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Abstract: Excessive nitrogenous fertilization in years resulted in larger nitrogen and profit losses.
This problem can be reduced by using need-based and time-specific nitrogen management. Therefore,
a field experiment was carried out during the Kharif season of 2019 and 2020 in order to evaluate the
impact of precision nitrogen management on the phenology, yield and agrometeorological indices of
hybrid maize genotypes at the Agronomy Research Farm, FoA Wadura, Sopore, SKUAST-Kashmir.
The experiment was carried out in split-plot design consisting of maize hybrids (Shalimar Maize
Hybrid-2 Vivek-45 and Kanchan-517) as main plot treatments and precision nitrogen management
(T1: Control, T2: Recommended N, T3: 25% N as basal ≤ LCC 3@20 kg N ha−1, T4: 25% N as
basal ≤ LCC 3@30 kg N ha−1, T5: 25% N as basal ≤ LCC 4@20 kg N ha−1, T6: 25% N as basal ≤ LCC
4@30 kg N ha−1, T7: 25% N as basal ≤ LCC 5@20 kg N ha−1 and T8: 25% N as basal ≤ LCC
5@30 kg N ha−1) as sub-plot treatments. Results demonstrated that maize hybrids showed a non-
significant difference in attaining different phenophases during both years. However, Shalimar
Maize Hybrid-2 demonstrated higher grain (62.35 and 60.65 q ha−1) and biological yield (170.26 and
165.86 q ha−1), a higher number of days to attain different phenological stages in comparison to
Vivek-45 and Kanchan-517 thereby achieved higher heat units, PTUs, HTUs, PTI. The application
of nitrogen through LCC ≤ 5@30 kg N ha−1 noted higher grain yield (61.27 and 59.13 q ha−1) and
biological yield (171.30 and 166.13 q ha−1) during 2019 and 2020 respectively. Higher values of
Growing degree days (GDD), Heliothermal units (HTU), Photothermal units (PTU), Phenothermal
index (PTI), heat use efficiency (HUE) and radiation use efficiency (RUE) were observed in the
application of nitrogen through LCC ≤ 5@30 kg N ha−1 and required the highest number of days to
reach different phenophases than other treatments during crop growing seasons of 2019 and 2020.
The results demonstrated that Nitrogen application based on LCC ≤ 5@30 proved effective and
should be adopted in maize hybrids especially in Shalimar Maize Hybrid-2 to attain higher yield
under the temperate climate of Kashmir Valley.
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1. Introduction

Maize (Zea mays L.), the most vibrant food grain crop is grown under distinct soil and
climatic conditions. Temperature is considered one of the detrimental factors for maize
production. Temperature-based agro-meteorological indices viz. growing degree days
(GDD), heliothermal units (HTU), photothermal units (PTU), phenothermal index (PTI) and
heat use efficiency (HUE) show a linear relationship between phenophasic development
with base and optimum temperature [1]. Being a thermophilic plant, it is highly sensitive
to lower temperatures at all developmental stages [2]. An optimal average temperature of
20–22 ◦C is required for the entire growing season of maize crop. Maize is a very demanding
crop due to its high need for nutrients from the soil, particularly nitrogen, phosphorus
and potassium. Nitrogen is a vital part of amino acids, the principal components of
proteins, as well as a part of the DNA molecule; therefore it is crucial for cell division and
reproduction [3]. Nitrogen is the principal ingredient for maximizing maize production.
However, excessive nitrogen application can harm the ecosystem and has the potential to
leak into subterranean water. It is critical to manage nitrogen to fit the crop’s needs [4]. For
attaining self-sufficiency in food grain production and safeguarding food security, efficient
and effective nutrient management has to play a pivotal role in achieving this goal. Precise
and responsive nitrogen fertilizer management in respect of maize crops is crucial from
both economic as well as environmental points of view. Excessive fertilization in years
resulting from static and blind fertilizer recommendations leads to huge nutrient and profit
losses especially nutrient nitrogen. This problem can be reduced by offering smart and
precise time-specific advice [5]. Fertilizer management at the proper dose and at the right
time is critical to the efficient use of fertilizers [6]. According to a new analysis of yield
patterns in numerous long-term studies, maize yields are either stagnant or decreasing.
There are also reports of large yield gaps between research trials and farmer’s fields, which,
if correctly adjusted, may increase present maize production enormously. This has mostly
been linked to poor agro-management techniques, with incorrect nutrient management
playing a key role. A new set of nutrient management concepts like Site-specific nutrient
management (SSNM) is aiming to meet the nutrient requirements of crops grown in the
field in a smart, accurate and precise way. It aims for use of indigenous sources of nutrients
like crop wastes, residues and manures, applying nutrient fertilizers at optimum and
precise rates and at critical growth stages to tighten the gap between a high-yielding
crop’s nutrient requirements and the indigenous nutrient supply [7]. Tools like Leaf
Color Chart (LCC) have considerably aided in predicting the timing and rate of nutrient
demand and numerous studies have indicated increased nutrient usage efficiency and yield
enhancement. A leaf color chart is a collection of color swatches that may be compared to
a leaf in similar lighting circumstances [8]. The International Rice Research Institute and
the Philippine Rice Research Institute in collaboration created a leaf color chart that guides
farmers to regulate nitrogen application in rice fields based on crop demand. The technique
is low-cost, making it accessible for use to even the most resource-constrained farmers [9].
LCC being a simple and non-destructive technique provides quick and reliable monitoring
of leaf greenness by the visual appearance of spectral characteristics of leaves and might
be an efficient guide to farmers for efficient and time-specific application of N. To assess
efficient and smart Nitrogen management in a range of conditions, including soil, climate,
variety, management and so on, particularly in rice, the LCC is widely used [10]. Blanket
recommendation of fertilizer application is widely used without taking into consideration
the spatial and temporal soil variability and crop demand leading to very low and large
yield gaps.
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The developmental change and biomass accumulation in crops are majorly determined
by the climatic variables during the crop growing period, which primarily affects the heat
unit requirement of the crop from one developmental phase to another [11,12], however,
no significant research was conducted to find the phenological changes due to varied
heat unit requirement in different maize hybrids with the application of nitrogen through
LCC for efficient utilization of weather parameters. Therefore, the study was carried out
to analyze the yield and phasic development of hybrid maize genotypes in response to
the nitrogen application through LCC by assessing the agro-meteorological indices and
thermal efficiencies.

2. Materials and Methods
2.1. Site Description

A field experiment was carried out at Crop Research Farm of Agronomy, Faculty
of Agriculture, Wadura Sopore, SKUAST-Kashmir during Kharif 2019 and 2020, located
between 34◦21′ N latitude and 74◦23′ E longitude having an altitude of 1590 masl. The
experimental area had unvaried topography with good drainage facilities. The experi-
mental trial (Table 1) was silty clay loam in texture and medium in organic carbon (0.66%)
and the available nitrogen (320.5 kg ha−1), phosphorus (19.75 kg ha−1) and potassium
(170.20 kg ha−1) were medium with neutral pH (7.1).

Table 1. Physico-chemical parameters of the soil of experimental trial.

Characteristics Status Range Method Used

A. Physical Texture International Pipette Method [13]

Coarse sand 20.00
Silt (%) 50.00

Clay (%) 30.00
Texture Silty-clay–loam

B. Chemical Analysis

PH 7.1 Neutral Blackman’s glass method [14]
OC 0.66 (%) Medium Black and Walkely method [15]

N 320.5 (kg ha−1) Medium Potassium permanganate
method [16]

P 19.75 (kg ha−1) Medium Extraction with 0.5 M
NaoHCO3 [17]

K 170.2 (kg ha−1) Medium Flame photometer method [14]

2.2. Weather Conditions

The weather was found variable throughout the entire growing period of the crop. The
maximum temperature varied from 23.36 to 31.93 ◦C and 23.14 to 33.94 ◦C and minimum
temperature from 9.57 to 18.29 ◦C and 6.71 to 18.96 ◦C and the average maximum relative
humidity ranged from 64.43 to 91.00 percent and 59.71 to 87.71 percent, whereas mean
minimum relative humidity varied from 38.57 to 70.43 percent and 36.57 to 75.29 percent
during the crop growing period of 2019 and 2020, respectively (Figures 1 and 2). The crop
received 371.5 mm and 303.0 mm of precipitation during the crop growth seasons of 2019
and 2020, respectively.
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Figure 1. Mean meteorological data during maize crop growth season of 2019. Where, SSH means
Sunshine hours, and RH1 and RH2 means maximum and minimum relative humidity.
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Figure 2. Mean meteorological data during maize crop growth season of 2020. Where, SSH means
Sunshine hours, RH1 and RH2 means maximum and minimum relative humidity.

2.3. Experimental Design and Treatment Details

The experiment consisted of two factors with three maize hybrids as main plot treat-
ments viz. (Shalimar Maize Hybrid-2, Vivek-45 and Kanchan-517) and eight rates of
nitrogen application viz. (T1: Control, T2: Recommended N, T3: 25% N as basal ≤ LCC
3@20 kg N ha−1, T4: 25% N as basal ≤ LCC 3@30 kg N ha−1, T5: 25% N as basal ≤ LCC
4@20 kg N ha−1, T6: 25% N as basal ≤ LCC 4@30 kg N ha−1, T7: 25% N as basal ≤ LCC
5@20 kg N ha−1 and T8: 25% N as basal ≤ LCC 5@30 kg N ha−1) as sub-sub-plot treat-
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ments, replicated thrice and set up in split plot design. Vivek-45 maize hybrid was released
by VPKS Almora, India whereas the Kanchan-517 is a private maize hybrid released by
Kanchanganga Seed Company in Hyderabad. Further, the Shalimar Maize Hybrid-2 is a
local hybrid released by SKUAST-Kashmir for the temperate climate of Kashmir.

2.4. Crop Management Practices

As per the main plot and sub-plot treatments, the experimental field was prepared.
Each main plot of maize hybrids was divided into eight sub-plots to accommodate eight
nitrogen management practices. Two ploughings were given with a tractor to obtain
desirable depth and were followed by leveling. Replication borders, main-plot and sub-
plot bunds were made manually. At sowing time, phosphorous and potassium were applied
as basal dose @60 and 40 kg P2O5 and K2O ha−1 respectively. By employing Leaf Color
Chart (LCC), nutrient nitrogen was supplied as per the treatments and in Recommended
N treatment, that is, 150 kg ha−1, half of the nitrogen was applied as basal dose, and the
rest of the half was applied at the knee-high and tasseling stages of the crop in two equal
splits. The nutrients, nitrogen, phosphorous and potassium were supplied as Urea, DAP
(Diammonium Phosphate) and MOP (Muriate of Potash), respectively. Before the seed
sowing operation, it was ensured that sufficient moisture for the germination of the seed is
present in the soil. Presoaked and treated seed with Bavistin + Captan 1:1 ratio@2 kg−1 seed
for Turcicum leaf blight and Metalaxyl 35 SD@4 g Kg−1 for brown strip downy mildew
was sown in the lines with a spacing of 75 cm × 20 cm. After sowing the lines were
closed with soil and slightly pressed so as to have good contact of the seed with the soil.
The irrigation was applied in the field, as and when needed by the crop. Pre-emergence
herbicide application in the form of atrazine (0.75 kg a.i. ha−1) at 3 DAS followed by
manual weeding at 21 DAS was carried out for complete removal of weeds. A solution of
chlorpyriphos (0.05%) was sprayed once on the standing crops as a prophylactic measure
to control insect pests. Net plot area was taken after removing the two border rows for
eliminating the border effect in the experimental plots. For yield assessment, maize crop
samples were collected from the net plot area and the harvesting was carried out manually
by hand and hand shelling was carried out for the separation of grains from cobs.

2.5. LCC-Based Nitrogen Application

Leaf Color Chart, being easy to handle, is a favorable and non-destructive tool for
the determination of the need-based nitrogen demand of rice. LCC comprised six color
strips (from yellowish green to dark green) fabricated with veins matching the leaves
of maize crops. LCC was developed by International Rice Research Institute (IRRI) in
collaboration with Philippine Rice Research Institute (Manila). LCC was employed in the
experimental field for real-time nitrogen management with five green strips ranging from
yellow-green to dark green with each shade designated by 1, 2, 3, 4 and 5. Starting from
21 days after sowing till starting of the tasseling stage, LCC readings were taken at every
four-day interval. In each plot from the sampling area, 10 healthy plants were taken at
random. From each plant, the top-most completely expanded leaf was selected and the
LCC readings were noted by keeping the middle part of the leaf on the chart, and the leaf
color was determined by blocking the sunlight with the body to avoid errors in leaf color
reading (Figure S1). Nitrogen was applied as per the treatment whenever the green color of
more than 5 out of 10 leaves was determined to be equal to or below a set critical limit of
LCC score. The final split application of Nitrogen was carried out by 78 DAS coinciding
with the tasseling stage (Table 2).
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Table 2. Treatment wise splits and quantity of nitrogen applied in maize crop during 2019 and 2020.

Treatments No. of Splits

2019 2020

Shalimar Maize
Hybrid-2 Vivek-45 Kanchan-517

Shalimar
Maize

Hybrid-2
Vivek-45 Kanchan-517

Control - - - - - - -
Recommended N 3 150 150 150 150 150 150

LCC ≤ 3@20 kg N ha−1 4 80 80 80 80 80 80
LCC ≤ 3@30 kg N ha−1 3 90 90 90 90 90 90
LCC ≤ 4@20 kg N ha−1 5 100 100 100 100 100 100
LCC ≤ 4@30 kg N ha−1 4 120 120 120 120 120 120
LCC ≤ 5@20 kg N ha−1 6 120 120 120 120 120 120
LCC ≤ 5@30 kg N ha−1 5 150 150 150 150 150 150

2.6. Biometric Crop Observations

The readings for the number of days to reach different phenophases were noted when
the plants crossed 50 percent of that particular phenophase. Grain yield was recorded
after separating cobs from stalk and husk. From each net plot area, all the cobs were
sun-dried and the grains were separated by hand shelling. The grain yield was regulated
to 15 percent moisture content and was taken in kg ha−1 and then expressed as q ha−1

(quantil per hectare). For recording biological yield, the weight of the bundle taken from
each net plot after harvesting was noted after sun drying for 3–4 days and was accordingly
converted into q ha−1.

2.7. Computation of Agrometeorological Indices and Thermal Use Efficiencies

The weather parameters viz. daily max. and min. temperature, sunshine hours, day
length and average relative humidity was assessed and employed for the calculation of
agrometeorological indices viz. growing degree days (GDD), heliothermal units (HTU),
photothermal units (PTU) and phenothermal index (PTI) at different phenophases of the
crop using the formulas given below. GDD, HTU, PTU and PTI were measured from the
date of sowing to each phenological stage with a base temperature of 10 ◦C [18].

GDD = [(TMax + TMin)/2] − Tb (1)

where:
TMax = Daily max. Temperature

TMin = Daily min. Temperature

Tb = base temperature (a temperature below which no development occurs for a given
plant species).

HTU = (GDD × SSH) (2)

where, SSH (hour) is the daily sunshine hours

PTU = (GDD × DL) (3)

DL (hour) is the day length

PTI = (Heat units consumed between two phenophases)/(Duration between two
phenophases)

(4)

HUE = (Seed yield (kg/ha))/(Accumulated heat units (◦C)) (5)

RUE = (Seed yield (kg/ha))/(Accumulated heat units (◦C)) (6)

For obtaining HUE and RUE, grain yield was divided by the respective accumulated
heat units.
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2.8. Statistical Analysis

Crop phenology and grain yield data were analyzed as per the analysis of variance
using the statistical procedure of the split-plot design. The extent of the relationship be-
tween yield (Grain/biological) with different indices was computed by means of regression.
Regression of yield with respective indices was worked out in the form of a regression
equation to find the response of yield (Grain/biological) determined by various indices.
The statistical procedure was done employing SPSS software, version 27.0.

3. Results
3.1. Phenology

Data from the experiment revealed significant variation in maize hybrids with vary-
ing rates of N application for the completion of different growth stages (Table 3). The
developmental rate of plant growth quantitatively depends on the prevailing temperature.
Shalimar Maize Hybrid-2 took the highest number of days (128 and 126) when compared
to Vivek-45 and Kanchan-517 for completing different phenophases.

Nitrogen application in maize hybrids through LCC≤ 5@30 and 20 kg N ha−1 required
the highest number of days to reach the knee-high stage, tasseling stage, silking stage and
harvesting in comparison to other treatments during both years of experimentation. How-
ever, LCC≤ 4@20 kg N ha−1 treatment was found statistically at par with the application of
N through LCC ≤ 3@30 and 20 kg N ha−1 and recommended Nitrogen treatment required
a higher number of days to reach different phenophases as compared to control during
2019 and 2020. Furthermore, LCC ≤ 5@30 and 20 kg N ha−1 consumed the highest value
of heat units (GDD) in comparison to other LCC treatments and recommended nitrogen
treatment at all phenological stages. Control treatment recorded the lowest number of days
to complete different phenophases.

Table 3. Effect of precision nitrogen management through LCC on days taken to different
phenophases of different hybrid maize genotypes.

Treatments
Knee-High Stage Tasseling Stage Silking Stage Harvest

2019 2020 2019 2020 2019 2020 2019 2020

Hybrids

Shalimar Maize Hybrid-2 41 39 74 73 80 78 128 126
Vivek-45 39 37 73 71 79 77 127 125
Kanchan-517 37 36 72 71 78 76 125 124
SEm± 0.49 0.39 0.42 0.40 0.65 0.61 0.90 0.96
C.D. (5%) NS NS NS NS NS NS NS NS

Nitrogen management

Control 36 35 69 68 74 72 121 120
Recommended N 38 37 73 71 79 77 126 124
LCC ≤ 3@20 kg N ha−1 37 36 70 69 77 75 125 123
LCC ≤ 3@30 kg N ha−1 38 36 71 70 77 75 125 124
LCC ≤ 4@20 kg N ha−1 39 38 74 72 79 77 127 125
LCC ≤ 4@30 kg N ha−1 40 38 74 73 80 79 129 127
LCC ≤ 5@20 kg N ha−1 40 39 74 73 81 79 129 127
LCC ≤ 5@30 kg N ha−1 43 42 78 76 85 83 132 130
SEm± 0.40 0.36 0.80 0.76 0.86 0.80 0.83 0.78
C.D. (5%) 1.22 1.09 2.41 2.29 2.58 2.40 2.49 2.34
Interaction NS NS NS NS NS NS NS NS
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3.2. Agrometeorological Indices
3.2.1. Growing Degree Days

The growing degree day concept assesses the relationship between growth and tem-
perature by accounting for the heat unit requirement for the completion of different de-
velopment stages of the crop. Varying rates of N application showed significant variation
in heat unit accumulation among the maize hybrids at different phenological stages dur-
ing both years (Table 4). Shalimar Maize Hybrid-2 consumed more heat units or GDD
(2721.95 and 2790.15 ◦C) in comparison to Vivek-45 and Kanchan-517 to reach different
phenological stages. Nitrogen application of nitrogen through LCC ≤ 5@30 kg N ha−1

consumed the highest number of heat units (2791.2 and 2869.9 ◦C), whereas control treat-
ment consumed the lowest heat units. LCC ≤ 5@20 kg N ha−1 and LCC ≤ 4@30 kg N ha−1

treatments were statistically at par in consuming heat units but significantly superior to
LCC ≤ 4@20 kg N ha−1, LCC ≤ 3@30 and 20 kg N ha−1 and recommended N treatment
during both the years of experimentation.

Table 4. Effect of precision nitrogen management through LCC on GDD (◦C) of different hybrid
maize genotypes.

Treatments
Knee-High Stage Tasseling Stage Silking Stage Harvest

2019 2020 2019 2020 2019 2020 2019 2020

Hybrids

Shalimar Maize Hybrid-2 735.25 773.15 1515.75 1587.3 1684 1715.35 2721.95 2790.15
Vivek-45 695.4 729.4 1492 1538.55 1629.5 1688.05 2690.7 2771.15
Kanchan-517 652.3 705.65 1468.3 1538.55 1601.5 1662.3 2645.95 2751.15
SEm± 9.26 7.83 7.32 8.88 6.66 8.29 9.91 5.99
C.D. (5%) 27.80 23.50 21.97 26.65 19.98 24.88 29.72 17.88

Nitrogen management

Control 614.8 659.9 1372.05 1437.05 1492 1538.45 2543.45 2653.55
Recommended N 680.55 729.4 1492 1539.65 1642 1688.05 2668.45 2763.74
LCC ≤ 3@20 kg N ha−1 652.3 690.04 1423.3 1488.8 1592 1634.51 2645.9 2731.4
LCC ≤ 3@30 kg N ha−1 673.15 705.55 1445.3 1513.3 1610.9 1639.3 2666.95 2751.15
LCC ≤ 4@20 kg N ha−1 695.83 734.1 1512.75 1569.55 1645.5 1688.05 2690.7 2771.15
LCC ≤ 4@30 kg N ha−1 715.3 750.4 1515.95 1589.3 1664 1730.1 2733.45 2809.15
LCC ≤ 5@20 kg N ha−1 739.3 773.1 1556.3 1626.85 1695.6 1743.1 2749.51 2816.42
LCC ≤ 5@30 kg N ha−1 783.3 846.1 1618.5 1673.92 1784 1847 2791.2 2869.9
SEm± 12.12 13.97 16.74 15.11 22.11 23.43 18.82 17.18
C.D. (5%) 36.47 41.92 50.24 45.34 66.34 71.29 56.46 51.54
Interaction NS NS NS NS NS NS NS NS

3.2.2. Heliothermal Units (HTU)

Differential rates of N application of maize hybrids recorded significant differences
in heliothermal units at various phenophases (Table 5). The three maize hybrids differed
significantly with respect to heliothermal units during both crop growth seasons of 2019
and 2020. The highest numbers of heliothermal units (20,614.52 and 22,877.02 ◦C day hour)
were noted under Shalimar Maize Hybrid-2 in comparison to Vivek-45 and Kanchan-517 at
different phenological stages.

Data demonstrated that nitrogen application through LCC≤ 5@30 kg N ha−1 achieved
the maximum number of heliothermal units (21,212.18 and 23,705.37 ◦C day hour), whereas
control treatment recorded the lowest number of heliothermal units, during 2019 and 2020,
respectively. The number of heliothermal units observed in LCC ≤ 5@20 kg N ha−1 and
LCC ≤ 4@30 kg N ha−1 treatments were statistically at par but significantly superior to
LCC ≤ 4@20 kg N ha−1, LCC ≤ 3@30 and 20 kg N ha−1 and recommended N treatment
during crop growth season of 2019 and 2020.
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Table 5. Effect of precision nitrogen management through LCC on Heliothermal (◦C day hour) units
of different hybrid maize genotypes.

Treatments
Knee-High Stage Tasseling Stage Silking Stage Harvest

2019 2020 2019 2020 2019 2020 2019 2020

Hybrids

Shalimar Maize Hybrid-2 5737.64 6666.93 11,785.98 13,707.75 12,697.36 14,811.7 20,614.52 22,877.02
Vivek-45 5342.10 6268.90 11,461.83 13,236.3 12,441.95 14,561.12 20,474.74 22,707.91
Kanchan-517 5059.38 5999.99 11,216.18 13,211.99 12,400.95 14,312.35 20,206.59 22,524.21
SEm± 77.29 63.18 90.76 95.16 76.07 73.32 46.33 51.87
C.D. (5%) 231.87 189.56 272.28 285.50 228.21 219.98 138.99 155.63

Nitrogen management

Control 4737.38 5616.69 10,479.28 12,449.5 11,437.19 13,170.82 19,328.12 21,622.01
Recommended N 5365.60 6228.69 11,429.13 13,234.66 12,537.4 14,532 20,377.64 22,666.85
LCC ≤ 3@20 kg N ha−1 5098.52 5867.26 10,871.98 12,851.15 12,285.28 14,032.81 20,206.21 22,316.39
LCC ≤ 3@30 kg N ha−1 5307.26 5999.13 11,071.81 13,051.13 12,431.13 14,073.94 20,366.96 22,563.49
LCC ≤ 4@20 kg N ha−1 5340.53 6268.83 11,716.75 13,439.27 12,564.12 14,532 20,475.04 22,679.65
LCC ≤ 4@30 kg N ha−1 5425.94 6408.02 11,741.54 13,661.45 12,546.56 14,887.62 20,675.76 23,001.68
LCC ≤ 5@20 kg N ha−1 5603.60 6666.50 12,054.06 13,984.22 12,731.65 15,154.62 20,813.75 23,061.21
LCC ≤ 5@30 kg N ha−1 6159.43 7429.16 12,539.44 14,411.13 13,746.95 16,110.01 21,212.18 23,705.37
SEm± 108.63 81.45 132.22 125.66 166.08 174.40 132.22 138.58
C.D. (5%) 325.90 244.36 396.67 376.98 498.26 523.22 396.67 415.76

Interaction NS NS NS NS NS NS NS NS

3.2.3. Photothermal Units (PTU)

The results demonstrated significant variation at different growth stages in photother-
mal unit accumulation among hybrids under varied N applications (Table 6). The highest
number of photothermal units (39,601.65 and 40,549 ◦C day hour) were observed under
Shalimar Maize Hybrid-2 in comparison to Vivek-45 and Kanchan-517, during the crop
growing season of 2019 and 2020, respectively. Application of nitrogen through LCC
≤ 5@30 kg N ha−1 recorded the highest number of photothermal units (40,581.63 and
41,688.17 ◦C day hour) during both years. The number of photothermal units recorded
by LCC ≤ 5@20 kg N ha−1 and LCC ≤ 4@30 kg N ha−1 treatments were found at par
but significantly superior to LCC ≤ 4@20 kg N ha−1, LCC ≤ 3@30 and 20 kg N ha−1 and
recommended N treatment during both the years, whereas control treatment recorded the
lowest number of photothermal units.

Table 6. Effect of precision nitrogen management through LCC on Photothermal (◦C day hour) units
of different hybrid maize genotypes.

Treatments
Knee-High Stage Tasseling Stage Silking Stage Harvest

2019 2020 2019 2020 2019 2020 2019 2020

Hybrids

Shalimar Maize Hybrid-2 10,185.42 10,698.08 21,397.84 22,458.71 23,853.86 24,201.87 39,601.65 40,549.25
Vivek-45 9622.25 10,081.04 21,050.63 21,682.79 23,068.83 23,870.72 39,125.47 40,250.95
Kanchan-517 9015.43 9747.143 20,704.5 21,682.79 22,659.62 23,493.29 38,432.42 39,938.44
SEm± 110.04 116.18 104.32 140.81 132.48 108.93 135.08 95.38
C.D. (5%) 330.13 348.56 312.98 422.43 397.45 326.81 405.24 286.14

Nitrogen management

Control 8506.99 91,22.238 19,358.25 20,279.17 21,122.24 21,734.71 36,977.52 38,542.81
Recommended N 9416.77 10,082.98 21,050.63 21,727.03 23,245.79 23,848.21 38,794.82 40,143.32
LCC ≤ 3@20 kg N ha−1 9025.88 9538.883 20,081.34 21,009.45 22,537.94 23,091.81 38,466.98 39,673.59
LCC ≤ 3@30 kg N ha−1 9314.38 9753.288 20,391.74 21,355.19 22,805.51 23,159.48 38,773.01 39,960.45
LCC ≤ 4@20 kg N ha−1 9628.20 10,147.95 21,343.39 22,148.97 23,295.34 23,848.21 39,118.29 40,250.95
LCC ≤ 4@30 kg N ha−1 9897.61 10,373.28 21,388.54 22,427.67 23,557.25 24,442.28 39,739.81 40,802.9
LCC ≤ 5@20 kg N ha−1 10,229.69 10,687.08 21,957.84 22,957.56 24,004.61 24,625.94 39,973.29 40,908.5
LCC ≤ 5@30 kg N ha−1 10,838.52 11,696.2 22,835.42 23,625.15 25,284.4 26,093.8 40,581.63 41,688.17
SEm± 178.42 134.77 172.32 200.76 217.40 199.72 196.25 183.30
C.D. (5%) 535.27 404.32 516.98 602.28 652.21 599.18 588.76 549.92

Interaction NS NS NS NS NS NS NS NS
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3.2.4. Phenothermal Index (PTI)

Degree days per growth day generally expressed as phenothermal index showed
an increasing trend from knee high to flowering stage and thereafter showed decreasing
trend till maturation suggesting a decline in daily thermal consumption towards senes-
cence. The phenothermal index for consecutive phonological stages of maize hybrids
varied significantly under different rates of N application (Table 7). The highest phenother-
mal index was observed in Shalimar Maize Hybrid-2 at different phenological stages in
comparison to Vivek-45 and Kanchan-517 hybrids. However, the application of nitrogen
through LCC ≤ 5@30 kg N ha−1 showed the highest phenothermal index, whereas the
lowest phenothermal index was found under control treatment at all phenophases. The
phenothermal index values recorded by LCC ≤ 5@20 kg N ha−1 were significantly supe-
rior to LCC ≤ 4@30 kg N ha−1, LCC ≤ 4@20 kg N ha−1, LCC ≤ 3@30 and 20 kg N ha−1

treatments and recommended N treatment during 2019 and 2020, respectively.

Table 7. Effect of precision nitrogen management through LCC on Phenothermal index (◦C day
day−1) of different hybrid maize genotypes.

Treatments
Knee-High Stage Tasseling Stage Silking Stage Harvest

2019 2020 2019 2020 2019 2020 2019 2020

Hybrids

Shalimar Maize Hybrid-2 18.16 19.67 20.46 21.86 20.80 21.89 21.27 22.07
Vivek-45 17.97 19.46 20.55 21.67 20.88 21.96 21.23 22.15
Kanchan-517 17.40 19.53 20.34 21.81 20.72 21.77 21.10 22.24
SEm± 0.05 0.06 0.04 0.03 0.01 0.02 0.01 0.02
C.D. (5%) 0.15 0.18 0.11 0.09 0.04 0.06 0.03 0.07

Nitrogen management

Control 17.03 18.94 19.85 21.28 20.17 21.28 20.99 22.19
Recommended N 17.62 19.75 20.44 21.55 20.90 21.97 21.19 22.14
LCC ≤ 3@20 kg N ha−1 17.44 19.53 20.22 21.63 20.79 21.86 21.18 22.15
LCC ≤ 3@30 kg N ha−1 17.86 19.38 20.24 21.65 20.70 21.76 21.13 22.26
LCC ≤ 4@20 kg N ha−1 17.93 20.04 20.54 21.64 20.74 21.80 21.19 22.11
LCC ≤ 4@30 kg N ha−1 18.06 19.62 20.46 21.89 20.72 22.17 21.27 22.13
LCC ≤ 5@20 kg N ha−1 17.74 19.80 20.44 21.87 20.91 22.04 21.18 22.04
LCC ≤ 5@30 kg N ha−1 18.17 20.22 20.80 21.81 21.01 22.19 21.16 21.95
SEm± 0.10 0.11 0.09 0.07 0.03 0.05 0.05 0.04
C.D. (5%) 0.29 0.32 0.26 0.22 0.10 0.15 0.14 0.12
Interaction NS NS NS NS NS NS NS NS

3.2.5. Heat Use Efficiency (HUE) and Radiation Use Efficiency (RUE)

The data on heat use efficiency on the basis of grain and biological yield presented in
Table 8 demonstrates that the three maize hybrids differed significantly with respect to heat
use efficiency and radiation use efficiency on grain and biological yield basis during both
years. The highest heat use efficiency of 2.29 and 2.17 kg/ha/◦C day on a grain yield basis
and 6.26 and 5.94 kg/ha/◦C day on a biological yield basis was recorded under Shalimar
Maize Hybrid-2 in comparison to Vivek-45 and Kanchan-517 at different phenophases.
Further, the highest radiation use efficiency of 3.45 and 3.56 kg/ha/◦C day was recorded
under Shalimar Maize Hybrid-2 in comparison to Vivek-45 and Kanchan-517 hybrids.
Data demonstrated that nitrogen application through LCC ≤ 5@30 kg N ha−1 observed
the highest heat use efficiency of 2.20 and 2.06 (kg/ha/◦C day) on a grain yield basis
and 6.14 and 5.79 (kg/ha/◦C day) on the basis of biological yield, whereas lowest heat
use efficiency on grain and biological yield basis was recorded under control treatment
during 2019 and 2020, respectively. The heat use efficiency on grain and biological yield
basis recorded in LCC ≤ 5@20 kg N ha−1 and LCC ≤ 4@30 kg N ha−1 treatments were
found statistically at par but significantly superior to LCC ≤ 4@20 kg N ha−1, LCC ≤ 3@30
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and 20 kg N ha−1 and recommended N treatment during crop growth season of 2019
and 2020. The data demonstrated that nitrogen management through recommended N
treatment recorded the highest radiation use efficiency of 3.55 and 3.71 kg/ha/°C day,
during 2019 and 2020, respectively. The radiation use efficiency recorded by applying
nitrogen through LCC ≤ 5@30 and 20 kg N ha−1 and LCC ≤ 4@30 kg N ha−1 treatments
were found superior to LCC ≤ 4@20 kg N ha−1 and LCC ≤ 3@30 and 20 kg N ha−1 during
2019 and 2020. LCC ≤ 3@20 kg N ha−1 recorded higher HUE and RUE than other LCC
scores and the lowest HUE and RUE were obtained with LCC ≤ 5@30 and 20 kg N ha−1.
However, the lowest radiation use efficiency of 3.22 and 3.34 kg/ha/◦C day was recorded
under control treatment.

Table 8. Effect of precision nitrogen management through LCC on heat use efficiency on grain and
biological yield basis and radiation use efficiency of different hybrid maize genotypes.

Treatments
Heat Use Efficiency Grain
Yield Basis (kg/ha/◦C day)

Heat Use Efficiency Biological
Yield Basis (kg/ha/◦C day)

Radiation Use Efficiency
(kg/ha/◦C day)

2019 2020 2019 2020 2019 2020

Hybrids

Shalimar Maize Hybrid-2 2.29 2.17 6.26 5.94 3.45 3.56
Vivek-45 1.93 1.79 5.59 5.24 3.40 3.52
Kanchan-517 1.66 1.60 5.39 4.94 3.28 3.39
SEm± 0.03 0.04 0.05 0.16 0.01 0.01
C.D. (5%) 0.10 0.11 0.15 0.17 0.03 0.04

Nitrogen management

Control 1.60 1.45 4.87 4.48 3.22 3.34
Recommended N 1.95 1.81 5.74 5.36 3.55 3.71
LCC ≤ 3@20 kg N ha−1 1.95 1.81 5.62 5.26 3.41 3.56
LCC ≤ 3@30 kg N ha−1 1.97 1.83 5.68 5.32 3.38 3.52
LCC ≤ 4@20 kg N ha−1 2.07 1.93 5.92 5.56 3.41 3.50
LCC ≤ 4@30 kg N ha−1 2.06 1.93 5.88 5.54 3.36 3.45
LCC ≤ 5@20 kg N ha−1 2.12 2.00 5.97 5.64 3.33 3.43
LCC ≤ 5@30 kg N ha−1 2.20 2.06 6.14 5.79 3.34 3.44
SEm± 0.04 0.05 0.07 0.08 0.04 0.03
C.D. (5%) 0.13 0.14 0.22 0.23 0.09 0.08

Interaction NS NS NS NS NS NS

3.3. Yield

Data shown in Table 9 demonstrated that the yield of maize hybrids was governed
significantly by variable rates of N application. Shalimar Maize Hybrid-2 achieved the
highest grain yield of 62.35 and 60.65 q ha−1 as compared to Vivek-45 with grain yield
of 51.92 and 49.69 q ha−1 and Kanchan-517 with grain yield of 46.42 and 43.92 q ha−1

during 2019 and 2020, respectively. Grain yield revealed a significant difference at variable
LCC scores. It was noticed that nitrogen management through LCC ≤ 5@30 kg N ha−1

recorded maximum grain yield of 61.27 and 59.13 q ha−1 during 2019 and 2020, respectively.
Similarly, LCC≤ 5@20 and LCC≤ 4@30 and 20 kg N ha−1 treatments recorded significantly
higher grain yield in comparison to treatments with LCC ≤ 3@30 and 20 kg N ha−1 and
recommended N treatment during the crop growth seasons of 2019 and 2020. Furthermore,
nitrogen application through LCC ≤ 3@30 and 20 kg N ha−1 was found to be statistically
at par with recommended N treatment but superior to control treatment during both years
of experimentation.

Data revealed that significant variation was observed in three hybrids with respect to
biological yield. Shalimar Maize Hybrid-2 recorded the highest biological yield of 170.26
and 165.86 q ha−1 as compared to Vivek-45 (150.47 and 145.16 q ha−1) and Kanchan-517
(141.61 and 135.81 q ha−1), during 2019 and 2020, respectively. Shalimar Maize Hybrid-2
also revealed significantly higher dry matter than Vivek-45 and Kanchan-517 contributing
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to higher biological yield. Nitrogen management through LCC significantly impacted the bi-
ological yield during the crop growing season of 2019 and 2020. Data revealed that the high-
est biological yield of 171.30 and 166.13 q ha−1 was achieved with LCC ≤ 5@30 kg N ha−1,
being superior over LCC ≤ 5@20 kg N ha−1, LCC ≤ 4@30 and 20 kg N ha−1, LCC ≤ 3@30
and 20 kg N ha−1 and recommended N treatment during 2019 and 2020, respectively.
However, the lowest biological yield of 123.94 and 118.76 q ha−1 was noted under control
treatment during 2019 and 2020 respectively.

Table 9. Effect of real-time nitrogen management through LCC on yield of different hybrid
maize genotypes.

Treatments
Grain Yield (q ha−1) Biological Yield (q ha−1)

2019 2020 2019 2020

Hybrids

Shalimar Maize Hybrid-2 62.35 60.65 170.26 165.86
Vivek-45 51.92 49.69 150.47 145.16
Kanchan-517 46.42 43.92 141.61 135.81
SEm± 1.16 1.29 3.18 3.13
C.D. (5%) 4.45 3.85 9.60 9.49

Nitrogen management

Control 40.65 37.50 123.94 117.76
Recommended N 52.10 49.95 153.25 148.08
LCC ≤ 3@20 kg N ha−1 51.70 49.56 148.75 143.58
LCC ≤ 3@30 kg N ha−1 52.46 50.32 151.58 146.41
LCC ≤ 4@20 kg N ha−1 55.62 53.48 159.22 154.04
LCC ≤ 4@30 kg N ha−1 56.32 54.17 160.75 155.58
LCC ≤ 5@20 kg N ha−1 58.38 56.24 164.13 158.96
LCC ≤ 5@30 kg N ha−1 61.27 59.13 171.30 166.13
SEm± 0.91 0.78 1.02 1.02
C.D. (5%) 2.62 2.34 2.93 2.86
Interaction S S NS NS

3.4. Regression Analysis

According to the regression coefficient grain yield was influenced by agrometeorologi-
cal indices and thermal use efficiencies (Figures 3 and 4). The coefficient of determination
for grain yield and biological yield ranged from 0.950 to 0.953 and 0.951 to 0.954 with
agrometeorological indices respectively. The coefficient of determination was highly sig-
nificant for grain yield and biological yield with GDD (0.953 and 0.952), HTU (0.950 and
0.954) and PTU (0.953 and 0.951). The deviations in GDD could be attributed to the degree
of 95%, respectively. Further, agrometeorological indices viz. HTU and PTU, both recorded
variability of 95% with grain yield as well as with biological yield. The coefficient of
determination for grain yield with heat use efficiency and radiation use efficiency was 0.99
and 0.05. The variations in HUE and RUE could be explained to the extent of 99% and 5%,
respectively. Moreover, the coefficient of determination for biological yield with heat use
efficiency (0.99) and radiation use efficiency (0.07) was also found significant. Variations in
heat use efficiency and radiation use efficiency could be explained to the extent of 99% and
7%, respectively. Heat use efficiency accounted for maximum variability of 99% for both
grain and biological yield.
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Figure 3. Linear regression equation to find the effect of agrometeorological indices on grain yield of hybrid maize. 
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Figure 3. Linear regression equation to find the effect of agrometeorological indices on grain yield of
hybrid maize.
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Figure 4. Linear regression equation to find the effect of agrometeorological indices on biological
yield of hybrid maize.

4. Discussion

The differential behavior of maize hybrids to heat unit requirement (GDD), HTU, PTU
and PTI may be attributed to their genetic constitution. Furthermore, it may be due to the
extended crop growth period of Shalimar Maize Hybrid-2 in the field in comparison to
Vivek-45 and Kanchana-517 leading to higher GDD, HTU, PTU and PTI. Also, variation
in values of heat use efficiency and radiation use efficiency is attributed to the higher
yield of Shalimar Maize Hybrid-2 in comparison to Vivek-45 and Kanchan-517. Our
results are in close conformity with the research work of Majumder et al. (2016) [19];
Deshmukh et al. (2021) [20]; Thavaprakash et al. (2007) [21] and Mittal (1996) [22]. A
higher number of days required to reach different growth stages in LCC ≤ 5@30 and
20 kg N ha−1 treatment may be attributed to the higher application of nitrogen that had
increased the crop growth cycle and thermal time which in turn increased the GDD of the
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crop [23–26]. Furthermore, higher values of HUE and RUE in LCC 5 treatments might be
due to the synchronized and increased nitrogen application in a greater number of splits in
LCC 5 which accounted for higher heat use efficiency and radiation use efficiency.

For performing need-based Fertilizer applications in cereal crops, especially rice, LCC
is a cheap and practically efficient diagnostic tool that has grown significantly in importance
for boosting crop productivity and nitrogen recovery. The results revealed that the Shalimar
Maize Hybrid-2 variety required a maximum of days to attain different phenological
stages and performed better in comparison to Vivek-45 and Kanchan-517, which might
possibly be due to variations in their genetic composition. Similar inferences were made
by Bhat et al. (2015) [27] while assessing the impact of LCC-based N management on
rice varieties. Statistically, insignificant variation was observed in maize hybrids viz.
Shalimar Maize Hybrid-2, Vivek-45 and Kanchan-517 in attaining various phenophases,
Shalimar Maize Hybrid-2 took more days to reach different phenophases. Shalimar Maize
Hybrid-2 consumed more heat units (GDD) to attain different growth phases in comparison
to other hybrids, during both years of experimentation. The relationship between crop
growth duration and temperature is direct and linear and was explained on the basis
of heat unit requirement or the Growing Degree Days concept [18]. The difference in
heat unit requirement and days taken to attain different phenophases could be attributed
to the genetic makeup of hybrids [28]. Varietal variations for GDD to complete various
phenophases have also been observed by Naik et al. (2019) [29], Majumder et al. (2016) [19];
Rajesh et al. (2015) [30]. Due to a timely and balanced supply of nitrogen, there were
significant differences between the various N treatments using LCC scores. These variations
led to delayed vegetative growth characteristics. When nitrogen was applied based on
LCC ≤ 5@30 kg N ha−1, the crop reached maturity within a greater number of days. In the
control case, crop plants transitioned over to the reproductive phase much earlier than LCC
score-based treatments, due to the unavailability of nitrogen and thus took the minimum
number of days to attain maturity [31–33].

The observed variable yield among the three maize hybrids may be due to their
inherent genetic variability. Jyothsna et al. (2021) [34]; Moharana et al. (2017) [35];
Bhat et al. (2015) [36]; Bhavana et al. (2020) [37] and Fayaz et al. (2021) [38] also no-
ticed significant variation while assessing LCC based nitrogen management in different
crop varieties. Nitrogen management through LCC ≤ 5@30 and 20 kg N ha−1 treatments
revealed significantly higher grain yield due to an increased amount of nitrogen application
with more splits in comparison to other treatments [34]. Also, it fulfilled the demand for
crops at different phenophases, thus reducing denitrification and volatilization losses as
nitrogen was applied in more splits, adding more grain yield. The improved availability of
nitrogen at critical stages increased photosynthate accumulation towards grain coupled
with efficient and improved yield contributing characters. The findings are in accordance
with Mathukia et al. (2014) [39] and Bhat et al. (2022) [40]. Higher biological yield with
nitrogen application through LCC 5 over other LCC scores and recommended N treatment
may be due to their favorable impact on the vegetative growth phase [34,36,41].

Nitrogen supply had a significant effect on yield under LCC score-based N manage-
ment, which could be due to nitrogen impact on the growth in terms of growth character-
istics and yield contributing characters, which was in contrast to the control, which had
reduced growth characteristics and poor development of yield parameters, resulting in
lower yield. In comparison to other treatments, the yield was higher under treatment LCC
5@30 kg N ha−1 because timely accessibility of nitrogen increased leaf area, which directly
improved dry matter production and subsequently improved growth in yield metrics.
Increased grain yield with higher LCC scores highlights the significance of nitrogen in
maximizing yield; as a result, the soil’s insufficient natural N supply was unable to meet
the crop’s expanding demand. An increase in the application of N has been linked to
a large yield improvement as reported by other researchers also [42,43]. Additionally,
the nitrogen need for rice crops changes as the crop grows (from the vegetative to the
mature phase), with the highest requirement seen during times of rapid growth. Thus,
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applying nitrogen during critical growth stages promotes improved crop development
and increases crop yield [44]. The results are in close confirmation with the findings of
Ahmad et al. (2016) [45], who observed that application of nutrients at critical stages while
considering the inherent capability of soil is important for profitable crop production. The
regression analysis demonstrated that GDD accounted for maximum variability which was
the foremost agrometeorological index expressing a large effect on grain yield and marking
a variation of 95% on both grain and biological yield. Furthermore, heat use efficiency con-
tributed maximum impact on grain and biological yield and contributed a variation of 99%
while radiation use efficiency accounted for a minimum contribution of 5% and 7% towards
grain yield and biological yield. Fariba et al. (2009) [46]; Pazhanisamy et al. (2020) [47] and
Bisma et al. (2020) [48] also found similar results.

5. Conclusions

Based on the above results, application of nitrogen through LCC 5 in Shalimar Maize
Hybrid-2 required a higher number of days to attain various phonological stages and
recorded higher values of accumulated heat units, HTU, PTU, PTI, heat use efficiency and
radiation use efficiency and ultimately higher grain and biological yield. This depicts that
nitrogen management based on Leaf Color Chart was responded to positively by maize
hybrids. Moreover, the assessment of agrometeorological indices revealed the facts related
to the impact of temperature and solar radiation on the phenology of crop, yield and heat
energy consumption in maize hybrids. The regression analysis further stated the impact of
different agrometeorological indices on the grain and biological yields of maize. Thus, it
can be concluded that Nitrogen management based on LCC ≤ 5@30 kg N ha−1 should be
adopted in maize hybrids especially in Shalimar Maize Hybrid-2 to attain higher yield in
the temperate climate of Kashmir valley.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12122981/s1. Figure S1: Different LCC shades used
for nitrogen application in maize varieties.
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