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Abstract: A heterogeneous distribution of nutrients in the soil and the root interactions of crops
coexist in agroecosystems. A ‘root splitting’ approach, i.e., splitting the root system into different
nutrient compartments, was used to study nutrient heterogeneity distributions and root interactions.
We evaluated root foraging behavior, individual growth, and root development mechanisms in
response to soil nitrogen heterogeneity, and intraspecific competition in maize. A heterogeneous
distribution of nitrogen increased the foraging precision of roots at flowering and mature stages
(Foraging precision > 1), and significantly increased root biomass and surface area on the intraspecific
competition and no competition on the high nitrogen side. The heterogeneous distribution had
no effect on yield, total root biomass, specific root length, total surface area, or average diameter.
Intraspecific competition increased inter-crop competition (RII < 0) and reduced total root biomass,
total plant biomass, and the root/shoot ratio. These results inform root trait development studies
and provide valid evidence for optimizing and managing fertilizer application in agroecosystems,
helping to maximize crop yield and nutrient use efficiency.

Keywords: nitrogen heterogeneity; root growth; intraspecific competition; crop development

1. Introduction

Soil nutrients are typically heterogeneous and occur in patches. These patches are
usually spatially (nutrient patch distribution, size, quantity) and temporally (time of
patch appearance, duration, and frequency of patch appearance) heterogeneous [1]. The
heterogeneous nutrient distribution is mainly caused by the heterogeneous physicochemical
properties of the soil [2], the heterogeneous distribution of plant litter and animal excreta,
differences in the physical and chemical properties of different organic litter [3,4], and
the activities of different microorganisms. The main reason for nutrient imbalances in
production is non-homogeneous fertilizer application [5].

Soil nutrient heterogeneity influences crop plant growth [6], community develop-
ment, and environmental changes [7]. Plants are influenced by the heterogeneity of their
surroundings and exhibit morphological and physiological adaptations to minimize the
adverse effects of environmental factors. The adaptations include the proliferation of more
roots in patches with high nutrient content, including the elongation of existing roots and
the production of new roots [8]. When plants are without competition (including the above-
and the underground roots), plants in heterogeneous environments are often better adapted
and have higher biomass than those in homogeneous soils [9]. Optimization models sug-
gest that plants growing in patchy soil nutrient environments will spatially allocate their
root systems to balance the marginal benefits of each nutrient patch, regardless of the size of
the plant and the nature of the nutrient patch [10,11]. This may be due to the proliferation
of root systems increasing the uptake potential and increasing the limited binding capacity
per unit of soil volume.
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With the intensity of modern agriculture, the communication between crop roots has
become complex. The plant root system configuration is the result of evolution which
favors their successful growth and reproduction in variable natural environments [10].
Nitrogen (N) is an essential element required by plants for growth. Nitrogen limits crop
yield and quality due to its high mobility in the soil and its variable distribution over time
and space [12]. N heterogeneity can have many effects on plant root growth [13], but infor-
mation on the relationship between intraspecific competition and nitrogen heterogeneity
is scarce. Such effects are mainly specific to intercropping plant populations [14], clonal
populations [15], and plant sex [16]. Homogeneous habitats with a homogeneous distribu-
tion of resources and growth space are more favorable for plant growth and reproduction.
This is probably because homogeneity facilitates access to resources and growth space.
However, this response varies among different species [17]. In addition, the density of
nutrient patches may influence the root foraging responses of plants, which can either
proliferate equally in each patch or allocate more resources to one or several patches [18].
When there is no competition, roots proliferate more strongly in patches closer to the roots.
For example, in heterogeneous soils, the roots of Abutilon theophrasti Medicus populations
proliferate extensively into nutrient-rich patches, but the total above-ground biomass and
total root biomass of the populations are not strongly influenced by heterogeneity in the
populations [19]. However, these studies did not consider the overall influence of indi-
vidual root segments. Given the generally heterogeneous distribution of nitrogen in the
soil, it is necessary to consider the distribution of nitrogen heterogeneity on individual
root development. This is essential for improving nutrient uptake efficiency and yield,
and for investigating how roots respond to soil nitrogen heterogeneity and intraspecific
competition. This information will increase our understanding of plant-plant coexistence
and their evolutionary relationships within ecosystems.

2. Materials and Methods
2.1. Experiment Site

The experiments were conducted from March to August 2022 in a greenhouse at the
Daheqiao Experiment Station, Yunnan Agricultural University, Xundian county, Yunnan
Province (103◦16′41” E, 25◦31′07” N). This location is at an altitude of 1860 m, with a mean
annual frost-free period of 231 days. The experiment soil was a silty clay loam with maize
as the immediately previous crop. The soil (0–20 cm) pH was 6.82, with total N, P, and K
concentrations of 1.10 g, 0.68 g, and 10.58 g kg−1, respectively, and available N, P, and K
concentrations were 48.37 mg, 21.26 mg, and 59.63 mg kg−1, respectively. The soil organic
matter content was 17.22 g kg−1. The soil was air dried, screened by 6 mm mesh, and
placed into pots.

2.2. Experiment Design

Two nitrogen distribution patterns (Homogeneous distribution (HO), Heterogeneous
distribution (HE)) with or without intraspecific competition (no competition (NC), intraspe-
cific competition (IC)) were established in the experiment. To set up nitrogen heterogeneity
and to prevent soil nutrient diffusion, two plastic bottles measuring 18 cm × 17 cm × 41 cm
(length × width × height) were tied together, and a groove of a 5 cm height was cut from
the middle interface to facilitate the transplanting of seedlings (Figure 1). Replicates were
arranged randomly in the greenhouse to reduce the influence of nonhomogeneous light.
The intraspecific competition nutrient content (N, P2O5 and K2O) was twice that of the no
competition cultivation. A total of 2.5 g of calcium superphosphate (P2O5 ≥ 16%) and 4 g
of potassium sulphate (K2O ≥ 52%) per plant were mixed with sieved dry soil for a single
application to two conjoined pots. Urea (N = 46.2%) was applied within one week after
transplanting and at the flare opening stage at 50%:50% of the total fertilizer application
rate (Table 1).
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Figure 1. Schematic representation of nutrient distribution patterns and crop cropping patterns.
(a) Homogeneous with no competition (NCHO); (b) Homogeneous with intraspecific competition
(ICHO); (c) Heterogeneous with intraspecific competition (ICHE); (d) Heterogeneous with no compe-
tition (NCHE). The brown dots in the pots represent the amount of nitrogen applied.

Table 1. Nitrogen application amounts of the different treatments (g/pot).

Homogeneous (HO) Heterogeneous (HE)

Left Side Right Side High Nitrogen Side Low Nitrogen Side

Intraspecific Competition (IC) (2 plants) 12 12 20 4
No competition (NC) (1 plant) 6 6 10 2

2.3. Seedlings Preparation and Planting

The maize seeds (Qiaodan no.6) were soaked in warm water (45 ◦C) for 24 h and
then placed on a moist filter paper seedbed to germinate. After 4 d, the embryonic roots
emerging from the seeds were removed from the roots with sterilized scissors. Seeds were
then germinated in nutrient cups (8 cm × 10 cm, cylindrical) with a 1:1 mix of dry soil and
vermiculite by volume, and seedlings of uniform size were selected for transplanting on
29 March 2022, with a 9:1 mix of dry soil and vermiculite (2–4 mm) by volume (weight about
9.5–9.6 kg/pot). The seedlings were selected by moistening the nutrient cup sufficiently to
minimize damage during root extraction. The selected seedlings were rinsed with distilled
water to clean the soil and vermiculite adhering to the root surface; then, four lateral roots
were selected from each plant for root splitting (the difference in length between each
lateral root was less than 3 mm), with two roots on each side of each conjoined pot. After
planting, seedlings that died or developed serious diseases within 7 d were replaced with
new plants, and watered every 3 d. The watering intensity was controlled to ensure that no
leakage occurred at the base. The above-ground parts were properly bound down during
the maize trumpeting period to separate the above-ground parts effectively [20].

2.4. Samples and Measurements

In the final sampling, we selected 12 repeats for each treatment, with 6 repeats at
the flowering stage (28 June 2022) and 6 repeats at mature stage (12 August 2022). The
stems, leaves, and ears were separated, and the leaf area was determined using maximum
leaf length × maximum leaf width × 0.75. Then, the leaf was dried at 70 ◦C for 30 min
in an oven at 105 ◦C to a constant weight. For better separation of soil and roots during
sampling, no watering was applied for 3 d prior to sampling. The nutrient pots were gently
shaken before sampling; then, the culture pots were cut from all sides with scissors, and
the soil samples were rinsed with running water until the roots were separated from the
soil. Roots were passed through a root scanner (Shanghai Zhongjing Technology Co., Ltd.,
China, Shanghai, China, ScanMaker i800 Plus) and then analyzed with WinRHIZO 2019b
(Regent Instruments Canada lnc., Québec City, QB, Canada), dried to a constant weight at
70 ◦C, and recorded as dry matter. This was used to calculate the root/shoot ratio (root dry
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weight/above ground dry weight), specific root length (root length/root biomass), root
average diameter, and root surface area. If a part of the roots was translucent at sampling,
it was stained with bright cresol blue before scanning [21].

2.5. Data Analysis

We used the relative interaction index (RII) to assess the intensity of competition
between nitrogen distribution patterns: RII = (BW − BO)/(BW + BO) [22], where BO is the
above-ground biomass of the target plant when grown alone (no competition), and BW is
the above-ground biomass of the target plant when grown with intraspecific competition.
RII ranges from −1 to 1, with negative values indicating competition; smaller values
indicate stronger competition; positive values indicate facilitation; and RII = 0 indicate that
crop growth was not influenced by neighboring plants.

Root foraging precision analysis: Increased root growth in high nutrient patches is
considered to be an adaptive response to heterogeneous nutrients. We used the ratio of
root biomass in high to low nitrogen patches as a measure of foraging precision (foraging
precision = high nitrogen of root biomass/low nitrogen of root biomass). The higher the
ratio, the greater the precision of root foraging.

Before data analysis, the roots could not be completely separated due to the root
interaction of the two maize roots crossing each other. During the analysis, the relevant
root metrics were averaged into two parts so that the data were at the same level. Two-way
ANOVA using SPSS 26.0 (SPSS Inc., Chicago, IL, USA) was used to analyze intraspecific
competition and nitrogen distribution patterns on the plant height, stem thickness, leaf
area, yield, harvest coefficient, total biomass, total root biomass, average root diameter,
surface area, specific root length, and root/shoot ratio. The analyses were followed by
multiple comparisons (LSD method) of the indicators. Student’s t-test was used to analyze
the specific root length, surface area, diameter, and biomass in nitrogen homogeneous (left
and right pots) and heterogeneous (high and low nitrogen side pots), and root foraging
precision, with and without a root interaction. Significance was indicated when p ≤ 0.05.

3. Results
3.1. Analysis of Variance (ANOVA) Table of Intraspecific Competition and Nitrogen
Distribution Patterns

At the flowering and mature stages, the main traits of maize were strongly influenced
by intraspecific competition, especially the total biomass, root/shoot ratio, surface area,
root biomass, and average diameter which reached significant levels, while the nitrogen
distribution pattern mainly influenced the specific root length at the flowering stage and
had a significant interaction effect with intraspecific competition. The overall pattern of
nitrogen distribution had no significant effect on the above-ground phenotype of maize.
This could also be the result of some physiological ‘integration’ of the plants.

3.2. Influence of Intraspecific Competition and Nitrogen Distribution Patterns on Relative
Interaction Index and Root Foraging Precision

The relative interaction index of nitrogen distribution patterns at the flowering (Figure 2a)
and mature stage (Figure 2b) did not differ significantly but showed a higher homogeneous
nitrogen competitiveness than heterogeneous nitrogen at the flowering stage. The opposite
was true at the mature stage, probably because the maximum growth potential of the crop
during the reproductive period is reflected at the flowering stage, when the intraspecific
competition response is stronger, and its root surface area is higher than heterogeneous.
The crop also absorbed relatively high levels of nutrients, and the roots were maximized to
meet later growth. Regardless of the pattern of nitrogen distribution after the flowering
stage, the crop absorbed nutrients mainly towards the kernel, and its competitiveness was
relatively reduced.
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Figure 2. Effect of nitrogen distribution pattern on the relative interaction index and root foraging
precision of maize. (a) Relative interaction index at flowering stage. (b) Relative interaction index at
mature stage. (c) Foraging precision at flowering stage. (d) Foraging precision at mature stage, HO:
Nitrogen homogenization supply, HE: Nitrogen heterogeneous supply, IC: Intraspecific competition,
NC: No competition, the same as below.

Nitrogen heterogeneity generally increased root foraging precision with intraspecific
competition and no competition at the flowering stage. This suggested that the root
interaction stimulated root foraging behavior (Figure 2c), while intraspecific competition
was less than no competition at the mature stage (Figure 2d). This result was probably due
to the high nitrogen demand of maize at the flowering stage where intraspecific competition
increased root competition. In the mature stage, the nitrogen consumption in the soil was
exhausted, and the intraspecific competition increased the nitrogen consumption rate, while
the nitrogen consumption was always in a ‘moderate’ state when there was no competition.

3.3. Effects of Intraspecific Competition and Nitrogen Distribution Patterns on Maize Growth
and Development

Plant height can reflect the production potential of the crop [23]. Under the homo-
geneous nitrogen distribution pattern at the flowering stage, the height of intraspecific
competition plants was significantly higher than that of no competition, and the differ-
ence in heterogeneous nitrogen was not significant (Figure 3a). The nitrogen distribution
pattern had no significant effect on the height of intraspecific competition and no compe-
tition plants, but there was a significant interaction between the two (Table 2). Neither
intraspecific competition nor the nitrogen distribution pattern had a significant effect at
the flowering and mature stages (Figure 3b) but showed that homogeneous was higher
than heterogeneous (Figure 3c). The stem diameter, which reflects the crop ability to re-
sist lodging, was not significantly affected at flowering (Figure 3c) and was significantly
higher at the mature stage without competition than between roots (Figure 3d), while the
difference between nitrogen distribution patterns was not significant. The leaf area, an
indicator of the photosynthetic intensity of the crop, did not differ significantly at flow-
ering, regardless of the nitrogen distribution pattern and with or without intraspecific
competition (Figure 3e, Table 2). In summary, the nitrogen distribution pattern did not
have a significant effect on apparent traits such as maize plant height and leaf area, and
these data suggest an integration of the above-ground parts of the plant in response to the
process of nitrogen heterogeneity to reduce the adverse or beneficial effects resulting from
the below-ground roots.
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Figure 3. Effect of nitrogen distribution pattern and intraspecific competition on maize plant height,
stalk thickness, and leaf area. (a) Plant height at flowering stage. (b) Plant height at mature stage.
(c) Stem diameter at flowering stage. (d) Stem diameter at mature stage. (e) Leaf area at flowering
stage. (f) Leaf area at mature stage. Values are means ± standard error of the mean. Treatments with
different lowercase letters are significantly different at p < 0.05, the same as below.

Table 2. Analysis of variance for maize yield, growth parameters, and root traits in flowering stage
and mature stage (F value).

Flowering Stage Mature Stage

Parameters ND RI ND × RI ND RI ND × RI

Plant height 0.08 17.70 ** 6.09 * 0.01 0.56 3.47
Stem diameter 2.69 0.45 0.03 0.51 9.78 ** 0.32

Leaf area 0.52 0.80 0.37 0.16 0.47 6.59 *
Total biomass 0.02 7.09 * 0.58 0.53 17.09 ** <0.01

Root/shoot ratio 0.32 10.09 ** 4.12 0.03 12.24 ** 1.57
Yield - - - 0.18 2.31 3.43

Harvest coefficient - - - 0.40 4.54 * 8.27 **
Specific root length 29.35 ** 4.22 10.76 ** 2.30 2.30 5.53 *

Total root surface area 2.06 7.14 * 0.05 0.51 15.76 ** 0.09
Total root biomass 0.12 15.43 * 0.31 0.06 22.35 ** 0.95

Average root diameter 3.58 9.59 ** 0.36 1.12 5.12 * 4.28

ND: nitrogen distribution pattern, RI: with or without intraspecific competition, ND × RI: interaction effect. * and
** represent p values < 0.05 and <0.01, respectively.

3.4. Effect of Intraspecific Competition and Nitrogen Distribution Patterns on Total Biomass,
Root/Shoot Ratio, Yield, and Harvest Coefficient

The differences between nitrogen distribution patterns for biomass were not signif-
icant (Figure 4a,b) but all showed higher no competition treatments than intraspecific
competition, especially at the mature stage (Figure 4b, Table 2). The root/shoot ratio
reflected the correlation between above-ground and below-ground parts of the crop, and
overall, the no competition root/shoot ratio was significantly higher than intraspecific
competition. Nitrogen distribution patterns did not significantly affect the root/shoot ratio
at the flowering and the mature stage (Figure 4c,d, Table 2). At the flowering stage of
intraspecific competition, the root/shoot ratios were higher in homogenous conditions, and
it had a higher root/shoot ratio in the heterogeneous condition of no competition, but the
opposite was true at the mature stage. There was no significant difference in yield between
different nitrogen distribution patterns, but homogeneous nitrogen was 10.20% higher
than heterogeneous nitrogen in intraspecific competition, and heterogeneous nitrogen was
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6.08% higher than homogeneous nitrogen in no competition (Figure 4e). The harvest coeffi-
cients were the opposite of yield, with heterogeneous nitrogen significantly higher than
homogeneous nitrogen at intraspecific competition (Figure 4f, Table 2), and non-significant
differences at no competition. In agroecosystems, when basal fertilizer is applied heavily,
it helps to build fertilizer homogeneity, and, when fertilizer follow-up is applied heavily,
it helps to build nutrient heterogeneity [24]. Based on our results, especially for yield dif-
ferences, we recommend that basal fertilizer should be applied heavily when intraspecific
competition is present, and follow-up fertilizer should be applied appropriately when there
is no competition.
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Figure 4. Effect of nitrogen distribution pattern and intraspecific competition on total biomass,
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3.5. Effect of Intraspecific Competition and Nitrogen Distribution Patterns on Root Traits of Maize

The specific root length is a key root trait that determines the root ability to absorb
water and nutrients, and is also closely related to root respiration and plasticity. There
was no significant difference in the effect of the nitrogen distribution pattern on the spe-
cific root length of intraspecific competition at both flowering (Figure 5a) and mature
stages (Figure 5b). There was a significant interaction between homogeneous nitrogen and
heterogeneous nitrogen in no competition of the flowering stage, and the opposite at ma-
ture, where heterogeneous nitrogen was significantly higher than homogeneous nitrogen
(Table 2). Student’s t-test of the specific root length of roots on both sides of intraspecific
competition and no competition showed that there were no significant differences in the
homogeneous nitrogen distribution (left and right side) and heterogeneous nitrogen dis-
tribution (high and low nitrogen side) in the specific root length at the flowering stage
(Figure 5c,e) and the maturity stage (Figure 5d,f). The nitrogen heterogeneity distribution
increased the specific root length of no competition at the mature stage, although it did not
increase at the high nitrogen side, indicating that the roots were consistent in coordinating
nutrient uptake and growth.
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(a) Specific root length at flowering stage. (b) Specific root length at mature stage. (c) Under hetero-
geneous nitrogen distribution conditions, specific root length at flowering stage with intraspecific
competition. (d) Under heterogeneous nitrogen distribution conditions, specific root length at mature
stage with intraspecific competition. (e) Under homogeneous nitrogen distribution conditions, spe-
cific root length at flowering stage with no competition. (f) Under homogeneous nitrogen distribution
conditions, specific root length at mature with no competition.

In both intraspecific competition and no competition, the nitrogen distribution pat-
terns did not differ significantly on the root average diameter at the flowering stage
(Figure 6a). All showed a heterogeneous nitrogen distribution over a homogeneous nitrogen
distribution, and, at the mature stage, the differences were not significant for intraspecific
competition and significantly higher for no competition homogeneous nitrogen than for
the heterogeneous nitrogen distribution. The differences in the root average diameter
between the high and low nitrogen side pots of the heterogeneous nitrogen distribution
were not significant at the flowering (Figure 6c) and mature stages (Figure 6d), nor were
the differences in the root average diameter between the left- and right-side pots of the
homogeneous nitrogen distribution significant at the flowering (Figure 6e) and mature
stage (Figure 6f).

Root biomass was used as the most direct indicator of the response to the nitrogen
distribution and intraspecific competition. The differences in root biomass between the
nitrogen distribution were not significant at the flowering and mature stages (Figure 7a,b),
but no competition was significantly higher than intraspecific competition (Table 2). Stu-
dent’s t-test for intraspecific competition and no competition for high and low nitrogen pots
demonstrated that root biomass reached significant levels at both the flowering (Figure 7c)
and the mature stage (Figure 7d). These results showed that the high nitrogen basin was
significantly greater than the low nitrogen basin, but there was no significant difference in
root biomass between the left and right basins at the flowering stage (Figure 7e) and the
mature stage (Figure 7f) under the homogeneous nitrogen distribution. In short, the high
nitrogen side roots are thicker, while the low nitrogen side roots are finer, which may be
that when the low nitrogen side roots obtain more nutrients, more fine roots are developed
to increase the contact area with the soil.
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Figure 6. The effect of nitrogen distribution pattern and intraspecific competition on root average
diameter. (a) Average diameter at flowering stage. (b) Average diameter at mature stage. (c) Average
diameter with heterogeneous distribution of nitrogen at flowering stage. (d) Average diameter with
heterogeneous distribution of nitrogen at mature stage. (e) Average diameter with homogeneous
distribution of nitrogen at flowering stage. (f) Average diameter with homogeneous distribution of
nitrogen at mature stage.
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at flowering stage. (f) Root biomass with homogeneous distribution of nitrogen at mature stage.
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Plants mainly absorb water and nutrients in soil through roots, and surface area
is a commonly used index to evaluate the absorption function of roots [25]. The larger
the index value, the greater the probability of roots contacting nutrients, the greater the
vigor, and the stronger the absorption capacity. Nitrogen distribution patterns and no
competition did not significantly affect total root surface area at the flowering and mature
stage (Figure 8a,b). However, no competition was higher than intraspecific competition
and reached a significant level at the mature stage (Table 2). Heterogeneous nutrients’
distribution at intraspecific competition revealed that the surface area of high-nutrient pots
was significantly higher than low-nutrient pots at the flowering (Figure 8c) and the mature
stage (Figure 8d), while the differences between the left and right pots were not significant
at the flowering (Figure 8e) or mature stage (Figure 8f) in homogeneous nutrients.
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Figure 8. Effect of nitrogen distribution pattern on root surface area. (a) Root surface area at flowering
stage. (b) Root surface area at mature stage. (c) Root surface area at flowering with heterogeneous
distribution of nitrogen. (d) Root surface area at mature with heterogeneous distribution of nitrogen.
(e) Root surface area at flowering with homogeneous distribution of nitrogen. (f) Root surface area at
mature with homogeneous distribution of nitrogen.

This study, based on the correlation between maize yield and root foraging precision,
showed that intraspecific competition had a negative correlation at both the flowering and
mature stages (Figure 9a). The relationship reached significant levels at the flowering stage,
while no competition showed a negative correlation at flowering, while showing a positive
correlation at the mature stage (Figure 9b). These results suggest that although intraspecific
competition nitrogen heterogeneity increases the precision of roots, the behavior of the
roots in obtaining nutrients does not seem to result in yield improvement.
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Figure 9. Relationship between maize yield and (a) Intraspecific competition (Flowering stage:
r = −0.909, p = 0.011; Mature stage: r = −0.385, p = 0.450), (b) No competition (Flowering stage:
r = −0.742, p = 0.091; Mature stage: r = 0.036, p = 0.945).

4. Discussion

Plants exhibit a high degree of plasticity in the morphological and physiological re-
sponses of their roots to access heterogeneous soil nutrients. The morphological plasticity
of the roots provides the means for capturing heterogeneous nutrient resources. In the
present study, the heterogeneous distribution of nitrogen increased root biomass on the high
nitrogen side relative to the homogeneous distribution of nitrogen. However, the difference
in total biomass was not significant, and inter-intraspecific competition significantly re-
duced the total root biomass (Figure 7a). This is similar to other studies; the heterogeneous
distribution of nitrogen can significantly promote root proliferation in nitrogen-enriched
areas [26], including increased root length and biomass. For example, wheat exhibited
increased biomass in nitrate- and phosphorus-enriched areas [27], a finding that was also
observed in forest trees [28] and weeds [29]. Perhaps grasses such as maize can make
better use of nutrient patches without increasing root biomass and the root/shoot ratio,
as it has a relatively high root mass fraction and a small root diameter. However, this
inter-rooting is based on a combination of roots with the same structure, and this combina-
tion can lead to more intense competition [30], which is detrimental because it wastes the
limited resources available for root foraging. Intraspecific competition similarly increases
root length (Figure 5b), and the optimal allocation of nitrogen to roots in the presence of
competitors is more complex than in the absence of competition. It generally increases
with the ability of competitors to produce root length. This capacity also reduces the
ability of competitors to obtain the nitrogen supply and thereby increases the net resource
balance of neighboring plants. However, this increased allocation comes at the expense of
neighboring plants [31,32]. In the present study, distribution of nitrogen did not change
the specific root length of the roots on either side, either by intraspecific competition or no
competition, but the heterogeneous distribution of nitrogen changed the total specific root
length of the no competition roots (Figure 5a,b). This was especially obvious at the mature
stage, where heterogeneous nitrogen significantly increased the specific root length of the
roots. This phenomenon was not reflected in intraspecific competition (at the flowering and
mature stages) and may have occurred because root foraging was less important in the no
competition cultivation than in intraspecific competition. In single-species plots, individual
plants propagated in rich patches may not gain biomass because their neighbors adopt
the same strategy, thus counteracting a possible advantage, while roots of neighboring
plants growing in a heterogeneous distribution of nitrogen reduce nutrient availability in
the patch [26,33].

The morphology and spatial distribution of crop roots determine the root configuration
and influence the ability of the roots to obtain water and nutrient resources from the soil.
The root surface area directly or indirectly responds to the ability of the crop roots to
absorb nutrients [34]. In the present study, intraspecific competition significantly reduced
the total root surface area, especially at the mature stage. This may be because plants
produce more roots in higher nutrient patches while also increasing the root competition in
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higher nutrient patches, thus creating a so-called tragedy of the commons (which results in
plants grown with neighbors over-proliferating their roots at the expense of above-ground
biomass) [32,35]. This means that root proliferation in heterogeneous soils is essential for
plants to gain growth benefits and thus exhibit optimal growth strategies. In contrast, the
root surface area was significantly higher on the high nitrogen side of the interaction and no
competition heterogeneous nitrogen distribution than on the low nitrogen side, a result that
is consistent with root biomass, yet the nitrogen distribution pattern did not change the total
surface area of the interaction and no competition roots. Since root proliferation depends
on a limited number of binding sites on the roots and soil particles, thereby increasing
nutrient availability [36,37], the proportion of total nutrient uptake from the soil by the
roots increases more rapidly in no competition situations than in intraspecific competition.

Increased foraging precision in crops is usually a sign of adaptation, helping to pro-
mote nutrient uptake and enhance competitive advantage [38]. However, we found that
although foraging precision increased at both the flowering and mature stages under in-
traspecific competition compared to no competition (Figure 2c,d), in combination with total
biomass of maize (Figure 4a,b), there was a significant reduction in intraspecific competition.
This suggests that increased foraging precision did not necessarily significantly enhance
interplant competition. In addition, the degree of nitrogen heterogeneity distributed in our
study was 5:1, which may also result in maize roots influencing this degree of heterogeneity
in a manner that is not favorable. It is possible that an excessive degree of heterogeneity
may increase the excessive energy consumption of root foraging processes, and this seems
to be detrimental to the long-term evolutionary selection of plants. We therefore suggest
that there is some ‘behavior’ of the roots that reduces nutrient acquisition efficiency during
foraging, as foraging itself is an energy-consuming process [39,40]. Although the intraspe-
cific competitions appeared to be twice as uncompetitive in terms of nitrogen inputs, they
were not equally nutrient-depleting for the intraspecific competitions. This was because, at
the beginning, the two individual roots of the intraspecific competitions were close to each
other, and the intraspecific competitions became increasingly complex over time. During
flowering, competition for the homogeneous nitrogen distribution was stronger (Figure 2a),
because homogeneous nutrients resemble many small nutrient patches. The maize roots
were able to respond quickly to nutrient patches and proliferate roots, thus gaining a
competitive advantage by occupying more nutrient patches, a situation that becomes more
asymmetrical over time [41,42]. In addition, in our study, nitrogen distribution patterns did
not change the overall specific root length of intraspecies competition. In no competition,
nitrogen distribution patterns had opposite effects on root length at flowering and mature
stages, which may be a balancing and coordinating effect of plants in order to adapt to
the interaction between nutrients and roots [43,44], and this competitive process deserves
further study.

Changes in root foraging behavior and the foraging capacity of plants affect their
individual growth and alter intraspecific interactions [45]. Nutrient patches can signifi-
cantly contribute to above-ground biomass in graminoid and non-nitrogen-fixing dicot
species [46,47]; however, this effect is generally observed in the early stages of crop growth,
as plants respond to a heterogeneous nitrogen distribution over a short period (4 weeks) of
time [48]. In addition, such studies are based on monocultures, and, in agroecosystems,
there are always interrelationships between or within species. For example, plants with
fast growing roots within nutrient patches or plants that are exposed to nutrient patches
first are able to take up or deplete most of the nutrients within the nutrient patches in
a short period of time before the roots of other plants can reach them. This short-term
exploitation advantage may be maintained in the natural ecosystem to provide a long-term
growth advantage [49]. In the present study, the heterogeneous distribution of nitrogen in
the intraspecific competitions was consistent with this pattern (in terms of total biomass).
The two plants in the flowering period were not equally absorbing nutrients, so there
was asymmetric growth [50]. This response mechanism allows plants to occupy nutrient
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patches by increasing root growth even in the absence of nutrient deficiency, representing
an ecological strategy for plant adaptation to nutrient heterogeneity [51].

In the present study, roots were only sampled at the flowering and the mature stages.
Although flowering is the most active period of crop development, it is unclear when
nitrogen heterogeneity begins to act on root development, and how nitrogen heterogeneity
regulates inter-intraspecific competition. Molecular biology studies have shed light on the
regulation of root development, such as the phenotypic response of root system architecture
to heterogeneous nitrogen availability and the importance of phenotypic plasticity for nitro-
gen acquisition [52,53]. In addition, our study was based on the exclusion of competition for
light from the above-ground part of the plant, but, in real agroecosystems, competition for
light from the above-ground part of the plant cannot be ignored and becomes more intense
as planting density increases [1]. Competition for light and nutrient heterogeneity between
above- and below-ground plant parts remains a challenge in agroecosystem research.

5. Conclusions

Over the entire period of maize growth, the heterogeneous distribution of nitrogen
had no significant effect on the indicators related to agronomic traits in the above-ground
parts of maize, regardless of intraspecific competition or no competition. Intraspecific
competition in the nitrogen heterogeneous distribution increased inter-root competition,
although we provided double the nutrients, but it was detrimental to the yield increase.
The no competition, heterogeneous nitrogen distribution slightly increased yield. Overall,
the heterogeneous distribution of nitrogen increased the root foraging precision, but this
increase was negatively correlated with yield. Although it increased the biomass of the
roots on the high nitrogen side, the effect on total root biomass and surface area was not
significant. When there is intraspecific competition, we recommend that basal fertilizer
should be applied heavily to reduce the heterogeneity of the soil nutrient distribution. This
will reduce the energy consumed by root foraging behavior and reduce the impact on yield.
When there is no competition, heavy application of topdressing fertilizer will increase
heterogeneity in the soil nutrient distribution and improve crop root foraging behavior.
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