Heat Pump Drying of Lavender Flowers Leads to Decoctions Richer in Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Drying Methods
2.3. Decoction
2.4. Total Phenolic Content (TPC), Total Anthocyanin Content (TAC) and Antioxidant Activity
2.5. Phenolic Profile
2.6. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content (TPC), Total Anthocyanin Content (TAC) and Antioxidant Activity
3.2. Phenolic Profile
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible Flowers—A New Promising Source of Mineral Elements in Human Nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Scariot, V.; Gaino, W.; Demasi, S.; Caser, M.; Ruffoni, B. Flowers for edible gardens: Combinations of species and colours for northwestern Italy. Acta Hortic. 2018, 1215, 363–367. [Google Scholar] [CrossRef]
- Demasi, S.; Mellano, M.G.; Falla, N.M.; Caser, M.; Scariot, V. Sensory profile, shelf life, and dynamics of bioactive compounds during cold storage of 17 edible flowers. Horticulturae 2021, 7, 166. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Donno, D.; Enri, S.R.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021, 33, 27–48. [Google Scholar] [CrossRef]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Stelluti, S.; Caser, M.; Demasi, S.; Scariot, V. Sustainable processing of floral bio-residues of saffron (Crocus sativus L.) for valuable biorefinery products. Plants 2021, 10, 523. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Stelluti, S.; Donno, D.; Scariot, V. Crocus sativus L. Cultivation in Alpine Environments: Stigmas and Tepals as Source of Bioactive Compounds. Agronomy 2020, 10, 1473. [Google Scholar] [CrossRef]
- Demasi, S.; Falla, N.M.; Caser, M.; Scariot, V. Postharvest aptitude of Begonia semperflorens and Viola cornuta edible flowers. Adv. Hortic. Sci. 2020, 34, 13–20. [Google Scholar] [CrossRef]
- Fernandes, L.; Saraiva, J.A.; Pereira, J.A.; Casal, S.; Ramalhosa, E. Post-harvest technologies applied to edible flowers: A review. Food Rev. Int. 2018, 35, 132–154. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. An Overview on the Market of Edible Flowers. Food Rev. Int. 2020, 36, 258–275. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean Wild Edible Plants: Weeds or “ New Functional Crops ”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brito, C.; Bertotti, T.; Primitivo, M.J.; Neves, M.; Pires, C.L.; Cruz, P.F.; Martins, P.A.T.; Rodrigues, C.A.; Moreno, M.J.; Brito, R.M.M.; et al. Corema album spp: Edible wild crowberries with a high content in minerals and organic acids. Food Chem. 2021, 345, 128732. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; Tenuta, M.C.; Menichini, F.; Xiao, J.; Tundis, R. Edible Flowers: A Rich Source of Phytochemicals with Antioxidant and Hypoglycemic Properties. J. Agric. Food Chem. 2016, 64, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yu, X.; Maninder, M.; Xu, B. Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. Int. J. Food Prop. 2018, 21, 1524–1540. [Google Scholar] [CrossRef][Green Version]
- Maleš, I.; Pedisić, S.; Zorić, Z.; Elez-Garofulić, I.; Repajić, M.; You, L.; Vladimir-Knežević, S.; Butorac, D.; Dragović-Uzelac, V. The medicinal and aromatic plants as ingredients in functional beverage production. J. Funct. Foods 2022, 96, 105210. [Google Scholar] [CrossRef]
- Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal Plants of the Family Lamiaceae as Functional Foods—A Review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef][Green Version]
- Demasi, S.; Caser, M.; Lonati, M.; Cioni, P.L.; Pistelli, L.; Najar, B.; Scariot, V. Latitude and altitude influence secondary metabolite production in peripheral alpine populations of the mediterranean species Lavandula angustifolia Mill. Front. Plant Sci. 2018, 9, 983. [Google Scholar] [CrossRef][Green Version]
- Prusinowska, R.; Smigielski, K.B. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L.). A review. Herba Pol. 2014, 60, 56–66. [Google Scholar] [CrossRef][Green Version]
- Lyczko, J.; Jałoszynski, K.; Surma, M.; Garcia-Garvì, J.M.; Carbonell-Barrachina, A.A.; Szumny, A. Determination of Various Drying Methods ’ Impact on Odour Quality of True Lavender (Lavandula angustifolia Mill.) Flowers. Molecules 2019, 24, 2900. [Google Scholar] [CrossRef]
- Najar, B.; Demasi, S.; Caser, M.; Gaino, W.; Cioni, P.L.; Pistelli, L.; Scariot, V. Cultivation Substrate Composition Influences Morphology, Volatilome and Essential Oil of Lavandula angustifolia Mill. Agronomy 2019, 9, 411. [Google Scholar] [CrossRef][Green Version]
- Slimani, C.; Sqalli, H.; Rais, C.; Farah, A.; Lazraq, A.; El Ghadraoui, L.; Belmalha, S.; Echchgadda, G. CHemical composition and evaluation of biological effects of essential oil and aqueous extract of Lavandula angustifolia L. Not. Sci. Biol. 2022, 14, 11172. [Google Scholar] [CrossRef]
- Dorozko, J.; Kunkulberga, D.; Sivicka, I.; Kruma, Z. The influence of various drying methods on the quality of edible flower petals. FoodBalt 2019, 182–187. [Google Scholar] [CrossRef]
- Mirjalili, H.M.; Salehi, P.; Vala, M.M.; Ghorbanpour, M. The effect of drying methods on yield and chemical constituents of the essential oil in Lavandula angustifolia Mill. (Lamiaceae). Indian J. Plant Physiol. 2019, 24, 96–103. [Google Scholar] [CrossRef]
- Functional Beverage Market—Growth, Trends, COVID-19 Impact, and Forecasts (2022–2027). Available online: https://www.mordorintelligence.com/industry-reports/functional-beverage-market (accessed on 25 November 2022).
- Lu, B.; Li, M.; Yin, R. Phytochemical Content, Health Benefits, and Toxicology of Common Edible Flowers: A Review. Food Sci. Nutr. 2016, 56, 130–148. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Lonati, M.; Gaino, W.; Scariota, V. Ornamental traits of Lavandula angustifolia Mill. are affected by geographical origin and cultivation substrate composition. Acta Hortic. 2021, 1331, 49–55. [Google Scholar] [CrossRef]
- Youssef, K.M.; Mokhtar, S.M. Effect of Drying Methods on the Antioxidant Capacity, Color and Phytochemicals of Portulaca oleracea L. Leaves. Nutr. Food Sci. 2014, 4, 6. [Google Scholar] [CrossRef][Green Version]
- Boyar, S.; Dikmen, E.; Erbaş, S. Drying of Edible Flowers. In Handbook of Drying of Vegetables and Vegetable Products; Zhang, M., Bhandari, B., Fang, Z., Eds.; Taylor & Francis: Abingdon, UK, 2017; pp. 195–234. [Google Scholar]
- Vallino, M.; Faccio, A.; Zeppa, G.; Dolci, P.; Cerutti, E.; Zaquini, L.; Faoro, F.; Balestrini, R. Impact of drying temperature on tissue anatomy and cellular ultrastructure of different aromatic plant leaves. Off. J. Soc. Bot. Ital. 2022, 156, 847–854. [Google Scholar] [CrossRef]
- Geng, W.G.; Li, Z.C.; Yuan, L.D.; Sun, R.F. An improvement of rose flowers drying process recovering volatile compounds by heat pump systems. Earth Environ. Sci. 2020, 594, 012006. [Google Scholar] [CrossRef]
- Falla, N.M.; Demasi, S.; Caser, M.; Scariot, V. Phytochemical profile and antioxidant properties of italian green tea, a new high quality niche product. Horticulturae 2021, 7, 91. [Google Scholar] [CrossRef]
- Pereira, C.G.; Barreira, L.; da Rosa Neng, N.; Nogueira, J.M.F.; Marques, C.; Santos, T.F.; Varela, J.; Custódio, L. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food Chem. Toxicol. 2017, 107, 581–589. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin- Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Sánchez-Rangel, J.C.; Benavides Lozano, J.A.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin-Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef][Green Version]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef][Green Version]
- Wong, S.P.; Leong, L.P.; William Koh, J.H. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006, 99, 775–783. [Google Scholar] [CrossRef]
- Tawaha, K.; Alali, F.Q.; Gharaibeh, M.; Mohammad, M.; El-Elimat, T. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem. 2007, 104, 1372–1378. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Caser, M.; Chitarra, W.; D’Angiolillo, F.; Perrone, I.; Demasi, S.; Lovisolo, C.; Pistelli, L.; Pistelli, L.; Scariot, V. Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind. Crops Prod. 2019, 129, 85–96. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Riondato, I.; De Biaggi, M.; Andriamaniraka, H.; Gamba, G.; Beccaro, G.L. Traditional and Unconventional Dried Fruit Snacks as a Source of Health-Promoting Compounds. Antioxidants 2019, 8, 396. [Google Scholar] [CrossRef][Green Version]
- Kamboj, A. Analytical Evaluation of Herbal Drugs. Drug Discov. Res. Pharmacogn. 2012, 23–60. [Google Scholar] [CrossRef]
- Duda, S.C.; Marghitas, L.A.; Dezmirean, D.; Duda, M.; Margaoan, R.; Bobis, O. Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: Effect of harvest time and plant species. Ind. Crops Prod. 2015, 77, 499–507. [Google Scholar] [CrossRef]
- Dobros, N.; Zawada, K.; Paradowska, K. Phytochemical Profile and Antioxidant Activity of Lavandula angustifolia and Lavandula x intermedia Cultivars Extracted with Different Methods. Antioxidants 2022, 11, 711. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A.; Biesaga, M.; Pyrzynska, K. Polyphenolic Composition and Antioxidative Properties of Lemon Balm (Melissa officinalis L.) Extract Affected by Different Brewing Processes. Int. J. Food Prop. 2015, 18, 2009–2014. [Google Scholar] [CrossRef][Green Version]
- Dias, M.I.; Barros, L.; Dueñas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chem. 2013, 141, 4152–4160. [Google Scholar] [CrossRef]
- Uppugundla, N.; Engelberth, A.; Ravindranath, S.V.; Clausen, E.C.; Lay, J.O.; Giddens, J.; Carrier, D.J. Switchgrass water extracts: Extraction, separation and biological activity of rutin and quercitrin. J. Agric. Food Chem. 2009, 57, 7763–7770. [Google Scholar] [CrossRef]
- Long, J.; Guo, Y.; Yang, J.; Henning, S.M.; Lee, R.-P.; Rasmussen, A.; Zhang, L.; Lu, Q.-Y.; Heber, D.; Li, Z. Bioavailability and bioactivity of free ellagic acid compared to pomegranate juice. Food Funct. 2019, 10, 6582–6588. [Google Scholar] [CrossRef]
- Cirillo, G.; Kraemer, K.; Fuessel, S.; Puoci, F.; Curcio, M.; Spizzirri, U.G.; Altimari, I.; Iemma, F. Biological activity of a gallic acid-gelatin conjugate. Biomacromolecules 2010, 11, 3309–3315. [Google Scholar] [CrossRef]
- Shanmugam, B.; Shanmugam, K.R.; Ravi, S.; Subbaiah, G.V.; Ramakrishana, C.; Mallikarjuna, K.; Reddy, K.S. Exploratory studies of (-)-Epicatechin, a bioactive compound of Phyllanthus niruri, on the antioxidant enzymes and oxidative stress markers in D-galactosamine-induced hepatitis in rats: A study with reference to clinical prospective. Pharmacogn. Mag. 2017, 13, S56–S62. [Google Scholar] [CrossRef]
- Sentkowska, A.; Biesaga, M.; Pyrzynska, K. Effects of brewing process on phenolic compounds and antioxidant activity of herbs. Food Sci. Biotechnol. 2016, 25, 965–970. [Google Scholar] [CrossRef]
Classes of Compounds | Standard | Retention Time (t R) (min) | Mobile Phase | Elution Conditions | Wavelenght (nm) |
---|---|---|---|---|---|
Cinnamic acids | Caffeic acid | 4.54 | A: 10 mM KH2PO4/H3PO4 pH = 2.8 B: CH3CN | 5%B to 21%B in 17 min + 21%B in 3 min (2 min conditioning time); flow: 1.5 mL min−1 | 330 |
Chlorogenic acid | 3.89 | ||||
Coumaric acid | 6.74 | ||||
Ferulic acid | 7.99 | ||||
Flavonols | Hyperoside | 10.89 | |||
Isoquercitrin | 11.24 | ||||
Quercetin | 17.67 | ||||
Quercitrin | 13.28 | ||||
Rutin | 12.95 | ||||
Benzoic acids | Ellagic acid | 18.65 | A: H2O/CH3OH/ HCOOH (5:95:0.1 v/v/v), pH = 2.5 B: CH3OH/HCOOH (100:0.1 v/v) | 3%B to 85%B in 22 min + 85%B in 1 min (2 min conditioning time); flow: 0.6 mL min−1 | 280 |
Gallic acid | 4.26 | ||||
Catechins | Catechin | 10.31 | |||
Epicatechin | 14.3 |
Lavender Selection (A) | TPC mg GAE/100 g DW | TAC mg C3G/100 g DW | FRAP mmol Fe2+/kg DW | DPPH µmol TE/g DW | ABTS µmol TE/g DW | |||||
---|---|---|---|---|---|---|---|---|---|---|
Susa | 1877.18 ± 449.02 | b | 40.14 ± 8.19 | b | 988.08 ± 348.43 | b | 76.10 ± 50.83 | b | 85.49 ± 49.42 | c |
Stura | 2200.99 ± 461.35 | a | 59.30 ± 19.40 | a | 1265.16 ± 570.28 | a | 104.88 ± 38.75 | a | 112.59 ± 23.86 | a |
Tanaro | 2176.35 ± 525.81 | a | 60.74 ± 6.52 | a | 946.48 ± 342.51 | b | 102.08 ± 20.74 | a | 99.99 ± 20.36 | b |
p | *** | * | ** | *** | *** | |||||
Drying Method (B) | TPC mg GAE/100 g DW | TAC mg C3G/100 g DW | FRAP mmol Fe2+/kg DW | DPPH µmol TE/g DW | ABTS µmol TE/g DW | |||||
HA | 1648.88 | 55.57 ± 19.60 | 708.41 ± 102.86 | 61.29 ± 23.75 | 71.10 ± 23.50 | |||||
HP | 2520.79 | 51.22 10.37 | 1424.73 ± 313.48 | 127.42 ± 13.27 | 127.61 ± 8.30 | |||||
p | *** | ns | *** | *** | *** | |||||
Interaction | TPC | TAC | FRAP | DPPH | ABTS | |||||
p | ||||||||||
A × B | * | ns | * | *** | *** |
Lavender Selection | TPC mg GAE/100 g DW | TAC mg C3G/100 g DW | FRAP mmol Fe2+/kg DW | DPPH µmol TE/g DW | ABTS µmol TE/g DW | ||||
---|---|---|---|---|---|---|---|---|---|
HA Susa | 1468.33 | e | 34.70 | 670.45 | c | 30.79 | d | 40.42 | e |
HA Stura | 1781.46 | c | 66.06 | 750.81 | c | 69.73 | c | 91.09 | c |
HA Tanaro | 1696.86 | d | 65.93 | 703.98 | c | 83.35 | b | 81.78 | d |
HP Susa | 2286.02 | b | 45.57 | 1305.70 | b | 121.41 | ab | 130.55 | a |
HP Stura | 2620.52 | a | 52.55 | 1779.50 | a | 140.03 | a | 134.09 | a |
HP Tanaro | 2655.83 | a | 55.54 | 1188.98 | b | 120.82 | ab | 118.20 | b |
p | *** | ns | *** | ** | *** |
Drying Method | Quercitrin mg/100 g DW | Ellagic Acid mg/100 g DW | Gallic Acid mg/100 g DW | Epicatechin mg/100 g DW |
---|---|---|---|---|
HA | 0 | 0 | 0 | 403.88 |
HP | 57.007 | 13.704 | 1784.697 | 0 |
p | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falla, N.M.; Caser, M.; Demasi, S.; Scariot, V. Heat Pump Drying of Lavender Flowers Leads to Decoctions Richer in Bioactive Compounds. Agronomy 2022, 12, 3162. https://doi.org/10.3390/agronomy12123162
Falla NM, Caser M, Demasi S, Scariot V. Heat Pump Drying of Lavender Flowers Leads to Decoctions Richer in Bioactive Compounds. Agronomy. 2022; 12(12):3162. https://doi.org/10.3390/agronomy12123162
Chicago/Turabian StyleFalla, Nicole Mélanie, Matteo Caser, Sonia Demasi, and Valentina Scariot. 2022. "Heat Pump Drying of Lavender Flowers Leads to Decoctions Richer in Bioactive Compounds" Agronomy 12, no. 12: 3162. https://doi.org/10.3390/agronomy12123162