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Abstract: The diversity of fungi in different terrestrial and aquatic ecosystems has made it possible
to explore their use as important tools in promoting plant growth and in managing plant diseases
given their high potential to replace the use of synthetic chemical products (fertilizers and pesticides).
Therefore, this review compiles information on the use of filamentous fungi in promoting plant
growth, highlighting the most studied fungal genera for this purpose, such as Trichoderma, Penicillum,
and Aspergillus. In addition, information is compiled on the promotion of forage grass growth using
filamentous fungi, which could be a sustainable and lower-cost alternative in producing pastures to
help raise animals.

Keywords: plants; forage; phytohormones; cattle raising; fungus

1. Introduction

Fungi are a diverse group of heterotrophic eukaryotic organisms characterized by the
absence of phagotrophy and the presence of a cell wall made of cellulose, chitin, or both [1,2].
These organisms have a nucleus, lack chlorophyll (therefore they are not photosynthetic),
reproduce sexually or asexually (by spores), and have branched, filamentous somatic
structures [3–5]. There are microscopic fungi (mycelial fungi or molds) that cannot be
seen with the naked eye and macroscopic fungi (macrofungi) that can be easily seen; they
can be made up of one cell (unicellular) or many cells (multicellular) [6,7]. Armed with
their morphological traits and extremely high metabolic diversity, fungi have conquered
numerous ecological niches and formed a whole world of interactions with other living
organisms [8,9]. Fungal habitats include soil, water, and extreme environments, and
with around 120,000 species of fungi already described, it is estimated that there are 2.2
to 3.8 million species of fungi on our planet [10]. Fungi play irreplaceable roles in the
functioning of the ecosystem, contributing to the decomposition of organic matter and
participating in biological cycles [5,11]. Fungi can adopt different lifestyles, for example,
saprotrophs, symbionts, neutrals, or parasites; some species are cosmopolitan, and others,
due to their ecological plasticity, can adapt to hostile environments [12,13]. They present
various pre-adaptations, including asexuality, the synthesis of pigments such as melanin,
and flexible morphologies, which facilitate their persistence and adaptation to extreme
environmental conditions [14]. Furthermore, under extreme environmental conditions and
low competition, fungi focus on developing abilities that allow them to exploit the natural
or xenobiotic resources available under the constraints to which they are exposed [15].

Agronomy 2022, 12, 3033. https://doi.org/10.3390/agronomy12123033 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy12123033
https://doi.org/10.3390/agronomy12123033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-1454-9833
https://orcid.org/0000-0002-5048-7182
https://orcid.org/0000-0002-1093-4216
https://doi.org/10.3390/agronomy12123033
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy12123033?type=check_update&version=1


Agronomy 2022, 12, 3033 2 of 19

These organisms have positive or negative impacts on all existing life forms and,
therefore, on all ecosystems. The main ecological relationships of fungi are with other
fungi, protozoa, animals, and plants [8]. Within these ecological relationships, fungi have
been responsible for diseases in plants and animals, constituting a constant challenge in
the areas of research, diagnosis, treatment, and control [16]. However, the great diversity
of fungi has also allowed the exploration of their use as tools in the management of plant
diseases (fungal biocontrol agents) given their high potential to replace the use of synthetic
chemical products [17]. Additionally, fungi show remarkable metabolic characteristics
due to a sophisticated genomic network and are important for the production of biotech-
nological compounds that have a great impact on our society in many ways (products
useful in medicine and industry: vitamins, plasma substitutes, anticancer agents, heal-
ing accelerators, secondary metabolites, enzymes, proteins, polysaccharides, and organic
acids) [4,18,19].

In the case of plant growth promotion, the filamentous fungi of the genera Tricho-
derma, Penicillium, and Aspergillus have been extensively studied, since they can colonize
and interact with plant roots through several mechanisms that enhance plant growth
through nutrient absorption, phytohormone synthesis, induction of systemic resistance,
and tolerance to abiotic stress [20–22]. In addition, as biological control agents, they protect
plants against the attack of pathogens by competing for nutrients and space and inhibit-
ing the growth of phytopathogens through the production of antibiotics and hydrolytic
enzymes [21,23,24]. The strains of the genera Trichoderma, Penicillium, and Aspergillus have
been used in various crops, such as tomato, corn, beans, soybean, and lettuce, to mention
a few [25–30]. These fungi are ubiquitous and widely distributed in the soil, so there
is little risk of introducing new unknown strains [31–33]. In addition, they are easy to
isolate from the soil, are stable in various environments, and easily adapt to changing
conditions [32,34,35]. In this context, the most important properties of these filamentous
fungi that could allow their use in environmentally friendly agricultural practices have
been highlighted [36].

However, the selection of appropriate fungal strains for plant growth promotion is
extremely important because some strains of the genera Trichoderma, Penicillium, Aspergillus,
and Fusarium are pathogens of crops and animals [37–39]. Some examples are strains of
T. harzianum and T. simmonsii, which are the causative agents of green mold disease in
edible mushrooms [40], while, in the case of strains of the genus Penicillium, P. allii has been
reported as a pathogen of garlic [41], Penicillium spp. as a pathogen of citrus fruit, apple,
and pear [42,43], P. expansum and P. glabrum as pathogens of onion, garlic, and Iris hollandica,
and P. expansum as a pathogen of Tulipa sp. [44]. In the case of the Aspergillus genus, some
examples are strains of A. flavus, which has been reported as a pathogen of kiwi fruit [45], A.
tubigensis as a pathogen of cotton [46], A. flavus and A. niger as phytopathogens of jojoba [47],
and A. aculeatus as causing bunch rot in grapes [48]. Meanwhile, several species of the
genus Fusarium have been reported to be the causes of diseases in potato, banana, vanilla,
tomato, and acacia, to mention a few examples [49–53]. Regarding pastures, it has been
reported that the Fusarium fujikuroi species complex live in endophytic association with
or cause diseases in these plants [54]. The pathogenic effects of some strains of Fusarium
on pastures has been reported for Cocksfoot cv. Aberystwyth S 26 and timothy cv. Scots,
which were significantly more susceptible to pre-emergence death caused by F. nivale and F.
culmorum than were either perennial ryegrass cv. Gremie or Italian ryegrass cv. RvP. [55].

On the other hand, the use of filamentous fungi to promote the growth of forage
pastures is a use that has not attracted attention, even though several species of filamentous
fungi naturally form associations with pastures—relationships positive, neutral, and nega-
tive [56]. In recent years, the use of filamentous fungi that promote the growth of forage
pastures has been considered as an alternative to the use of synthetic fertilizers in the search
for sustainable agricultural practices [36,57]. It has been reported that the inoculation of
forage pastures with filamentous fungi has helped plants tolerate salinity stress, improved
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the growth of pastures, and improved the quality of pastures as forage, which benefits
animal nutrition [58,59].

2. Interactions of Plants and Fungi

Fungal–plant interactions can be classified as pathogenic, commensalistic, or mutu-
alistic, but in practice few examples fit these descriptions exactly [60]. New molecular
methods are providing insights into the dynamics of fungus–plant interactions, showing
that fungi change their relationships with plants (transitioning between the trophic states
of pathogenesis and symbiosis or between mutualism and parasitism) at different stages
in their cycle of life or in response to changing environmental conditions [61–63]. Under-
standing fungal–plant interactions has important implications for agriculture, including
crop rotation, disease control, and risk management [64].

2.1. Pathogenesis

Fungal pathogens can alter a plant’s ability to survive, reproduce, compete, grow, or
defend itself against herbivores and other parasites [65]. Interactions between plants and
pathogenic fungi are determined by plant and fungal genotypes, the dynamic network of
interactions within the plant biome, and by ecological conditions [66]. Interactions between
plants and phytopathogenic fungi have been viewed from the perspective of pathogenesis
and disease [67]. In such interactions, a susceptible host will support fungal growth
within its tissues, leading to the development of symptoms and disease. Conversely, non-
susceptible (resistant) hosts will block fungal pathogen infection and disease expression [68].
Phytopathogenic fungi invade their hosts through natural openings or wounds, while
others penetrate directly the intact plant surface, either by mechanical force or by enzymatic
degradation of the cuticle [69,70]. The infection structures of phytopathogenic fungi are
specialized, modified hyphae for the invasion of plant tissues; the infection process begins
with adhesion to the cuticle and directed growth of the germ tube on the surface of the
plant, where appressoria are frequently formed (their formation is induced by specific
physical or chemical cues provided by the plant host), the penetrating hyphae accumulating
cytoskeletal components at the tips and secreting a variety of enzymes that degrade the cell
wall [71–73].

2.2. Commensalism

Commensalisms are interactions between two species in which one benefits and the
other experiences no net effect [74,75]. Plant–fungal commensalism refers to the undis-
turbed existence of fungi within plant tissue which does not affect the host, providing no
benefit or support to plant growth in the form of nutrients or secondary metabolites and
without causing disease [76]. An example of commensalism between fungi and plants is
that reported by Creamer and Baucom [77], where the endophytic fungi Undifilum spp. act
as commensals for the wild grasses Astragalus and Oxytropis spp. (crazy grass), giving little
benefit to their hosts under certain environmental conditions.

2.3. Mutualism

Plants establish mutualistic interactions, often described as symbiotic, with both
prokaryotic and eukaryotic organisms [62]. Fungi are eukaryotic organisms of great im-
portance in the terrestrial evolution of plants and have the ability to develop symbiotic
relationships with roots (mycorrhizae). This symbiotic relationship began at the beginning
of the Devonian (400 million years ago), when early bryophyte-like land plants entered into
endophytic associations resembling vesicular–arbuscular mycorrhizae even before roots
evolved [4,78,79]. It has been reported that most plants in natural ecosystems have symbi-
otic associations with mycorrhizal or endophytic fungi [80]. In addition, it is estimated that
95% of vascular plants have mycorrhizae. Mycorrhizal fungi obtain carbohydrates for their
nutrition from plants (up to 20% of the carbon fixed by the plant is transferred to fungi),
and fungi serve as root hairs for plants (the hyphae of the fungus branch out in the soil,
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creating an extensive network of interconnecting hyphae underground), which allows them
to absorb phosphorus, nitrogen, and minerals from the soil [81]. If the interaction between
a plant and mycorrhizal fungi becomes unbalanced, disease symptoms appear in the host
or the fungus is excluded by host-induced defense actions [82,83]. The morphological,
phenological, and physiological characteristics of the symbionts influence mycorrhizal
functioning at the individual scale, while biotic and abiotic factors mediate mycorrhizal
functioning at the rhizosphere, community, and ecosystem scales [84].

While endophytic fungi inhabit host plants at some point in their life and can colonize
internal plant tissues without causing significant damage [85,86], it is worth mentioning
that endophytic associations differ from mycorrhizae mainly by the absence of a localized
interface of specialized hyphae, the absence of a synchronized development between
plants and fungi, and the lack of benefits for plants (nutrient transfer) [87]. However,
plants may indirectly benefit from endophytic fungi by increased resistance to herbivores,
pathogens, or stress, or by other unknown mechanisms [88]. In the case of endophytic fungi,
the symbioses with plants are beneficial or neutral and show attributes similar to those
presented by the interactions of plants with pathogenic fungi [83]. Fungal endophyte–plant
interactions are based on mutual exploitation and the benefits to the organisms involved
are rarely symmetrical; some conflicting selection forces are likely to destabilize these
relationships [89].

3. Plant Growth Promoting Filamentous Fungi

Plant-associated fungi, called rhizosphere fungi, are also found in the rhizosphere,
which use the nutrients released by a host plant and establish plant–soil–rhizospheric
fungal interactions that are of great importance for the functioning of ecosystems and envi-
ronmental sustainability [90]. Fungi resident in the rhizosphere that are useful to plants are
called “plant growth promoting fungi” (PGPF) [91]. The associations between plants and
fungi that promote plant growth are beneficial for plants, and a wide variety of fungi with
these qualities has been observed. According to what has been reported, they are mainly
located in the genera Trichoderma, Penicillium, Aspergillus, Fusarium, Mortierella, Phoma, and
Piriformospora [92–98]. These beneficial fungi have direct and indirect mechanisms that
promote growth (in the organs of underground and aerial plants) and plant protection [99].
The mechanisms involved in the promotion of plant growth by fungi include increased
access to nutrients by the production of organic acids and siderophores (nitrogen, phos-
phorus, potassium, zinc, and iron), the production of plant growth regulators (auxins,
cytokinins, gibberellins, ethylene, and abscisic acid), the production of hydrolytic enzymes
(xylanases, laccases, pectinases, and cellulases), reductions in the amount of ethylene (pro-
duction of the enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACCD)), increase
in water uptake, induction of plant defense mechanisms against pathogens, and relief of
different abiotic stresses in harsh environments (fungi induce a reprogramming of gene
expression in plants) [100–102]. These mechanisms are manifested in plants in improved
germination, seedling vigor, biomass production, root hair development, photosynthetic ef-
ficiency, flowering, plant biochemical composition, yield, and control of foliar and radicular
pathogens [103].

3.1. Trichoderma

Trichoderma is a fungal genus with a cosmopolitan distribution, and its species have
been widely reported as promoters of plant growth and as biological control agents, for
which they have a high biotechnological value [104]. In addition, their species have shown
varying degrees of specificity towards a variety of plant hosts (including monocots and
dicots) [105]. Regarding the promotion of plant growth, it has been reported that some
strains of Trichoderma can colonize and interact with plant roots through various mecha-
nisms that enhance plant growth through the absorption of nutrients and the synthesis of
phytohormones (increased biomass of roots and shoots), disease resistance (stimulation
of host plant defenses), and tolerance to abiotic stress [106–108]. The promotion of plant



Agronomy 2022, 12, 3033 5 of 19

growth by Trichoderma strains can be affected by various factors, such as the type of crop,
growth conditions, inoculum rate, and type of formulation [109]. Meanwhile, Trichoderma
strains, as biological control agents, protect plants against pathogen attack by competing for
nutrients and space and inhibiting the growth of phytopathogens through the production of
antibiotics and hydrolytic enzymes [110,111]. The qualities (promotion of plant growth and
biological control) that these fungi present have been reported for different groups of plants
that include vegetable, herbaceous, ornamental, and forest crops, as shown in Figure 1.
Among the Trichoderma species most used to promote plant growth are T. harzianum, T.
asperellum, T. viride, T. virens, T. longibrachiatum, T. agressivum f. europaeum, T. saturnisporum,
and T. pseudokoningii Rifai. In addition, many strains of the genus Trichoderma are already
commercially available as biopesticides, biofertilizers, and soil amendments; however, it is
increasingly common to find mixtures of several Trichoderma strains on the market due to
their greater consistency in terms of performance [112].
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Figure 1. Species of the genus Trichoderma used in the promotion of plant growth.

3.2. Penicillium

The genus Penicillium includes some species capable of producing gibberellins—
substances that can modulate the growth and development of plants [20]. In addition,
among the plant growth promoting qualities of some Penicillium strains, phosphate solu-
bilization, the production of siderophores, and the production of plant growth regulators
have been reported [113]. As some strains of Penicillium solubilize phosphate, they have
been inoculated in plants that have substrates with phosphorus deficiency, promoting the
growth of plants subjected to these conditions [114]. Some Penicillium strains have been
shown to be growth promoters in plants, such as wheat, sesame, pearl millet, cucumber,
sunflower, lentil, soybean, and quinoa (Figure 2).
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3.3. Aspergillus

Some species of the Aspergillus genus, like other fungal genera, promote plant growth
and protect them from phytopathogens [22]. Among the benefits that some strains of
Aspergillus offer to plants, the extracellular production of phytases has been reported, which
implies the mineralization of phosphorus present in inaccessible organic sources, and the
secretion of organic acids to make phosphorus available from inorganic sources [115]. Some
strains of Aspergillus also produce phytohormones, such as auxins, gibberellins, and other
secondary metabolites that promote plant growth [116]. Similarly, some Aspergillus strains
induce systemic resistance and significantly reduce the stress experienced by plants [117].
Among the Aspergillus species most used to promote plant growth are A. terreus, A. niger, A.
awamori, and A. japonicus (Figure 3).
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3.4. Fusarium

In the case of the Fusarium genus, most of the species have been reported as phy-
topathogens of plants; however, there have been reports that some Fusarium strains promote
plant growth and protect them against phytopathogens even of the same genus [118,119].
Among the Fusarium species most used to promote plant growth are F. equiseti, F. pallidoro-
seum, and F. oxysporum (Figure 4).
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3.5. Other Fungal Genera

Other fungal genera for which plant growth promoting strains have been reported
are Mortierella, Phoma, Piriformospora, Purpureocillium, and Metarhizium (Figure 5). Fungal
strains that produce phytohormones, such as auxins, gibberellins, and volatile organic com-
pounds, promote the growth of host plants [120,121]. These fungi improve the availability
of nutrients, such as phosphorous, nitrogen, potassium, zinc, and iron, to host plants [122].
In addition, these fungi induce systemic resistance in plants and protect them against
phytopathogens [123,124].
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Figure 5. Species of the genera Purpureocillium, Metarhizium, Mortierella, Phoma, and Piriformospora
used in the promotion of plant growth.

3.6. Filamentous Fungi That Promote Plant Growth of Gramineae

The grass family includes about 10,000 species, among which are included economi-
cally important species, such as wheat, corn, rice, barley, oats, rye, common millet, African
millet, teff, cane sugar, and sorghum, among others [125]. Regarding the promotion of
plant growth of grasses by filamentous fungi, it has been reported that strains of the genera
Trichoderma, Penicillium, Aspergillus, Fusarium, Purpureocillium, Metarhizium, Mortierella, and
Phoma promoted plant growth and improved the availability of phosphorus for maize,
wheat, and rice crops mainly (Table 1).
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Table 1. Filamentous fungi that promote the growth of grasses.

Fungal Strains Grasses Benefit References

T. harzianum strain Th3 Wheat (Triticum aestivum L.) Trichoderma inoculation significantly
increased wheat yield [126]

T.
pseudokoningii Rifai Rice

Trichoderma inoculation increased the
availability of phosphorus and zinc, as well

as increased crop yield
[127]

P. radicum (sp. nov.) Wheat (Triticum aestivum L.)
Penicillium inoculation increased wheat yield
in the greenhouse (9%) and in the field (14%),

and increased phosphorus uptake (10%)
[128,129]

P. oxalicum Pearl millet (Pennisetum
glaucum)

P. oxalicum inoculation increased plant
growth and nitrogen, potassium, and

phosphorus uptake compared to controls
under greenhouse conditions

[130]

P. oxalicum I1 Maize
Inoculation with the filamentous fungus

increased the corn yield by 14.47% compared
to the control

[131]

A. awamori strain Wl1 Maize (Zea mays) Aspergillus inoculation promoted the growth
of maize plants [132]

F. pallidoroseum Maize and wheat Fusarium inoculation improved shoot dry
weight and shoot length in all plants [133]

Purpureocillium lilacinum,
P. lavendulum, and

Metarhizium marquandii
Maize

The inoculation of the fungal strains
improved the growth of the plants, and some

strains increased the availability of
phosphorus and nitrogen

[134]

Mortierella elongata Maize (Zea mays) Mortierella inoculation increased height, leaf
area, and plant dry weight of Zea mays [96]

Phoma sp. strains GS6-1 and
GS7-4 Wheat

The inoculation of the fungal strains
promoted plant growth and suppressed root

rot caused by phytopathogens
(Gaeumannomyces graminis var. tritici and

Cochliobolus sativus)

[123]

Phoma sp. Maize (Zea mays) Phoma inoculation promoted plant growth [135]

4. Importance of Pastures for Animal Consumption

Tropical grasslands are ecosystems in which herbaceous plants, generally grasses and
legumes, and woody species, whether shrubs or trees, interact. From the nutritional point
of view, it could well be said that grasses, known as pastures or grasses, constitute the main
source of nutrients for ruminant consumption. Pastures belong to the family of Poaceae
(Gramineae); the word Poa comes from Greek, meaning grasses or forage plants [136].
Poaceae is represented worldwide by 12 subfamilies (Anomochlooideae, Pharoideae,
Puelioideae, Oryzoideae, Bambusoideae, Pooideae, Panicoideae, Aristidoideae, Arundi-
noideae, Micrairoideae, Danthonioideae, and Chloridoideae) with more than 789 genera
and about 11,783 species [137,138]. Forage pastures have evolved to resist periodic de-
foliation and remain vegetative for most of the year [139]. Pastures have two important
functions: (1) to provide ground cover to maintain long-term integrity and (2) to provide a
source of nutrition for wild and domestic livestock [140]. With regard to the first function,
pastures have ecological importance, since they prevent soil erosion, preserving its struc-
ture, regulating its fertility, and hosting many beneficial organisms [141], serving as bedding
for animals and shelter for crops, livestock, arthropods, reptiles, and earthworms [142].

Regarding the second function, pastures increase profitability per hectare in animal
production and guarantee the long-term stability of soil [140]. However, for the second
function to be fulfilled, it is necessary to have an adequate understanding of each species
and variety of grass, and of the changes in the relationships between yield, digestibility,
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and protein content during the growth of these plants, this information being essential for
deciding which species and varieties of pasture to grow [143]. Pastures have become the
main alternative as sources of nutrients for livestock feed [144]. However, to guarantee the
sustainability of livestock farming, it is necessary to consider the following aspects: (1) the
avoidance of deforestation of new areas to be incorporated into livestock and agricultural
activities, (2) the loss of soil fertility due to the excessive extraction of nutrients, and (3) soil
erosion [141].

Therefore, the maintenance and productivity of pastures has become a great challenge
for the sustainable management of environments throughout the world [145], and the limi-
tations that affect the adequate development of pastures must be addressed. For example,
the decrease in the availability of nitrogen, among all nutrients, is considered a limiting
factor for pastures, resulting in serious losses for cattle raising [146]. Another important
nutritional deficiency is that of phosphorus, an element required by plants and very often
a limiting factor in soils, which leads to the production of low-quality pastures [147]. It
is therefore necessary to address the problem of soil fertility [148] with the inclusion of
microorganisms that promote plant growth, together with phosphorus-solubilizing mi-
croorganisms and nitrogen-fixing bacteria, in production programs for pastures intended
for animal consumption [149], the use of microorganisms being made a viable alternative to
excessive fertilizer use in order to reduce the costs and environmental impacts they cause,
such as increasing the risk of soil and water contamination by nitrates [150]. Therefore, it
is of great importance to develop agricultural practices that allow the maintenance of the
production of forage pastures with greater sustainability. In this context, the use of fungal
biofertilizers could be a sustainable alternative [151].

Filamentous Fungi That Promote Plant Growth—A Sustainable Alternative for Pasture Production

Different fungal groups associated with grasses that can act as pathogens, commen-
salists, and mutualists have been reported for several decades, the genetic factors in each
of the two partners showing high variability and a range of effects on plant fitness [56].
Furthermore, the natures of these relationships can be modified by biotic and abiotic fac-
tors [152]. Regarding fungi that form associations with grasses, endophytic fungi of leaves,
endophytic fungi of roots, and mycorrhizae have been reported [153]. Some of these fungi
confer benefits to their grass hosts, such as (1) resistance to grazing herbivores (by promot-
ing a level of jasmonic acid that is antagonistic to the salicylic acid pathway in the plant),
(2) resistance to nematodes, (3) resistance to pathogenic fungi, (4) higher photosynthetic
rates, (5) drought tolerance, (6) protection against extreme environmental fluctuations
caused by climate change, and (7) persistence in the field (Figure 6) [153–156]. Most of
the fungi associated with grasses belong to the Ascomycota division. These fungi grow
intercellularly and systemically in the aerial parts of grasses, and the asexual symbionts of
this division are vertically transmitted to grasses [157]. Among the dominant fungal taxa
are Acremonium, Alternaria, Cladosporium, Epicoccum, Beauveria, Metarhizium, and Penicillium,
which have been reported in many grasses and locations [158,159].

An example of such a positive association is that reported for Vicia villosa forage,
where, when inoculated by the arbuscular mycorrhizal fungi Diversisporaspurca, Funneli-
formismosseae, and Rhizophagusintraradices and the endophytic fungus Serendipitaindica, it
was found that there was an improvement in plant growth performance and root mor-
phology. Furthermore, arbuscular mycorrhizal fungi significantly elevated concentrations
of chlorophyll a and b, carotenoids, and total chlorophyll, as well as leaf sucrose, which
consequently led to a significantly higher accumulation of glucose and fructose in the roots,
providing carbon sources for the symbionts, which positively influenced soil fertility [160].
Another example is the inoculation of white clover (Trifolium repens) with an arbuscular
mycorrhiza (Rhizophagus intraradices) and a rhizobium (Rhizobium trifolii), where it was
reported that the inoculation with the rhizobium significantly stimulated the coloniza-
tion of roots by R. intraradices, revealing a cooperative interaction between the arbuscular
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mycorrhiza and the rhizobium which partially magnified the positive effects of nitrogen
metabolites (aspartate and proline) and relevant enzymes (asparagines synthase, nitrate
reductase, and glutamate synthase) for white clover nitrogen assimilation [161].
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On the other hand, with respect to inoculation with filamentous fungi to promote the
growth of forage pastures, reports are scarce; however, it was found in the studies available
that species of the genera Aspergillus and Trichoderma have been used for this purpose. In
the case of the Aspergillus genus, it has been reported that inoculation with Aspergillus
aculeatus helped perennial ryegrass (Lolium perenne) plants to tolerate salinity stress; in
addition, the inoculated plants showed a higher growth rate and forage quality [58]. Re-
garding the genus Trichoderma, the species T. harzianum is the one that predominates in
commercial (Trichozam®, Zamorano Biological Control Laboratory and FINTRAC, Teguci-
galpa, Honduras and Tricosave®, Labiofam S.A., La Habana, Cuba) and non-commercial
inocula [162–165]. The effects of inoculation with Trichoderma strains in pastures have been
positive in terms of promoting plant growth and control of phytopathogens (Table 2). An
inoculum of four strains of T. atroviride promoted the growth of perennial ryegrass and
controlled diseases caused by Rhizoctonia solani, Sclerotinia trifoliorum, Fusarium culmorum,
and Pythium ultimum [166]. In addition, Trichoderma strains have been inoculated individu-
ally or in combination with bacteria and arbuscular mycorrhizal fungi. The combination
of T. harzianum + Azospirillum sp. used to inoculate Marandú grass (Brachiaria brizantha)
and Guinea grass (Panicum maximum) improved the root development and percentage of
dry matter of these plants with respect to the controls. However, the best treatment for
promoting the growth of these plants was inoculation with Azospirillum sp. [165]. This same
effect was found for the combination of T. harzianum + Bradyrhizobium sp. used to inoculate
Hybrid Tifton 85 (Cynodon dactylon), where the promotion of grass growth due to this
combination was better than that due to the control treatments, though it was not the best
treatment [164]. When T. harzianum (Trichozam®) was combined with vesicular–arbuscular
mycorrhizae (Mycoral®, Mycoral Ltda., Cali, Colombia) to promote the growth of hybrid
Brachiaria cv. Mulato, the result was not positive, since the inoculum was associated with
the lowest production of dry matter compared to the control treatment [163]—a result that
may have been due to the mycoparasitism that some strains of Trichoderma present against
some mycorrhizal fungi [167].

Although this review has dealt with the role of filamentous fungi on the growth of
pastures, it should not be thought that only these plants are susceptible to inoculation
with fungal bioformulations, since other species present in grasslands can benefit from
rhizospheric fungal activity. The study by Osorio et al. [168] suggests that woody species
respond positively to dual inoculation with Rhizoglomus fasciculatum (Thaxt.) and Mortierella
sp., with improvement in the absorption of phosphorus and promotion of the growth of
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these plants in the nursery, presumably reflecting better development of the plants in
the field. As future working hypotheses concerning other important plant species for
grasslands, and following the conclusions of Antony et al. [169], it could be said that
the conservation of rhizospheric fungi that regulate the growth rates of trees and the
development of fungal bioformulations, with the aim of stimulating the growth rates of
woody species and regulating nutrient cycles, constitutes an emerging opportunity in the
management of the woody components of grasslands and thus the promotion of carbon
storage in a changing environment.

Table 2. Species of the genus Trichoderma used in the promotion of pasture growth.

Trichoderma Pastures Benefit References

Four strains of T. atroviride Perennial ryegrass

The inoculation increased the dry
weight of shoots and roots and
controlled four phytopathogens

(Rhizoctonia solani, Sclerotinia trifoliorum,
Fusarium culmorum, and Pythium

ultimum)

[166]

T. viride Raygrass (Lolium perenne) Trichoderma inoculation increased green
matter and dry matter [170]

T. harzianum (Trichozam®) Brachiaria híbrido cv. Mulato

The inoculation produced the highest
dry matter production (145.0

kg/ha/day), but it was not significantly
different from the control (131.7

kg/ha/day)

[163]

T. harzianum + Azospirillum sp.

Marandú grass (Brachiaria
brizantha)

Guinea grass (Panicum
maximum)

Trichoderma inoculation produced
greater root development and a higher
percentage of dry matter compared to

the control

[165]

T. atroviride Prairie grass (Bromus
wildenowii Kunth)

Trichoderma inoculation had no effect on
seed yield; however, it significantly

reduced root infection by
Gaeumannomyces graminis var. tritici

[171]

Mixture of T. atroviride The sterile hybrid grass
Miscanthus × giganteus

Trichoderma inoculation increased the
chlorophyll content in the leaves as
well as the digestibility of the dry

material for cattle

[142]

Tricosave® (T. harzianum) +
Bradyrhizobium sp.

Hybrid Tifton 85 (Cynodon
dactylon)

Trichoderma inoculation increased grass
biomass compared to the control [164]

T. harzianum Rifai
Lolium perenne L.

Lolium multiflorum Lam.
(perennial ryegrass)

Trichoderma improved the growth of
both grasses and increased the lengths

of the perennial ryegrass leaves
[162]

5. Perspectives and Conclusions

This information indicates that there is a field of study still to be explored, since there
are great knowledge gaps regarding the positive interactions between forage pastures
and filamentous fungi, which present alternatives to chemical fertilization, which has the
disadvantage of contaminating soil and bodies of water, as well as reducing soil fertility. In
addition, the price of chemical fertilizers has recently increased due to the war between
Russia and Ukraine. In this regard, the filamentous fungi that promote pasture growth
could be a sustainable and lower-cost resource for the production of pastures, helping in
the raising of animals without affecting soil fertility (Figure 6), several of these filamentous
fungi being naturally associated with forage pastures.
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However, more in vitro, greenhouse, and field studies are needed to test other fungal
genera that promote plant growth on the great diversity of forage grasses used for animal
consumption. For these studies, the following recommendations are to be considered:

(1) Use fungal isolates from the rhizospheres of the grasses to be fertilized to produce
inocula, looking for fungal strains associated with particular forage grasses.

(2) Use inocula consisting of a single fungal strain, of combinations of several fungal
strains, and of combinations of fungal strains with other beneficial microorganisms.

(3) Use different forms of inocula and inoculation.
(4) Consider the efficiency of a fungal inoculum with respect to germination and plant

growth.
(5) Determine the effects of external factors on the viability of fungal inocula.
(6) Determine the nutritional contents of forage grasses inoculated with fungal strains.
(7) Consider the production costs of the fungal inocula.
(8) Establish quality standards for fungal bioformulations for forage grasses.
(9) Train farmers in the use of fungal bioformulations for forage grasses.
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