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Abstract: Timely harvest can effectively guarantee the yield and quality of rapeseed. In order to
change the artificial experience model in the monitoring of rapeseed harvest period, an intelligent
prediction method of harvest period based on deep learning network was proposed. Three varieties
of field rapeseed in the harvest period were divided into 15 plots, and mobile phones were used to
capture images of silique and stalk and manually measure the yield. The daily yield was divided
into three grades of more than 90%, 70–90%, and less than 70%, according to the proportion of
the maximum yield of varieties. The high-dimensional features of rapeseed canopy images were
extracted using CNN networks in the HSV space that were significantly related to the maturity of the
rapeseed, and the seven color features of rapeseed stalks were screened using random forests in the
three color-spaces of RGB/HSV/YCbCr to form a canopy-stalk joint feature as input to the subsequent
classifier. Considering that the rapeseed ripening process is a continuous time series, the LSTM
network was used to establish the rapeseed yield classification prediction model. The experimental
results showed that Inception v3 of the five CNN networks has the highest prediction accuracy. The
recognition rate was 91% when only canopy image features were used, and the recognition rate using
canopy-stalk combined features reached 96%. This method can accurately predict the yield level of
rapeseed in the mature stage by only using a mobile phone to take a color image, and it is expected to
become an intelligent tool for rapeseed production.

Keywords: production estimation; deep learning; rapeseed

1. Introduction

As an essential oil crop, rapeseed has become the main source of edible vegetable
oil [1]. The harvest period has a significant impact on the quality and yield of rapeseed.
A suitable harvest period can be utilized to guide the accurate management, decision-
making and marketing of rapeseed [2]. The method of rapeseed harvest is divided into two
types: artificial harvesting and mechanized harvesting [3]. Manual harvesting means that
harvesting after ripening, drying, threshing, cleaning, and additional steps are completed
manually, with low harvesting efficiency and high production costs. Mechanized harvesting
of rapeseed includes segmented harvesting and combined harvesting. The operation
process of segmented harvest is similar to that of artificial harvest, in which rapeseed is cut
down, dried and threshed in the early stage of yellow ripening. Combined harvesting is a
combined operation mode of harvesting, threshing, and cleaning rapeseed with a combine
harvester, greatly improving the harvesting efficiency [4]. As of 2022, the proportion of
manual and machine harvest of rapeseed in China will account for about 50%, respectively.
No matter what kind of harvest method, early or late harvesting will have a huge influence
on the yield and quality of rapeseed. At present, harvest time is mainly judged by manually
observing the color changes of the pods and stalks, which are not only subjective, but also
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difficult to replicate. In order to guarantee the quality and yield of the harvest, an intelligent
method is urgently needed to determine the best harvest time for rapeseed.

In recent years, the rapid development of computer vision and machine learning has
provided a new way to monitor crop growth. At present, hyperspectral analysis technology
is widely used to predict crop maturity. For example, Zhao J. [5] and others used the
visible/near-infrared spectra of apples with different maturities, extracted spectral feature
variables using random forests, and established a fast non-destructive discrimination
model for apple harvest periods using extreme learning machine (ELM) and support
vector regression (SVR) classification models. Xie Z. and others screened six wavelength
combinations by taking hyperspectral images of round leaf spinach, based on the genetic
algorithm of grouping elite genetic strategy, and then established a recognition model for
spinach freshness based on depth learning technology [6]. Jing Z. [7] and others used
UAV to take soybean multispectral images, and predicted soybean maturity time from 130
features in five segments of multispectral images using the partial least squares regression
method, and revealed the practicability of multispectral images in predicting soybean
maturity. Xu X. and others developed a wheat yield monitoring method by using UAVs
remote sensing hyperspectral images and field growth data of winter wheat for many years.
In the booting stage, flowering stage and filling stage, R2 values were 0.55, 0.64, and 0.66 [8].
Garcia-Martinez etc. analyzed different multispectral and red-green-blue (RGB) vegetation
indexes and digital estimates of vegetation coverage and density, and estimated corn yield
using a neural network model [9]. Hyperspectral analysis technology has the advantages
of high modeling accuracy but its equipment is expensive and cumbersome to use. It is
difficult to promote the application of this technology for rapeseed production, which is
dominated by small and medium-sized farms.

In recent years, with the progress of image sensor technology, more and more re-
searchers use RGB images taken by smart phones or UAVs to quickly, and nondestructively,
diagnose crops. Laura Z. etc. used the method of multi-camera combinations to capture
rapeseed images to analyze and estimated rapeseed yield parameters based on a neural
network from single vine images combined with whole rapeseed images [10]. Trevisan
Rodrigo etc. used UAV images and developed a complementary convolution neural net-
work to predict the maturity of soybean. The root means square error on the verification
set was less than two days [11]. Ji Y. etc. used UAV images to monitor plant height during
the whole growth period of broad beans and estimated the yield of broad beans using
multiple time point data of plant heights based on a machine learning algorithm. R2
reached 0.98 [12]. Ortenzi L. etc. used UAVs to collect RGB images of olive tree canopies
and realized the early yield estimation of olives through the extracted canopy radius. The
error of the predicted output was less than 18%. This study provided a digital method for
the efficient management of olive plantations [13]. Fathipoor H. established a partial least
squares regression (PLSR) model to predict the forage yield by analyzing the plant height
and vegetation index obtained based on the RGB image of UAV during the forage growth
stage, and R2 reached 0.85 [14]. To sum up, the monitoring method using RGB images has
significant low-cost advantages and is easy to carry. However, RGB images are vulnerable
to light and have few image features, so it requires professional feature extraction methods
and complex machine learning methods to establish accurate prediction models.

Simple and easy intelligent decision-making solutions for harvesting are urgently
needed in rapeseed production. The method of combining image feature extraction with
machine learning is expected to solve this problem. Most of the existing image feature
extraction methods are based on manual extraction, taking the texture, color and their
combined features of the image as the input features of machine learning [15]. The artificial
extraction method is limited by the influence of lighting conditions, camera sensors, plant
surface characteristics and varieties, and it is difficult to establish a stable feature library.
The rapidly developing convolutional neural network (CNN) can automatically learn and
extract the most representative features from data in the training process with classification
as the goal, gradually replacing the artificial feature extraction method [16,17]. However,
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the ripening process of rapeseed in the pod stage changes continuously. The image charac-
teristics of rapeseed in the mature stage change gradually with the ripening process. The
stalk gradually turns yellow green from near the root to white, while the pod gradually
turns yellow and gray from green. Although the CNN can extract complex and effective
features, it lacks the continuity of time and is not suitable for such a long dynamic cycle
task as rapeseed maturity monitoring. Long short-term memory (LSTM) has been superior
in dynamic systalk analysis in many fields [18,19]. CNN has significant advantages in
exploring more spatial features, while LSTM has the ability to reveal phenological features.
The integration of the advantages of these two types of algorithms will further improve the
flexibility and reliability of prediction models based on multi-source production data [20].
For example, SUN and others put forward a soybean yield prediction model based on con-
volution neural network-long short-term memory network (CNN-LSTM). Taking weather
data, surface temperature and ground reflectivity as input data, and taking historical soy-
bean yield data as labels, they combined the data and converted them into tensors based
on histograms for model training. The results of the model are better than those of CNN or
LSTM models alone. However, this method only takes objective climate data as input, and
does not involve the characteristics of soybean growth process [7].

In order to realize the intelligent prediction of rapeseed harvest period, this paper
proposed a deep learning network based on CNN-LSTM to analyze the field images of
rapeseed in the fruit period to establish a yield classification prediction model. First, the
CNN network was used to automatically extract the features of rapeseed canopy HSV color
space image with significant features, and the color features of rapeseed stalks screened by
the comprehensive random forest method were used to form the rapeseed canopy stalk
multi-source feature input, so as to fully exploit the mature rapeseed features. Finally,
LSTM was used to deal with the timing problem of rapeseed ripening process, and the
experiment showed that the accuracy of yield classification prediction of rapeseed reached
96%. With the presented method, only RGB images taken by mobile phones or drones can
be used to accurately determine whether rapeseed has reached the optimal harvest period.
It is an intelligent method for rapeseed production.

2. Materials and Methods
2.1. Experimental Materials and Data Acquisition

The rapeseed varieties were Zhongshuang 6, Dadi 55 and Huayouza 62, which will
be planted in Huanggang Modern Agricultural Science and Technology Park, Huanggang
City, Hubei Province in 2020 and harvested in May 2021. The experimental field was a rice
field rotation, and nitrogen fertilizer was applied at the ratio of 5:2:3 (base, seedling and
moss fertilizer). The P2O5 and K2O applied in different treatments were 150 kg/ha. All
phosphate fertilizers were base-applied, with 1/2 potassium fertilizer as base fertilizer and
1/2 Brassica fertilizer. The method of seedling raising, and transplanting was adopted,
sowing on September 24 and transplanting on October 28. Density: 450,000 plants/ha. The
width of the irrigation ditch between two adjacent plots was 0.2 m. A 1m wide protective
plot was built around the whole site to reduce the edge effect. The experimental data were
collected continuously from 1 May to 15 May 2021. A total of 80 plants of each variety were
sampled every day. The experimental data collection mainly included three links: image
shooting, rapeseed harvesting, threshing and yield measurement.

2.1.1. The Experimental Images Acquisition

For the rapeseed harvested on that day, rear cameras such as the iPhone 8P and Xiaomi
10 were used to take images of its canopy and stalk (automatic mode, image resolution
of 12 million pixels). Shooting height was about 0.3 m from the canopy and 0.2 m from
the stalk. The mobile phone camera was placed to shoot 10–20 images at the canopy and
stalk at 17:00–19:00 every day, without direct sunlight. A total of 820 images of three
varieties were collected, as shown in Table 1. Specific conditions of note in the shooting
environment included: (1) avoiding rainy days and the day following rain, and avoiding
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strong reflections caused by direct sunlight on sunny days; and (2) when taking canopy
images, attempting to take only images of the pod, and attempting to only take images of
stalks when taking images of stalks.

Table 1. Image data of rapeseed in mature stage.

Varieties Rapeseed Canopy Rapeseed Stalk Summation

Zhongshuang 6 167 107 274
Dadi 55 155 104 259

Huayouza 62 177 110 287
Summation 499 321 820

2.1.2. The Yield Production Acquisition

After the image shooting was completed, 60 rapeseed plants were harvested manually.
The daily harvested rapeseed plants were recorded and numbered, and then dried. After
drying, the rapeseed met the national recovery standard (moisture content of less than
8%), and manual threshing and weighing were carried out to obtain the daily yield data.
Figure 1 shows the curve of daily yield data of the three varieties.
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Figure 1. Daily yield change of rapeseed over 15 days.

The planting density of the experimental field was 450,000 plants/hm2. We sampled
60 rapeseed plants each time. The production data we acquired was converted into the
customary yield data according to Formula (1):

Cy = 7.5 × Wy Kg/hm2 (1)

where Cy is the customary yield data, Wy is the daily yield data we acquired.

2.2. The Classification Processing of Yield Data

Nutrient deficiency, soil, climate, cultivation methods, etc. may lead to reductions
in yield in varying degrees [21]. The maximum theoretical yield of a rapeseed variety is
obtained in the experimental field by a breeding expert, which is only an ideal reference
index to establish the yield level. In our manuscript, the maximum yield was provided by
the rapeseed research team of the School of Plant Science and Technology in Huazhong
Agricultural University. The maturity process of rapeseed can be divided into three stages
as green maturity (the pods are green), yellow maturity (10% of the pods begin to turn
yellow) and full maturity (most of the fruit pods turn yellow) [22]. According to the
suggestions of rapeseed planting experts, the yield range is divided into 90–100%, 70–90%
and <70%, which are consistent with the actual agriculture production. According to the
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proportion of effective yield and maximum theoretical yield, the problem of absolute yield
prediction is transformed into the problem of yield classification prediction. The effective
yield is divided into three yield levels, namely, 90–100% yield is first class, 70–90% yield is
second class, and less than 70% yield is third class.

Table 2 shows the pretreatment results of yield data of three varieties for 15 consecutive
days. The table describes the yield level corresponding to the yield of each variety during
the 15-day monitoring. It can be observed from Table 2 that the yield data of 5/8 have an
abnormally low value (the rain in the day of 5/8 caused the loss of pod and affected the
yield data of 5/9). Even if this abnormal data is not taken into account, the actual yield of
the three varieties in the monitoring period is not a linear trend from low to high and then
to low. The timing of the highest yield occurrence for the three breeds was also inconsistent.
It is difficult to establish a high precision prediction model for the data with insignificant
laws using traditional machine learning modeling methods.

Table 2. Classification of rapeseed yield data.

Varieties First Class Second Class Third Class

Zhongshuang 6 5/11, 12, 13 5/4, 6, 7, 10 5/1, 2, 3, 5, 8, 9, 14, 15
Dadi 55 5/9, 10, 11 5/4, 7, 5, 13 5/1, 2, 3, 6, 8, 12, 14, 15

Huayouza 62 5/10, 11, 12 5/4, 5, 7, 13 5/1, 2, 3, 8, 9, 13, 14, 15

2.3. Image Datasets Enhancement

To improve the generalization ability of the training model, increase the robustness
of the model, and at the same time expand the image database of rapeseed in the mature
stage, the collected experimental images were enhanced. By randomly rotating the original
image to a certain angle, translating a certain distance, scaling, and adding Gaussian noise
to these features that do not affect image classification, the purpose of enhancing data was
achieved. The fixed enhancement data of canopy and stalk images of three varieties were
250 respectively, that is, 500 images for each variety, 1500 images in total, for subsequent
network model training and testing.

2.4. Image Segmentation and Feature Extraction of Rapeseed Field Image
2.4.1. Rapeseed Field Image Segmentation Using U-Net Network

In order to eliminate the interference of soil, weeds and other backgrounds on the
prediction model, it was necessary to segment the pod from the complex field background
for subsequent processing. The deep learning method has been widely used in the field of
image segmentation and is also widely used in image segmentation in agriculture [23]. The
U-Net network adopts a U-shaped symmetrical structure [24]. This method splices features
together in the Channel dimension to form thicker features. In addition, U-Net performs
well on small data sets, and has a good recognition effect on subtle edges. Therefore, U-Net
is suitable for extraction of slender targets such as rapeseed pod and rapeseed stalk. There
are three parts in the U-net. Labeled images and the original images were put into the
first four layers. In Downsampling part, the images were resized to four different sizes
and high-dimensional feature maps were extracted using convolution. In Contact part, the
feature maps of each layer were used to link different modules. Descriptions of the contact
modules were shown in the below chart of Figure 2b. In Upsampling part, the convolved
high-dimensional feature map was pooled and superposed with the feature map obtained
from each layer, and finally connected to the full connection layer for pixel discrimination.
A total of 750 canopy images and 750 stalk images in the experimental image set were
divided into training set, verification set, and validation set according to 60%, 20% and
20%. The specific network structure and training process of training with U-Net network
are shown in Figure 2.
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Figure 2. U-Net of rapeseed canopy and stalk images. (a) Original images of rapeseed canopy and
stalk; (b) The chart above is the structure of U-Net, the chart below is explanations for the Contact;
(c) Segmentation results with the U-Net. Note: Downsampling is used to filter features of small effect
and information redundancy, by which key information retained. Contact is adopted to merge and
enhance the image feature layer. Upsampling enlarges the feature map and restores it to the original
size image, in which the segmentation features will display.Conv1~Conv4: Convolution 1 layer to
Convolution 4 layer.

2.4.2. Silique Image Features Extraction Based on the CNN

The color change of the silique layer is closely related to the maturity. So, accurate
extraction of the effective features of the canopy is crucial to the accuracy of subsequent
classification and recognition. Compared with RGB color space, the HSV model separates
chroma, saturation and brightness, and reduces the influence of light on the characteristics
of the silique image. As showed in Figure 3, RGB images of silique in different stages of
maturity and its H channel of HSV model are shown. Compared with the RGB image, H
channel has a very significant feature change, and the color of mature silique changes from
full green to yellow green, and to full yellow and black. Therefore, the H component of
HSV color space was used to establish the best harvest time prediction model.
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To better excavate the spatial, color, and texture characteristics of the rapeseed canopy, the
rapeseed canopy images taken for 15 consecutive days were extracted for high-dimensional
features using the CNN module. First, the H component of the image is pre-trained. Using
m n × n convolution kernels, the Xi,j (the elements in the i th row and j th column of the
image) pixels of the image were convolved. After convolution, the value of each pixel in
the feature diagram was calculated as showed in Equation (2).

ai,j = f
(

∑2
m=0 ∑2

n=0 wm,nxi+m.j+n + wb

)
(2)

In Equation (2), Wm,n represents the n th column weight in row m in the convolution
kernel, Wb represents the bias term, ai,j represents the i th row j th element in the feature
graph, and f indicates the activation function.

After convolution, a total of m feature maps were obtained by average pooling the
feature maps, that is, taking the average value within the n × n range of the feature map
to further reduce the image while retaining important information. In the pooling of the
last layer, the results were arranged into a row of vectors xi to form a fully connected
layer. Finally, extracted high-dimensional features were input into the LSTM for training to
establish a classification model.

2.4.3. Stalk Image Features Extraction Based on the Random Forest

In agricultural production, the yellow-green-ratio of stalks is typically used as an
important indicator to judge whether rapeseed is mature. In order to more comprehensively
and accurately describe the changes of rapeseed stalk color during rapeseed ripening,
31 color features of the stalks were extracted from RGB, HSV, YCbCr and other three
spaces [25]. Among them, seven color features of vegetation index based on RGB spatial
model, such as EXR, were adopted, as shown in Table 3. For HSV and YCbCr color space,
the mean, standard deviation, skewness, and peak values of the three channels were
selected, respectively.

Table 3. Color features of the RGB color model.

Color Space Color Characteristics Abbreviation Computational Equation

RGB

Excess red ExR 1.4r − g
Normalized differential vegetation index NDVI (G-R)/(G+R)

Excess green ExG 2g − r − b
Excess green minus excess red ExGR ExG − ExR

Color index of vegetation extraction CIVE 0.441r − 0.811g + 0.385b + 18.78745
Vegetation VEG G/ R0.667B0.333

Combination of vegetation index COM 0.25ExG + 0.3ExGR + 0.33CIVE + 0.12VEG
Note: R-image R channel mean; G-image G channel mean; B-image B channel mean; r-image R channel normalized
value; g-image G channel normalized value; b-image B channel normalized value.

In order to solve the problem of too many original features and redundancy, stalk
color features were screened to improve the effectiveness of features. Random forests can
effectively screen the color features of stalks by internal sorting of features [26]. A training
sample set was formed by taking part of the sample from 31 kinds of eigenvalues in a
random and put-back manner, and repeated N times to form N training sample sets and N
decision trees. The features that are not drawn as tests were used to calculate the error rate
of the decision tree model prediction, which became the out-of-pocket data error (errq

ooB1
).

Noise interference was randomly added to the features not extracted and the out of bag
data error again was calculated again, which was recorded as errq

ooB2
. For N trees, the

importance of feature q was calculated as shown in Equation (3) [27].

E(q) = ∑N
n=1

(
errq

OOB1
− errq

OOB2

)
/N (3)

where, E(q) is the feature importance; N is the number of classification decision trees; q is
the current calculation feature; If the accuracy of out of bag data decreases significantly
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(that is, errq
ooB2

increases). After adding random noise, this indicated that feature q has a
great impact on the prediction results of samples, which further indicated that it is of high
importance. The color characteristics of the top six rapeseed stalks obtained from random
forests were: the average value of channel A, the average value of channel B, the average
value of channel CB, ExR, NDI, and the average value of channel Y. These six features are
the key image features of the stalk.

2.5. Prediction Model of Yield Level Based on CNN-LSTM

LSTM is a special Recurrent Neural Network (RNN), which is mainly used to solve the
problem of gradient disappearance and gradient explosion during long sequence training.
Compared with the general neural network, it can deal with the data of sequence changes.
For the continuous time series of rapeseed maturity, the maturity of the previous day must
have a great relationship with the maturity of the next day and will affect the maturity of
the next day. In addition, the maturity of rapeseed in the field is uneven, and the effective
yield data fluctuates in a small range. If only image features are used without considering
the relationship between images, it will lead to a wrong prediction. Transfer of cell state
h in LSTM structure exactly describes the relationship between images. For continuously
collected image datasets, the use of CNN-LSTM can not only fully mine the feature in-
formation carried by a single image itself, but also can fully use the continuity between
features to mine the timing information carried between images, which can maximize the
accuracy of discrimination. Therefore, this paper used the neural network architecture
based on CNN-LSTM to establish the prediction model of rapeseed harvest time.

The processing of recognition using the CNN-LSTM framework is shown in Figure 4.
The input of this framework is the silique features using CNN and the stalk features using
Random Forest. Initial state is a set of initial parameters for h0 adopted by human set-ting,
which will change from zero to other value in the deep learning net training. Yield produc-
tion was to be classed three levels, so there were 3 classes in the CNN features extraction.
There were three classes in the final recognition result too. High dimensional features
are extracted from the last full connection layer of CNN and used as one-dimensional
vector features of xt × 1, where t is the number of images in each time step. Each gate
cell contains an m × n matrix, m represents the canopy pod features extracted by CNN
and the stalk features obtained by machine learning screening, and n represents all time
steps. As a loss function, cross entropy adjusts network parameters based on classification
accuracy in the dataset. After the training, the final hidden layer unit state ht−1 represents
the important feature coding information of each period. The one-dimensional feature
vector ht−1 is connected to the Full connection layer, and then connected to a Softmax layer
for classification.

LSTM structural parameters are shown in Table 4. This paper determined hyperpa-
rameters based on experimental results from large datasets.

Table 4. LSTM network structure parameters.

Parameters Specification

Training (%) 70
Testing (%) 30
Feature size 3
Input gate Sigmoid
Forget gate Sigmoid
Output gate Sigmoid

Hidden layer Tanh
Number of layers 1

Number of Hidden units 100
Loss function Cross-entropy

Optimizer Adam
Epoch 150

Batch size 8
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3. Results and Analysis

The development and test platform adopted the deep learning server (Core i5-9300H/
16G/512G SSD/NVIDIA GeForce GTX1660Ti 8G) and the software framework of Python
3.6, TensorFlow 1.13 and Keras 2.1.1. In order to verify the effectiveness and robustness of
the model, 70% of the experimental data were randomly divided into training sets, and the
remaining 30% were used for testing. This paper mainly used the accuracy (Acc), precision
(Pr), recall (Re) and other indicators to evaluate the performance of the CNN-LSTM model.
Formulas (4)–(6) were shown as follows.

Acc =
TP + TN

TP + FP + FN + TN
(4)

Pr =
TP

TP + FP
(5)

Re =
TP

TP + FN
(6)

In the formulas, TP (true positives) means the positive class is determined as a positive
class, FP (false positives) means the negative class is determined as a positive class, FN
(false negatives) means the positive class is determined as a negative class, and TN (true
negatives) means the negative class is determined as negative class.

3.1. Classification Performance Test of CNN-LSTM Using Silique Features

This experiment was mainly for the verification test of five CNN networks, including
VGG16, EfficientNet V1, ResNet18, MobileNet V1 and Inception V3. The classification layer
of the network was adjusted to three layers (corresponding to three output levels), and
the learning rate was 0.001, the batch size was 8, and the input image size was 224 × 224.
One pot coding was used to train and extract image features, and the best network for
feature extraction of rapeseed canopy image was selected to fully explore the spatial
features of mature rapeseed canopy. The t-SNE dimension reduction method was used
to visualize high-dimensional features to a two-dimensional plane. Figure 5 shows the
visualization results of five CNN network feature extraction performance. Figure 5a–e are
characteristic diagrams of VGG16, EfficientNet V1, ResNet18, MobileNet V1 and Inception
V3 respectively. It can be seen from Figure 5 that VGG16, EfficientNet V1 and InceptionV3
networks divide the three types of feature points perfectly, while the other two networks
cannot divide the features well. Furthermore, compared with VGG16 and EfficientNet
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V1, InceptionV3 is more focused, which shows that InceptionV3 has better robustness and
generalization for each class.
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In addition, this paper evaluated the performance of CNN-LSTM and CNN models,
and the results are shown in Table 5. Five CNN networks were used to classify and predict
the yield levels of three varieties of rapeseed. Using the first variety, the average recognition
rates of VGG16, Inception V3, ResNet18, EfficientNet V1 and MobileNetV1 corresponding
to the three varieties were 78%, 83%, 69%, 77%, and 53%, respectively. The CNN network
itself has classification and prediction capabilities. Prediction results using CNN alone
are shown in the upper part of Table 4. The results are not very satisfactory. Therefore,
we did not use CNN network to predict directly but to extract image features. Canopy
image features extracted from CNN network were used as input, and LSTM recurrent
neural network was further used for training and classification. The recognition accuracy of
CNN-LSTM combined network pattern has been greatly improved, and the recognition rate
of Inception V3-LSTM combined network in three varieties reached more than 90%. The
experimental results show that the prediction accuracy of CNN-LSTM has been significantly
improved compared with only using CNN.

Table 5. Prediction accuracy of CNN and CNN-LSTM of 3-levels classification.

Features Model
First Variety Second Variety Third Variety

Acc (%) Pr (%) Re (%) Acc (%) Pr (%) Re (%) Acc (%) Pr (%) Re (%)

VGG16

None

78 ± 1 78 ± 1 78 ± 1 72 ± 1 76 ± 1 78 ± 2 75 ± 1 78 ± 1 76 ± 1
Inception V3 83 ± 1 84 ± 1 85 ± 1 83 ± 1 84 ± 1 85 ± 1 82 ± 1 83 ± 1 82 ± 1

Resnet18 69 ± 2 66 ± 2 67 ± 2 59 ± 2 57 ± 2 57 ± 2 70 ± 1 62 ± 2 69 ± 2
EfficientNetV1 77 ± 2 79 ± 2 76 ± 2 73 ± 2 72 ± 2 77 ± 2 73 ± 2 74 ± 2 78 ± 2
MobileNet V1 53 ± 3 50 ± 3 49 ± 3 45 ± 3 50 ± 3 51 ± 3 56 ± 3 51 ± 3 48 ± 1

VGG16

LSTM

90 ± 1 89 ± 1 90 ± 1 89 ± 1 88 ± 1 90 ± 1 90 ± 1 89 ± 1 89 ± 1
Inception V3 91 ± 1 93 ± 1 91 ± 1 94 ± 1 92 ± 1 92 ± 1 94 ± 1 91 ± 1 92 ± 1

Resnet18 76 ± 1 75 ± 1 75 ± 1 73 ± 1 74 ± 1 75 ± 1 75 ± 1 74 ± 1 77 ± 1
EfficientNetV1 89 ± 2 88 ± 2 90 ± 2 91 ± 2 87 ± 2 89 ± 2 91 ± 2 90 ± 2 90 ± 2
MobileNet V1 63 ± 3 63 ± 3 63 ± 3 61 ± 3 59 ± 3 62 ± 3 63 ± 3 58 ± 3 63 ± 3
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Using the best two nets, we supplied the test results of 5-level classification with
the presented method and the results are shown in Table 6. The yield range was divided
into 90–100%, 80–90%, 70–80%, 60–70% and <60%. The experimental results are shown
in the table. Compared with the 3-level classification method, the overall accuracy rate
of the 5-level classification method decreased by about 6%. More yield ranges require
higher differentiation of image features. However, yield ranges both of 60–70% and 70–80%
corresponded to the green maturity period, and the difference of image features is not
obvious, which will decrease the recognition rate markedly.

Table 6. Test results of 5-level classification of yield production.

Features Model
First Variety Second Variety Third Variety

Acc (%) Pr (%) Re (%) Acc (%) Pr (%) Re (%) Acc (%) Pr (%) Re (%)

VGG16
LSTM

83 ± 1 83 ± 1 84 ± 1 83 ± 1 83 ± 1 83 ± 1 83 ± 1 83 ± 1 85 ± 1
Inception V3 84 ± 1 84 ± 1 85 ± 1 84 ± 1 84 ± 1 85 ± 1 85 ± 1 84 ± 1 85 ± 1

3.2. Classification Performance Testing Using the Silique-Stalk Dual Feature

The color characteristic of the stalk is an important basis to judge the maturity of
rapeseed in agricultural production. A large number of crop yield estimation studies often
only consider the canopy and ignore the stalk. Therefore, in this experiment, the double
features formed by the color features of stalks extracted from random forests and the silique
features of rapeseed were used as input, and then the yield level was predicted using
CNN-LSTM network. The classification results are shown in the blue histogram in Figure 6.
The blues are the recognition accuracy of the three varieties using only silique features.
The oranges are the recognition accuracy using silique-stalk combined features. It can
be seen that, after the addition of stalk features, the classification and recognition rate of
rapeseed yield of each network has been improved. The recognition rate of InceptionV3-
LSTM network reached more than 96%. The stalk color feature can effectively improve the
accuracy of the model and verify the correctness of agricultural production experience.

1 
 

 

 

 
 

  
(a) (b) 

 

Figure 6. Comparison of silique features and silique-stalk combined features of 3-levels classification.

Additionally, the Inception V3-LSTM network was tested with the canopy-stalk com-
bined features and the canopy features respectively. The results are shown in Figure 7.
Adding stalk features can improve the prediction accuracy by 2–5% effectively.

Figure 8 shows the confusion matrix of InceptionV3-LSTM model on training set and
validation set. In the training set, the recognition rate of the first two levels reaches 100%,
and that of the third level also reaches 98%. In the validation set, the recognition rate of
the second level and the third level is very high. Compared with the other two levels, the
recognition rate of the first level is lower. This is because the maturity dates of the first
stage and the second stage are close to each other, resulting in the similarity between the
rapeseed image and the second stage and the third stage, which leads to the misjudgment
of the image, but the overall recognition rate is 96%.
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Figure 7. Comparison of canopy characteristics and silique-stalk characteristics in the 5-level classifi-
cation with the Inception v3-LSTM.
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Figure 8. Confusion matrix of the Inception V3-LSTM. (a) Training set; (b) Validation set.

Different datasets have different effects on model accuracy during training. The impact
can be reduced by adjusting the proportion of rapeseed image database in mature period.
Figure 9 shows the stability of our model when using different training set sizes. Figure 9a,b
are the results of training using 100% and 70% datasets, respectively. The axis of Iteration is
iterations count. The axis of Accuracy and Loss are the accuracy and loss rate of training
process respectively. Although the accuracy fluctuates, it is stable after 200 iterations. This
shows the superiority of the model in this paper. Fewer datasets can be used to establish a
prediction model.
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4. Conclusions

In this paper, a prediction model of the best harvest time of rapeseed based on the
CNN-LSTM deep learning framework was proposed. Based on rapeseed canopy and
stalk image data at pod stage, high-dimensional features of rapeseed canopy image were
extracted by CNN deep learning method, and then the color features of rapeseed stalks
were screened by using random forests, forming the joint features of rapeseed silique and
stalk. Based on the joint characteristics of the above two aspects, a prediction model of
Inception V3-LSTM rapeseed yield grade was established by using LSTM recurrent neural
network. The experimental results showed that 94% classification accuracy was achieved in
the validation set for three rapeseed varieties. Using CNN network to extract image features
to replace the traditional artificial feature extraction method can not only greatly reduce
the invalid workload, but also help to avoid the impact of many redundant features on the
recognition rate of the algorithm and has a good robustness for images with insignificant
color features. In addition, referring to the experience of manually judging the maturity of
rapeseed, the color feature of the stalk was added, which can improve the classification
and recognition rate by 6%. Using Timeline tools of TensorFlow, the algorithm execution
time was tested with 12-million-pixel images of rapeseed canopy and stalk. The average
result of 20 time was 0.54 s.

We present a precise prediction method for the three varieties of rapeseed. For a new
rapeseed variety, the presented method will be adopted for prediction of harvest time
through the following steps: (1) Breeding experts provided the maximum theoretical yield
data of a new rapeseed, which is divided into three levels according to three intervals
of 90–100%, 70–90% and <70%; (2) Image and yield data were collected from the yellow
maturity of rapeseed. Canopy and stalk images of rape were taken for 8–12 consecutive
days, and 60 rapes were taken to measure yield; (3) The presented method was used to
process the collected images and yield data to obtain the yield level prediction model; and
(4) Steps (2) and (3) only need to be carried out in the first year, and can be applied in the
second year and after. After entering the yellow maturity period, workers can monitor
the change of rape yield by taking the canopy and stalk images and process these images.
If the prediction results show that the yield level is between 90–100%, harvesting can be
carried out. In the case of serious reduction conditions, the prediction result will remain at
a low level even at the full maturity period, and can be harvested immediately.

The method proposed in this paper has realized automation for the feature extraction
of canopy and stalk. When the prediction model is established for more varieties and larger
data, the model can be constructed efficiently. Therefore, the method proposed in this paper
has good adaptability and practicality. Furthermore, the data and model in this article
will be deployed to the cloud database and open to users for free. Users can use mobile
terminals to judge the best harvest time of rapeseed conveniently and quickly, which can
effectively improve the intelligence of rapeseed production and reduce yield loss.

Author Contributions: Conceptualization, S.X.; methodology, S.X. and S.H.; validation, S.H. and
Y.J.; formal analysis, S.X.; investigation, G.Z.; resources, G.Z.; data curation, S.H. and Y.J.; writing—
original draft preparation, S.H. and J.L.; writing—review and editing, M.Z. and S.X.; supervision,
J.L. and S.X.; funding acquisition, G.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China, grant number 2018YFD1000904.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare that they have no conflict of interest.



Agronomy 2022, 12, 3046 14 of 14

References
1. Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve soybean yield estimation

and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens. Environ. 2016, 187, 91–101. [CrossRef]
2. Xu, H.; Cen, H.; Ma, Z.; Wan, L.; Zhou, W.; He, Y. Assessment of seed yield and quality of winter rapeseed using chlorophyll

fluorescence parameters of pods. Trans. Asabe 2020, 63, 231–242. [CrossRef]
3. Zong, W.; Wang, J.; Wang, S.; Zhao, Y. BP neural network prediction of rape maturity based on pod hue H value. Guangdong

Agric. Sci. 2015, 22, 144–149.
4. Cen, H.; Zhu, Y.; Sun, D.; Zhai, L.; Wan, L.; Ma, Z.; Liu, Z.; He, Y. Current status and future perspective of the application of deep

learning in plant phenotype research. Trans. Chin. Soc. Agric. Eng. 2020, 36, 1–16.
5. Zhao, J.; Quan, P.; Ma, M.; Li, L.; He, D.; Zhang, H. Comparative Analysis of Harvest Maturity Model for Fuji Apple Based on

Visible/Near Spectral Nondestructive Detection. Trans. Chin. Soc. Agric. Mach. 2018, 49, 347–354.
6. Xie, Z.; Xu, H.; Huang, Q.; Wang, P. Spinach freshness detection based on hyperspectral image and deep learning method. Trans.

Chin. Soc. Agric. Eng. 2019, 35, 277–284.
7. Abdalla, A.; Cen, H.; Wan, L.; Rashid, R.; Weng, H.; Zhou, W.; He, Y. Fine-tuning convolutional neural network with transfer

learning for semantic segmentation of ground-level rapeseed images in a field with high weed pressure. Comput. Electron. Agric.
2019, 167, 105091. [CrossRef]

8. Xu, X.; Nie, C.; Jin, X.; Li, Z.; Zhu, H.; Xu, H.; Wang, J.; Zhao, Y.; Feng, H. A comprehensive yield evaluation indicator based on an
improved fuzzy comprehensive evaluation method and hyperspectral data. Field Crops Res. 2021, 270, 108204. [CrossRef]

9. García-Martínez, H.; Flores-Magdaleno, H.; Ascencio-Hernández, R.; Khalil-Gardezi, A.; Tijerina-Chávez, L.; Mancilla-Villa, O.R.;
Vázquez-Peña, M.A. Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant Density, and a Neural Network
Using Multispectral and RGB Images Acquired with Unmanned Aerial Vehicles. Agriculture 2020, 10, 277. [CrossRef]

10. Zabawa, L.; Kicherer, A.; Klingbeil, L.; Töpfer, R.; Roscher, R.; Kuhlmann, H. Image-based analysis of yield parameters in
viticulture. Biosystalks Eng. 2022, 218, 94–109. [CrossRef]

11. Trevisan, R.; Pérez, O.; Schmitz, N.; Diers, B.; Martin, N. High-Throughput Phenotyping of Soybean Maturity Using Time Series
UAV Imagery and Convolutional Neural Networks. Remote Sens. 2020, 12, 3617. [CrossRef]

12. Ji, Y.; Chen, Z.; Cheng, Q.; Liu, R.; Li, M.; Yan, X.; Li, G.; Wang, D.; Fu, L.; Ma, Y.; et al. Estimation of plant height and yield based
on UAV imagery in faba bean (Vicia faba L.). Plant Methods 2022, 18, 26. [CrossRef] [PubMed]

13. Ortenzi, L.; Violino, S.; Pallottino, F.; Figorilli, S.; Vasta, S.; Tocci, F.; Antonucci, F.; Imperi, G.; Costa, C. Early Estimation of Olive
Production from Light Drone Orthophoto, through Canopy Radius. Drones 2021, 5, 118. [CrossRef]

14. Fathipoor, H.; Arefi, H.; Shah-Hosseini, R.; Moghadam, H. Corn forage yield prediction using unmanned aerial vehicle images at
mid-season growth stage. J. Appl. Remote Sens. 2019, 13, 034503. [CrossRef]

15. Kamal, K.C.; Yin, Z.; Wu, M.; Wu, Z. Depthwise separable convolution architectures for plant disease classification. Comput.
Electron. Agric. 2019, 165, 104948.

16. Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236,
111402. [CrossRef]

17. Kamilaris, A.; Prenafeta-Boldu, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [CrossRef]
18. Naik, H.S.; Zhang, J.; Lofquist, A.; Assefa, T.; Sarkar, S.; Ackerman, D.; Singh, A.; Singh, A.K.; Ganapathysubramanian, B. A

real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods 2017, 13, 23.
[CrossRef]

19. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
20. Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sensors 2019, 19,

4363. [CrossRef]
21. Li, X.; Gu, C.; Liu, K.; Liao, X.; Huang, W.; Yang, Z.; Qin, L. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield

and Quality of Late Sowing Rapeseed. Sci. Agric. Sin. 2021, 54, 3726–3736.
22. Fang, Y.; Ren, T.; Zhang, S.; Zhou, X.; Zhao, J.; Liao, S.; Cong, R.; Lu, J. Different effects of nitrogen, phosphorus and potassium

fertilizers on rapeseed yield and nutrient utilization between continuous upland and paddy-upland rotations. Acta Agron. Sin.
2022, 1629, 1–13.

23. Hassanat Ahmad, B.; Esra’a Alkafaween, A. On enhancing genetic algorithms using new crossovers. Int. J. Comput. Appl. Technol.
2017, 55, 202–212. [CrossRef]

24. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015: Med.
Image Comput. Comput.-Assist. Interv. 2015, 9351, 234–241.

25. Ibraheem, N.A.; Hasan, M.M.; Khan, R.Z.; Mishra, P.K. Understanding Color Models: A Review. ARPN J. Sci. Technol. 2012, 2,
265–275.

26. Washburn, J.D.; Mejia-Guerra, M.K.; Ramstein, G.; Kremling, K.A.; Valluru, R.; Buckler, E.S.; Wang, H. Evolutionarily informed
deep learning methods for predicting relative transcript abundance from DNA sequence. Proc. Natl. Acad. Sci. USA 2019, 116,
5542–5549. [CrossRef]

27. Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236.
[CrossRef]

http://doi.org/10.1016/j.rse.2016.10.005
http://doi.org/10.13031/trans.13176
http://doi.org/10.1016/j.compag.2019.105091
http://doi.org/10.1016/j.fcr.2021.108204
http://doi.org/10.3390/agriculture10070277
http://doi.org/10.1016/j.biosystemseng.2022.04.009
http://doi.org/10.3390/rs12213617
http://doi.org/10.1186/s13007-022-00861-7
http://www.ncbi.nlm.nih.gov/pubmed/35246179
http://doi.org/10.3390/drones5040118
http://doi.org/10.1117/1.JRS.13.034503
http://doi.org/10.1016/j.rse.2019.111402
http://doi.org/10.1016/j.compag.2018.02.016
http://doi.org/10.1186/s13007-017-0173-7
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.3390/s19204363
http://doi.org/10.1504/IJCAT.2017.084774
http://doi.org/10.1073/pnas.1814551116
http://doi.org/10.1016/j.patrec.2010.03.014

	Introduction 
	Materials and Methods 
	Experimental Materials and Data Acquisition 
	The Experimental Images Acquisition 
	The Yield Production Acquisition 

	The Classification Processing of Yield Data 
	Image Datasets Enhancement 
	Image Segmentation and Feature Extraction of Rapeseed Field Image 
	Rapeseed Field Image Segmentation Using U-Net Network 
	Silique Image Features Extraction Based on the CNN 
	Stalk Image Features Extraction Based on the Random Forest 

	Prediction Model of Yield Level Based on CNN-LSTM 

	Results and Analysis 
	Classification Performance Test of CNN-LSTM Using Silique Features 
	Classification Performance Testing Using the Silique-Stalk Dual Feature 

	Conclusions 
	References

