, or herbal infusions (these latter have been widely used
in popular medicine) are becoming popular in recent years. The demand for foods and
beverages with beneficial properties is increasing, especially after the COVID-19 pandemic
since consumers want to strengthen their body’s defenses, thus functional beverages are
growing in production [16]. Consequently, this has a positive impact on the market, which
is looking for innovative plant-based beverage products [17]. Data from the Report on the
Functional Beverage Market showed how the annual growth rate of this sector increased
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by 4.6% in 2015, and four years later it was estimated at about USD 128,660 million. In
addition, the market is estimated to increase to 6.96% by 2025 [16,17].

Many edible flowers can be found in the Lamiaceae family, i.e., lavender, sage, and
rosemary are among the most popular [16,18].

Lavandula angustifolia Mill. (Lamiaceae family), commonly known as lavender or
true lavender, is a small evergreen shrub [15,19], with aromatic compounds which lead to
leaves and flowers being used for food, as well as for cosmetic, perfumery, and medicinal
purposes [19-23].

Lavender flowers can be used in culinary preparations through different conservation
methods, i.e., fresh, dried, or candied, to flavor and decorate bakery products, jellies,
candies, and ice cream, but also as infusions with sedative and analgesic effects to relieve
depression, headaches or anxiety problems [13,20,24,25].

The beneficial health effects of lavender are due to its chemical composition, rich
in phytochemicals with bioactive properties, such as polyphenols, a group of secondary
metabolites which have antioxidant activity, scavenging reactive oxygen species [12,26,27],
thus lowering the risk of cardiovascular and chronic diseases. However, the phenolic
composition of the true lavender flowers as well as the presence and concentration of
other botanicals may vary widely among different genotypes and according to growing
conditions and environment [19,22,27].

Lavender plants bloom for a few months a year. Drying can allow to extend shelf
life and easily pack and transport the processed product [24,28], as it inhibits enzymatic
degradation and avoids the growth of microorganisms, and reduces the weight and vol-
ume [3,28]. Some drying methods are already applied to edible flowers, such as hot-air
drying, freeze drying, microwave drying, sun drying, etc. [3,24,29]. A recent approach pro-
posed for water removal is a cold drying method, namely heat pump drying, that performs
at low temperatures (about 22 °C) [30]. This technology could better preserve dried flowers’
color, appearance, and aroma, and it can be used as an industrial drying system because
of the possibility to control the drying conditions [29,31] and dry large amounts of plant
material. Moreover, the heat pump drying system is considered more efficient in terms of
energy consumption than hot air drying, since the drying time is considerably reduced [29].
This method is considered suitable for flowering plants due to the excellent maintenance of
the quality properties of the dried flowers (color, smell, flavor, appearance), i.e., the Rosa
damascena Mill. [29].

This work aimed to select the more effective drying method, between hot air drying
and heat pump drying, for lavender flowers. To highlight differences in phytochemical
composition and antioxidant activity, lavender decoctions from three Italian local selections
of dried flowers were analyzed.

2. Materials and Methods
2.1. Plant Material

Flowered spikes from three selections of Lavandula angustifolia were harvested in the
catalog field of the Department of Agricultural, Forest and Food Sciences, in Grugliasco
(TO) (latitude: 45.06653008866393; longitude: 7.588967392687288), each selection having a
different origin from the wild (latitude WGS84/32N. Susa: 4994234; Stura: 4914856; Tanaro:
4882887), from the highest to the lowest latitudinal range of distribution respectively [19].
About 200 g of fresh flowers were collected per selection in spring 2019, at full flowering,
dried in the laboratory, and then analyzed.

2.2. Drying Methods

The drying of lavender flowered spikes was performed through two different drying
methods, i.e., hot and heat pump drying.

For hot air drying, flowers were placed in aluminum trays and left for 24 h in a labo-
ratory stove (VWR Stoves, DRY-Line natural convection, DL 53. Leuven, Belgium) which
was heated to 50 °C. Dried flowers were then stored in glass pots at room temperature.
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For heat pump drying, flowers were arranged in a single layer on perforated trays
which were then placed on top of each other in refrigeration equipment that cools and
dehydrates the air (NWT-5, North West Technology, Boves—CN, Italy, 0.45 kW, 50 Hz). The
humidity inside the refrigeration system was maintained at 5-6%. Flowers were dried for
24 h at 22 + 2 °C, and then stored in glass pots at room temperature.

For both drying methods, the duration of the whole process was defined by evaluating
the weight of the flowers at regular intervals, until it remained constant.

2.3. Decoction

For each lavender selection, three biological replicates of dried flowers were finely
ground with liquid nitrogen. Water extracts were prepared to simulate a homemade cup of
hot beverage. The dried lavender powder (1 g) was extracted with 200 mL of water [32],
heated to boiling, and allowed to boil for 5 min, as reported by Pereira and colleagues [33].
The resulting decoction was allowed to cool at room temperature for 20 min. The obtained
solution was then filtered through a layer of filter paper (Whatman No. 1, Maidstone, UK),
and afterwards with a 0.45 pm PVDF syringe filter (CPS Analitica, Milano, Italy). The
extracts were maintained at —20 °C until further analysis.

2.4. Total Phenolic Content (TPC), Total Anthocyanin Content (TAC) and Antioxidant Activity

A Cary 60 UV-vis spectrophotometer (Agilent, Santa Clara, CA, USA) was used to
evaluate the total phenolic content (TPC), the total anthocyanins content (TAC), and the
antioxidant activity of dried lavender flowers” decoctions by colorimetric methods.

TPC was determined through the Folin—Ciocalteu colorimetric method [11,15,34,35]: a
total of 200 pL of lavender flower decoction was mixed with 1000 pL of diluted (1:10) Folin—
Ciocalteu’s reagent. Samples were then left in the dark at room temperature for 10 min,
then 800 pL of NapyCOj3 (7.5%) were added. After 30 min in the dark at room temperature,
absorbance was read at 765 nm, expressing results as mg gallic acid equivalents (GAE) per
100 g of dry weight (mg GAE/100 g DW).

The total anthocyanin content (TAC) was determined through the pH differential
method using two buffer systems: hydrochloric acid/potassium chloride buffer at pH 1.0
(25 mM) and sodium acetate buffer at pH 4.5 (0.4 M), as described in the literature [8,11,36].
This method is based on the structural transformation of anthocyanins due to a change in
pH (colored at pH 1.0 and colorless at pH 4.5). Briefly, 0.2 mL of each decoction was added
in a 5 mL volumetric flask and made up to volume with the aqueous buffer at pH 1; the
same was performed in a second 5 mL flask with the aqueous buffer at pH 4.5. After 20 min
in the dark at room temperature, the solution was read against Milli-Q water as a blank at
510 and 700 nm. Absorbance (A) was calculated as follows: A = (A510 nm—A700 nm) pH
1.0—(A510 nm-A700 nm) pH 4.5. Then, the total anthocyanin content of each decoction was
calculated by the following equation: TA = [A x MW x DF x 1000] x 1/¢ x 1, where A is
the absorbance; MW is the molecular weight of cyanidin-3-O- glucoside (449.2 D); DF is
the dilution factor (25); € is the molar extinction coefficient of cyanidin-3-glucoside (26.900)
and results were expressed on a dry weight basis in milligrams of cyanidin-3-O-glucoside
per 100 g (mg C3G/100 g DW).

The antioxidant activity was evaluated by means of three different procedures: the ferric
reducing antioxidant power (FRAP) method [11,15,37], the 2,2-diphenyl-1-picrylhydrazyl
(DPPH) assay [15,38], and the 2,2"-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS)
assay [15,39,40].

The FRAP assay was performed as follows: to obtain the FRAP solution, a buffer
solution at pH 3.6 (CoH3zNaO,-3Hy0 + CoHyO; in water), 2,4,6-tripyridyltriazine (TPTZ,
10 mM in HC1 40 mM) and FeCl3-6H,0O (20 mM) were mixed. Afterwards, 30 uL of lavender
flower decoction was mixed with 90 puL of deionized water and 900 puL of FRAP reagent.
After 30 min at 37 °C, the absorbance was read at 595 nm. The results were expressed as
millimoles of ferrous iron equivalents per kilogram of DW (mmol FeZ* kg*1 DW).
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The DPPH assay was performed as follows: the working solution of DPPH radical
cations (DPPH, 100 uM) was obtained by dissolving 2 mg of DPPH in 50 mL of MeOH. The
samples were prepared by mixing 40 uL of lavender flower decoction with 3 uL of DPPH
radical solution. After 30 min in the dark at room temperature, the absorbance was read at
515 nm. Results were expressed as micromoles of Trolox equivalents per 1 g of DW (umol
TE/g DW).

The ABTS assay was performed as follows: to obtain the working solution of ABTS
radical cation (ABTS), a 7.0 mM ABTS stock solution reacted with a 2.45 mM potassium
persulfate (K;S,0g) solution. The samples were obtained by mixing 30 uL of lavender
flower decoction with 2 mL of ABTS' radical solution. After 10 min in the dark at room
temperature, the absorbance was read at 734 nm. Results were expressed as micromoles of
Trolox equivalents per 1 g of DW (umol TE/g DW).

2.5. Phenolic Profile

A High-performance liquid chromatography (HPLC) with diode array detection
(DAD) (Agilent 1200, Agilent Technologies, Santa Clara, CA, USA) was used to determine
the presence of bioactive compounds in dried lavender flowers” decoctions (volume of
20 puL). Compounds were separated using a Kinetex C18 column (4.6 x 150 mm, 5 mm, Phe-
nomenex, Torrance, CA, USA) and different mobile phases, based on the previously tested
methodology (Table 1) [15,41,42]. The compounds were identified by comparing retention
times and UV spectra of analytical standards, and they were quantified using calibration
curves at the same chromatographic conditions. The external standard method was used
for quantitative determinations. Different data points were used to generate the external
standard calibration curves. For HPLC analysis, 20 pL of each standard solution was used
and for each concentration level, manual injections were conducted in triplicate. Calibration
curves were obtained by plotting the peak area (y) of the compound at each level against
the sample concentration (x). The limit of detection (LOD) and the limit of quantification
(LOQ) for the reference compounds were experimentally determined by HPLC analysis
of serial dilutions of a standard solution to achieve a signal-to-noise (S/N) ratio of 3 and
10, respectively. Validation was performed in accordance with international guidelines for
analytical techniques for quality control of biopharmaceuticals (ICH guidelines) [43].

Table 1. Main validation characteristics of the chromatographic methods used.

Classes of Standard Retention T me Mobile Phase Elution Conditions Wavelenght
Compounds (t R) (min) (nm)
Caffeic acid 4.54
Chlorogenic acid 3.89
Cinnamic acids .
Coumaric acid 6.74
Ferulic acid 799 A: 10 mM KH,PO, /H3PO, 502’3) tg 21%B in 1; min +
Hyperoside 10.89 pH=28 /‘_’ ) 1n.3 min (2 min 330
B: CH.CN conditioning time); flow:
Isoquercitrin 11.24 Eiets 1.5 mL min~!
Flavonols Quercetin 17.67
Quercitrin 13.28
Rutin 12.95
Ellagic acid 18.65 .
Benzoic acids — A: H,O/CH;0H/ 3%B to 85%B in 22 min +
Gallic acid 4.26 HCOOH o T ; . .
or. _ 85%B in 1 min (2 min
- (5:95:0.1v/v/v), pH=2.5 . . 280
) Catechin 10.31 B: CH;OH/HCOOH conditioning tqng)l; flow:
Catechins - - . 0.6 mL min
Epicatechin 14.3 (100:0.1 v/v)

The following bioactive compounds were investigated: phenolic acids (cinnamic
acids: caffeic, chlorogenic, coumaric, and ferulic acids; benzoic acids: ellagic, and gallic
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acids); flavonols (hyperoside, isoquercitrin, quercetin, and rutin); flavanols (catechin and
epicatechin). Results are expressed as mg/100 g of dry flowers.

2.6. Statistical Analysis

Data of total phenolic content, anthocyanins, and antioxidant activity (FRAP, DPPH,
ABTS assays) were first tested for the homogeneity of variances (Levene test), then a two-
way ANOVA was performed to analyze potential differences between the three lavender
selections and the two drying methods, and their reciprocal interaction. Moreover, mean
comparisons were computed using a one-way ANOVA test to analyze potential differences
between the drying methods. Means were separated according to the Ryan-Einot-Gabriel-
Welsch F post hoc test (REGWEF). The value for statistical significance was p < 0.05. All
statistical analyses were performed by SPSS software (version 26.0, SPSS Inc., Chicago,
IL, USA).

3. Results and Discussion
3.1. Total Phenolic Content (TPC), Total Anthocyanin Content (TAC) and Antioxidant Activity

Lavandula angustifolia flowers from the three different selections were analyzed after
drying in order to compare two different drying methods and select the more efficient to
obtain decoctions rich in polyphenols, anthocyanins, and antioxidant activity (Table 2).

Table 2. Comparison of total phenolic content (TPC), total anthocyanin content (TAC), and antiox-
idant activity (FRAP, DPPH, and ABTS assays) of L. angustifolia decoction according to the three
selections (A), the drying method (B), and their interaction. HA = hot air dried; HP = heat pump
dried. Data are based on dry weight (DW).

Lavender

Sofects TPC TAC FRAP DPPH ABTS
¢ ("X)‘““ mg GAE/100 g DW mg C3G/100 g DW mmol Fe?*/kg DW ptmol TE/g DW pmol TE/g DW
Susa 1877.18 + 449.02 b 40.14 £ 8.19 b 988.08 + 348.43 b 76.10 + 50.83 b 85.49 + 49.42 c
Stura 2200.99 + 461.35 a 59.30 + 19.40 a 1265.16 + 570.28 a 104.88 + 38.75 a 112,59 + 23.86 a
Tanaro 2176.35 + 525.81 a 60.74 & 6.52 a 946.48 - 342,51 b 102.08 -+ 20.74 a 99.99 = 20.36 b
P . i
1\?{3}1:;%1 TPC TAC FRAP DPPH ABTS
(B) mg GAE/100 g DW mg C3G/100 g DW mmol Fe2+/kg DW pmol TE/g DW umol TE/g DW
HA 1648.88 55.57 + 19.60 708.41 + 102.86 61.29 + 23.75 71.10 + 23.50
HP 2520.79 51.2210.37 1424.73 + 313.48 127.42 4+ 13.27 127.61 + 8.30
p et ns 4K HFRH 4K
TPC TAC FRAP DPPH ABTS
Interaction
4
A X B * ns * %k L2 23

Mean values showing the same letter are not statistically different at p < 0.05, according to the REGWF post hoc
test. The statistical relevance is provided (* p < 0.05; ** p < 0.01; *** p < 0.001; ns = not significant).

At first, results showed differences among the three lavender selections. TPC was
significantly higher in the Tanaro (2176.35 mg GAE/100 g DW) and Stura (2200.99 mg
GAE/100 g DW) selections and lower in the Susa (1877.18 mg GAE /100 g DW) selection.

TAC showed the same pattern, i.e., significantly higher values in the Tanaro (60.74 mg
C3G/100 g DW) and Stura selections (59.30 mg C3G/100 g DW), and lower in the Susa
(40.14 mg C3G/100 g DW) one. These results confirmed previous studies which highlighted
how lavender plants at lower latitudes contained higher levels of bioactive compounds
than lavender plants at higher latitudes [19].

The antioxidant activity, assessed through three different assays, resulted significantly
higher in the Tanaro and Stura selections, as already highlighted with TPC and TAC, in
the DPPH assay (102.08 and 104.88 umol TE/g DW, respectively), while in the ABTS and
FRAP assays only the Stura selection resulted significantly higher (112.59 pmol TE/g DW
and 1265.16 mmol Fe?* /kg DW, respectively).
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Stating below the differences due to the drying method, heat pump drying showed
significantly higher results in TPC than hot air drying (2520.79 and 1648.88 mg GAE/100 g
DW, respectively), thus suggesting that the selection of flowers from lower latitudes and
dried with lower temperatures give a final product richer in bioactive compounds. In
literature, lavender decoctions have been poorly investigated thus the obtained results
were compared with other lavender extracts and other medicinal plants used for infusions
or decoctions. In general, for both drying methods, our results on TPC are higher than those
found in other studies on dried lavender flowers, such as Dorozko and colleagues [24], who
investigated L. agustifolia flowers’ ultrasound extracts and found values of TPC ranging
from 1046 to 1183 mg GAE/100 g DW, depending on the drying method used. They
assessed three different drying methods, namely hot air drying (40 °C for 6 h), freeze
drying (—18 °C for 24 h), and microwave drying (800 W for 6-7 min), finding the highest
TPC values in microwave-dried flowers and a lower TPC value in freeze-dried flowers [24].
Duda and colleagues [44] found a value TPC in L. angustifolia macerates higher (from 1244
to 1816 mg GAE/100 g DW) than in the previous study but anyway lower than our results,
drying the plant material in the shadow at 22-27 °C. Dobros and colleagues [45] found a
more similar TPC in L. angustifolia freeze-dried flowers’ decoctions, from 1489 to 2067 mg
GAE/100 g DW.

Regarding TAC, data showed no significant differences between heat pump drying
and hot air drying, probably because the high temperatures reached during decoction may
have damaged the quality of the processed product [3,28].

Concerning the antioxidant activity, we found significant differences between the
two drying methods in all three antioxidant activity assays, confirming that heat pump
drying preserves a higher content of bioactive compounds and a better final product.

However, although Dobros and colleagues [45] found a similar TPC content, they
showed higher DPPH values for lavender dried flowers’ decoction than those obtained
in this study, ranging from 113.20 to 174.93 pmol TE/g DW. This is probably due to their
different drying method, which could have preserved more bioactive compounds with
antioxidant properties. Demasi and colleagues too (personal communication) confirmed
higher antioxidant activity in decoctions of several species dried with lower temperatures
than our results (i.e., ABTS: 34.9 to 865.7 umol TE/g DW). Sentkowska and colleagues [46]
compared infusion and decoction as extraction processes for Melissa officinalis L., high-
lighting how decoction had a higher antioxidant activity because it was more effective
in extracting compounds with reductive activity, obtaining higher values than this study
(TPC: 1408 mg GAE/g DW). This result is confirmed by Dias and colleagues [47] who
investigated the antioxidant activity of Achillea millefolium L. infusions and decoctions,
finding higher values of DPPH assay for this latter.

A significant interaction between the lavender selections and the drying method was
also found, thus showing how intraspecific differences and drying temperature can interact
in affecting the TPC and the antioxidant activity; no significant interaction was found
for the anthocyanin content. More in detail, results reported in Table 3 showed that heat
pump-dried selections allowed to obtain significantly higher values than hot air-dried
ones in all the examined parameters, with the exception of the DPPH assay, where the
hot air-dried Tanaro selection showed a similar value to the heat pump Susa and Tanaro
selections. Looking within the flowers dried by means of a heat pump, the Stura and
Tanaro selections showed higher values for TPC (2620.52 and 2655.83 mg GAE/100 g DW
respectively) than Susa (2286.02 mg GAE/100 g DW) while no significant differences were
found for anthocyanins from 34.70 to 66.06 mg C3G/100 g DW). The antioxidant activity
was overall higher in Stura (FRAP: 1779.50 mmol Fe?* /kg DW; DPPH: 140.03 umol TE/g
DW; ABTS: 134.09 pmol TE/g DW).
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Table 3. Differences in total phenolic content (TPC), total anthocyanin content (TAC), and antioxidant
activity (FRAP, DPPH, and ABTS assays) of L. angustifolia decoction according to the drying method.
HA =hot air dried; HP = heat pump dried. Data are based on dry weight (DW).

Lavender TPC TAC FRAP DPPH ABTS
Selection mg GAE/100g DW  mg C3G/100gDW  mmol Fe?*/kg DW umol TE/g DW umol TE/g DW
HA Susa 1468.33 e 34.70 670.45 c 30.79 d 40.42 e

HA Stura 1781.46 C 66.06 750.81 c 69.73 c 91.09 c

HA Tanaro 1696.86 d 65.93 703.98 c 83.35 b 81.78 d
HP Susa 2286.02 b 45.57 1305.70 b 121.41 ab 130.55 a
HP Stura 2620.52 a 52.55 1779.50 a 140.03 a 134.09 a

HP Tanaro 2655.83 a 55.54 1188.98 b 120.82 ab 118.20 b

p *%% ns *%% *3% *%%

Mean values showing the same letter are not statistically different at p < 0.05, according to the REGWF post hoc
test. The statistical relevance is provided (** p < 0.01; *** p < 0.001; ns = not significant).

Within hot air-dried selections, the Stura one showed the highest values in all the pa-
rameters (TPC: 1781.46 mg GAE/100 g DW; DPPH: 69.73 umol TE/g DW; ABTS: 91.09 umol
TE/g DW), followed by the Tanaro (TPC: 1696.86 mg GAE/100 g DW; DPPH: 83.35 pumol
TE/g DW; ABTS: 81.78 umol TE/g DW) and Susa ones (TPC: 1468.33 mg GAE /100 g DW;
DPPH: 30.79 umol TE/g DW; ABTS: 40.42 umol TE/g DW), except for the FRAP assay
where no significant differences were found among hot air dried selections (from 670.45 to
750.81 mmol Fe?* /kg DW).

3.2. Phenolic Profile

In L. angustifolia dried flowers’ decoction, 4 compounds out of 13 were found (quercitrin,
ellagic acid, gallic acid, and epicatechin; Figure 1). Heat pump drying allowed to obtain
more compounds than hot air drying, 3 out of 4, namely quercitrin, ellagic acid, and gallic
acid, while hot air drying only extracted epicatechin, in all three lavender selections (Table 4;
Figure 1).

Regarding heat pump drying, quercitrin showed similar values among the three selec-
tions (from 56.695 to 57.319 mg/100 g) (Table 4). Conversely, ellagic acid showed a higher
value in the Stura selection (18.963 mg/100 g), followed by Susa (15.541 mg/100 g), and
lastly by the Tanaro selection (6.608 mg/100 g). Gallic acid showed a different distribution:
higher values were found in the Susa selection (1973.051 mg/100 g), followed by Tanaro
(1784.697 mg/100 g), and by Stura selections (1596.342 mg/100 g).

Concerning hot air drying, epicatechin showed higher values in the Stura selection
(466.068 mg /100 g), followed by the Tanaro (403.880 mg/100 g) and the Susa selections
(341.692 mg /100 g) (Table 4).

Therefore, each population has its own peculiar amount of bioactive compounds, thus
explaining how different origins of selections, even of the same species, can show variations
in the phenolic profile.

Quercitrin has antibacterial properties and can inhibit the oxidation of low-density
lipoproteins [48]. Ellagic acid has anti-inflammatory and antioxidant activities [49]. Gallic
acid shows antioxidant properties, antiallergic, anti-inflammatory, antimutagenic, and
anticarcinogenic activities [50]. Epicatechin has antidiabetic, anticancer, antilipidemic,
cardioprotective, anti-inflammatory, and antioxidant properties [51].

Our results for quercitrin were higher than those found by Duda and colleagues [44],
who analyzed dry lavender flowers with the maceration technique, but did not detect this
compound. Moreover, they did not report the presence of ellagic acid, gallic acid, and
epicatechin, which were highlighted in our analysis. It has to be noted that Sentkowska [52]
and colleagues stated that phenolics can be affected by thermal processing, and they found
that chlorogenic acid, coumaric acid, and caffeic acid decreased during the decoction and
infusion processes.
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Figure 1. Total bioactive compounds detected by means of HPLC analysis in L. angustifolia hot
air-dried and heat pump-dried flowers extracted by decoction in Susa (A), Stura (B), and Tanaro (C)
selections. The colored number above the columns indicates the detected value of each bioactive

compound (yellow for hot air drying, blue for heat pump drying). Values are expressed in mg/100 g
of dry flowers.

Table 4. Differences in the total detected bioactive compounds between the two drying methods.
Values are expressed as means of the three selections values. HA = hot air dried; HP = heat pump
dried. Data are based on dry weight (DW).

Drvine Method Quercitrin Ellagic Acid Gallic Acid Epicatechin
yme mg/100gDW  mg/100gDW  mg/100gDW  mg/100 g DW
HA 0 0 0 403.88
HP 57.007 13.704 1784.697 0
p %% et *3%% %%

The statistical relevance is provided (*** p < 0.001).

4. Conclusions

Heat pump drying is an emerging technology adopted to better preserve the color,
appearance, and aroma of dried vegetal produce. In this study, it better preserved polyphe-
nols and antioxidant activities of lavender flowers using decoction as an extraction method,
compared to hot air drying. Moreover, heat pump drying allowed to maintain different
molecules such as quercitrin, ellagic acid, and gallic acid, conversely to hot air drying. The
use of three lavender selections made it possible to demonstrate this in different plant
samples. At the same time, the differences detected between the three selections of local
lavender, i.e., polyphenols and antioxidant activity, can offer interesting indications for
developing new products for the functional food and beverage industry rich in phyto-
chemicals, with antioxidant activity, and naturally flavored and colored. Moreover, new
technologies could be applied to produce flower extracts containing bioactive compounds,
i.e., ultrasound-assisted extraction, an efficient method with commercial applications.
Therefore, it is important to improve the bioactive and sensory qualities of these new
products, developing new aroma and taste combinations, but also different associations of
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bioactive compounds, to create functional food and beverages suited for the specific needs
of consumers.
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