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Abstract: Winter wheat is one of the most important food crops in China, and it is of great significance
to ensure national food security. The accurate extraction of wheat-growing areas is a prerequisite for
growth assessments, stress monitoring, and yield assessments. In this study, GF-6 (8 m resolution)
and Sentinel-2 (10 m resolution) remote sensing images were used to create datasets for the accurate
extraction of winter-wheat growing areas by improving the U-Net model. First, U-Net was used as
the base network to extract features, and then the convolutional block attention module (CBAM)
was embedded in the basic convolutional units in the coding and decoding layers of the network to
enhance or suppress the features to improve the feature-expression capability of the model, and to
finally complete the end-to-end winter-wheat planting-area extraction. SegNet, DeepLabV3+, and
U-Net-CBAM were selected as the comparison models, and they were tested using the test set in the
Sentinel-2 dataset. The precision of the U-Net-CBAM model trained on the GF-6 dataset was 84.92%,
the MIoU was 77.1%, the recall was 88.28%, the overall precision (OA) was 91.64%, and the F1 was
86.45%. For training on Sentinel-2 dataset, those values were: 90.06% for precision, 83.18% for MIoU,
90.78% for recall, 93.93% for OA, and 90.52% for F1, which showed significantly better results than
those of the comparison models, indicating that U-Net-CBAM improved the accuracy of winter-wheat
area extraction. It also showed that the segmentation performance of the training and test sets from
different datasets was much lower than the segmentation performance from the same dataset.

Keywords: GF-6; Sentinel-2; U-Net; convolutional block attention module; winter wheat

1. Introduction

Winter wheat is one of the most important grain crops in China, and according to
the National Bureau of Statistics (data.stats.gov.cn, 2019 (accessed on 24 August 2021)), the
production in 2019 was as high as 133,596,300 tons, and the planted area was
23,772,768 thousand hectares, accounting for 14.29% of the total grain crop. Therefore,
timely and accurate information on the planted area and its spatial distribution is important
for food security, grain-yield estimation, and agricultural management and policy [1]. Due
to the complexity of the crop cultivation structure and its environmental impact on China,
there are many difficulties in crop identification and planting-area extraction. Traditional
methods of obtaining winter-wheat planting areas, such as statistical surveys and agro-
nomic forecasts, are not only time-consuming and laborious, but they are also susceptible
to subjective human factors [2]. Satellite remote sensing technology has the characteristics
of wide coverage and multiband and multitemporal imaging, which can greatly improve
the efficiency and make up for the shortage of traditional agricultural monitoring, while
obtaining timely information on the crop conditions during a large growing season [3], and
it is a good data source for obtaining information on winter-wheat cultivation.

With the development of remote sensing technology, remote sensing images have
gradually become the main data source for extracting crop-planting information [4–7]. The
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pixel-by-pixel classification of remote sensing images is an effective method for obtaining
the spatial distribution information of crops in large areas [8–10], and the key to improving
pixel-based classification accuracy is to extract more effective pixel features from remote
sensing images [11–13]. Many scholars have carried out a lot of research work on this.
Li et al. [14] used Sentinel data with multiple fertility periods and extracted the winter-
wheat area in Fugou County, Henan Province, using random forests (RFs). Ge et al. [15]
used the HJ-1A satellite as a data source and extracted the winter-wheat area in Shuyang
County, Jiangsu Province, using the normalized difference vegetation index (NDVI) den-
sity segmentation method. Bazzi et al. [16] used Sentinel-1 SAR time series data and
extracted rice-growing areas in southern France using a decision tree classification method.
Yang et al. [17] used the SPOT 5 satellite as the data source and five supervised classification
methods to extract crop areas in southern Texas. Mansaray et al. [18] combined Sentinel-
1A, Landsat 8, and Sentinel-2A data to extract rice-growing areas in Jiaxing City, Zhejiang
Province, using RF. All of the above studies successfully extracted crop-planting informa-
tion and spatial distribution data. However, as they mainly used traditional supervised
and unsupervised classification methods, they were only able to extract low-level features
with poor discriminatory ability, and the results were error-prone regarding the identifica-
tion of the edge pixels of winter-wheat planting areas, which often led to unsatisfactory
classification results [19–21].

Deep convolutional neural networks have achieved great success in many fields,
and they have demonstrated excellent performance in many applications [22,23]. This
trend has also attracted many researchers to apply deep convolutional neural networks
to the field of the semantic segmentation of remote sensing images. Wu et al. [24] used a
deep learning model based on long short-term memory (LSTM) to detect and extract rice
fields in Taiwan from Sentinel-1 SAR images. Sun et al. [25] used Landsat 8 image data
to extract the crop acreage of North Dakota, and the results outperformed the extraction
results obtained via RF. Huang et al. [26] proposed an improved SegNet model based on
Sentinel-2 data, replacing the convolution in SegNet with a depth-separable convolution
for peanut acreage extraction. Ji et al. [27] used multitemporal GF-2 remote sensing image
data for crop classification using 3D convolutional neural networks. Zhao et al. [28] used
images taken by the DJI Phantom 4 UAV platform equipped with high-resolution digital
and multispectral cameras as a data source to extract areas of fallen rice on Qixing Farm,
Sanjiang Administration, Heilongjiang Province, using the U-Net model. Du et al. [29]
input images taken by the WorldView-2 satellite into the DeepLabV3+ model to achieve
crop classification and extraction, and the experimental results show that the segmentation
accuracy of this method is better than those obtained via maximum likelihood classification
(MLC), a support vector machine (SVM), or RF. However, there are still some challenges in
extracting the crop-planting areas from high-resolution remote sensing images, including:
(1) high-resolution remote sensing images have complex spatial feature relationships and a
large amount of redundant information, and it is difficult to reflect the main information of
the content by directly extracting the features of the whole image; (2) the influence of the
spatial resolution and data sources of training sets on the classification accuracy has not yet
been fully considered; and (3) the sizes of winter-wheat planting areas are different, and
the sizes of winter-wheat pixel blocks in remote sensing images are not the same.

To address the above challenges, this study introduces CBAM to the U-Net model
to remove redundant information by focusing on the useful features of the image in
channel and spatial dimensions and places more attention on informative features to
further improve the classification performance so as to effectively improve the extraction
accuracy of winter-wheat planting areas, which provides a theoretical and technical method
for the extraction of other crop-planting areas.
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2. Study Area and Data Sources
2.1. Study Area

The study area is located in Zhengding County and Zengcun Town, Gaocheng District,
Shijiazhuang City, Hebei Province, China, with an area of about 581.24 km2 and a central
geographic location of 114.35◦ E, 38.15◦ N (Figure 1). This area belongs to the temperate
continental semi-humid monsoon climate zone, with four distinct seasons and sufficient
light for crop growth. According to The Shijiazhuang Statistical Yearbook 2019 [30], the main
crops include winter wheat and summer corn. The Shijiazhuang Gaocheng District and
Zhengding county comprise one of the major grain-producing areas for winter wheat in
Hebei Province, and the study area selected for the extraction of the winter-wheat growing
area is representative.
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Figure 1. Geographic location of the study area using a Sentinel-2 remote sensing image.

2.2. Growth Cycles of Winter Wheat in the Study Area

The developmental period of winter wheat can be generally divided into nine periods,
including seed sowing, seedling emergence, tillering, wintering, reviving, elongation,
heading, milk-ripening, and maturing, starting on October 1 and ending on June 30 of
the following year [31]. The winter-wheat phenology calendar for Shijiazhuang City was
obtained from the website of the Ministry of Agriculture and Rural Affairs of the People’s
Republic of China (http://www.moa.gov.cn/ (accessed on 24 August 2021)), and the
specific growth cycles are shown in Table 1. When winter wheat is in the milk-ripening
stage, the growth is good, other crops have not yet been sown or have just been sown, and
there are obvious differences between winter wheat and other species, which can reduce
misclassifications caused by “same species, different spectrum” and “different species,
same spectrum”.

Table 1. Primary winter-wheat growth cycles in the study area.

Growth Cycle Time Photo Growth Cycle Time Photo

Seed sowing Early October
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Table 1. Cont.
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2.3. Remote Sensing Imagery
2.3.1. Sentinel-2 Data

The Sentinel-2 satellite Level-1C data products used in this study have been taken
from the data center of the European Space Agency (ESA) (https://scihub.copernicus.eu/
dhus/#/home (accessed on 26 October 2021)). Sentinel-2 is a second-generation Earth
observation satellite operated by ESA with two satellites, 2A and 2B. Sentinel-2A covers
13 spectral bands with a spatial resolution range of 10–60 m and a revisit period of 10 days.
The experiment used a remote sensing image, taken on 28 May 2019 by Sentinel-2A, that
covered the whole study area with less cloud cover. The parameters of the Sentinel-2A
satellite are shown in Table 2.

Table 2. Parameter information for the Sentinel-2A and GF-6 satellite sensors.

Satellite Name Band Number Band Name Spectral Range (µm) Spatial Resolution (m)

Sentinel-2A

B1 Coastal Aerosol 0.433–0.533 60
B2 Blue 0.458–0.523 10
B3 Green 0.543–0.578 10
B4 Red 0.65–0.68 10
B5 Vegetation Red Edge 0.698–0.713 20
B6 Vegetation Red Edge 0.733–0.748 20
B7 Vegetation Red Edge 0.773–0.793 20
B8 NIR 0.785–0.9 10

B8A Narrow NIR 0.855–0.875 20
B9 Water Vapor 0.935–0.955 60
B10 SWIR-Cirrus 1.36–1.39 60
B11 SWIR 1.565–1.655 20
B12 SWIR 2.1–2.28 20

GF-6

P Panchromatic 0.45–0.90 2
B1 Blue 0.45–0.52 8
B2 Green 0.52–0.60 8
B3 Red 0.63–0.69 8
B4 NIR 0.76–0.90 8

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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The acquired Sentinel-2A images were preprocessed using the Sentinel Application
Platform (SNAP) and Environment for Visualizing Images (ENVI) software, first with the
help of the Sen2cor plug-in (http://step.esa.int/main/snap-supported-plugins/sen2cor/
(accessed on 26 October 2021)) provided by ESA for atmospheric correction. Then, the
SNAP was used to resample the images, and finally, ENVI software was used to perform
band synthesis, image mosaic, and cropping in the B2–B4 bands to obtain Sentinel-2A
images covering the study area with a spatial resolution of 10 m.

2.3.2. GF-6 Data

The GF-6 satellite was officially placed into service on 21 March 2019. GF-6 is a
low-orbiting optical satellite equipped with a panchromatic/multispectral high-resolution
(PMS) camera and a wide field-of-view (WFoV) camera. This study used GF-6 PMS images
with a revisit period of 4 days, an observation width of 90 km, a spatial resolution of 2 m in
the panchromatic band, and a spatial resolution of 8 m in the multispectral band. The GF-6
PMS satellite parameters are shown in Table 2.

One remote sensing image from GF-6, taken on 6 May 2019 and covering the whole
study area, was used for the experiment. This GF-6 image has less cloud cover and
better clarity. Preprocessing was performed using ENVI software, including atmospheric
correction, geometric correction, image cropping, and band synthesis. After preprocessing,
a preprocessed GF-6 image containing four channels (blue, green, red, and near-infrared),
with a spatial resolution of 8 m, was obtained.

3. Methodology
3.1. Convolutional Block Attention Module

The convolutional block attention module (CBAM) (Figure 2) is an attention mecha-
nism module that combines spatial and channel dimensions [32–34]. The channel attention
module uses the global average pooling and global maximum pooling methods to obtain
two aspects of global information when compressing the spatial dimension of the feature
map, and then it feeds this into a shared model consisting of a hidden layer and a multilayer
perceptron to obtain two features, respectively. After adding these two features, the channel
attention graph M_c is obtained by a sigmoid function (δ). Finally, the feature vector is
output by summing over each element in combination with the channel attention graph.
The expression of the channel attention module is as follows:

M_c(F) = δ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)Agronomy 2022, 12, x FOR PEER REVIEW 6 of 14 
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Figure 2. Structural diagram of the convolutional block attention module.

The spatial attention module performs global maximum pooling and global average
pooling based on the feature channels, joins them to generate valid feature descriptors,
convolves them with a 7 × 7 convolution kernel, and then performs a sigmoid operation to

http://step.esa.int/main/snap-supported-plugins/sen2cor/
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generate spatial attention features to obtain the spatial attention map M_s. The expression
of the spatial attention module is as follows:

M_s(F) = δ(f(7×7)([AvgPool(F); MaxPool(F)]) (2)

M_CBAM(F) = M_c(F) + M_s(F) (3)

3.2. Structure of the U-Net-CBAM

U-Net [35] is a deep learning network architecture widely used for semantic segmen-
tation tasks (Figure 3). U-Net employs a typical encoder–decoder structure to generate
feature maps with a small resolution but condensed high-dimensional semantic repre-
sentations after successive convolution and downsampling by the encoder. Then, the
decoder performs successive convolutions and upsampling to the original size to obtain
the segmentation result.

Agronomy 2022, 12, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 2. Structural diagram of the convolutional block attention module. 

3.2. Structure of the U-Net-CBAM 

U-Net [35] is a deep learning network architecture widely used for semantic segmen-

tation tasks (Figure 3). U-Net employs a typical encoder–decoder structure to generate 

feature maps with a small resolution but condensed high-dimensional semantic represen-

tations after successive convolution and downsampling by the encoder. Then, the decoder 

performs successive convolutions and upsampling to the original size to obtain the seg-

mentation result. 

In our experiments for this study, the CBAM network structure was fused with U-

Net, and the convolutional attention module was used to identify important features in 

image channels and spatial regions, paying more attention to the boundary features of the 

winter-wheat planting area to ensure that the features of each pixel point in the winter-

wheat planting area would be learned. CBAM was placed after each double-convolution 

of the encoder and decoder to highlight the features in the feature map generated by the 

deep convolution of the target features and to improve the recognition performance of the 

model. 

 

Figure 3. Structural diagram of the U-Net-CBAM network. 

4. Training of U-Net-CBAM and Evaluation Metrics 

The U-Net-CBAM model was implemented using Python 3.6 on a Windows 10 oper-

ating system and a PyTorch framework. The comparison experiments were performed on 

a graphics workstation with an NVIDIA Quadro P4000 Graphics device with 192 GB of 

graphic memory. 

4.1. Image Label Datasets 

conv 3×3, ReLU

copy and crop

max pool 2×2

up-conv 2×2

conv 1×1

6464

128

256

128

256

512 512

512

1024

1024

256

256 128

128 6464

CBAM

CBAM

CBAM

CBAM

CBAM

CBAM

CBAM

CBAM

CBAM

512512

1

Figure 3. Structural diagram of the U-Net-CBAM network.

In our experiments for this study, the CBAM network structure was fused with U-Net,
and the convolutional attention module was used to identify important features in image
channels and spatial regions, paying more attention to the boundary features of the winter-
wheat planting area to ensure that the features of each pixel point in the winter-wheat
planting area would be learned. CBAM was placed after each double-convolution of the
encoder and decoder to highlight the features in the feature map generated by the deep
convolution of the target features and to improve the recognition performance of the model.

4. Training of U-Net-CBAM and Evaluation Metrics

The U-Net-CBAM model was implemented using Python 3.6 on a Windows 10 operat-
ing system and a PyTorch framework. The comparison experiments were performed on
a graphics workstation with an NVIDIA Quadro P4000 Graphics device with 192 GB of
graphic memory.

4.1. Image Label Datasets

To establish the image label dataset for training and testing, the specific steps are
as follow: (1) Fuse the 2 m panchromatic image of GF-6 and the 8 m multispectral data
image to obtain the 2 m multispectral data as the reference basis for manual labeling;
(2) Select Zhengding County of Shijiazhuang City as the training set and Zengcun Town
of Gaocheng City as the testing set; and (3) Use the Region of Interest (ROI) tool in ENVI
software to outline the boundaries of the winter-wheat planting areas on the remote sensing
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images of GF-6 and Sentinel-2 in the study area and to create labeled images for the remote
sensing images; (4) Overlap cropping using sliding windows to help extend the training
dataset and avoid overfitting by cutting the remote sensing images and the labeled images
into equally sized image blocks (256 × 256); the image blocks and their corresponding
label files form image–tag pairs. The training set is then augmented with data to further
expand the dataset. The final GF-6 image dataset and Sentinel-2 image dataset each have
5000 image–tag pairs in the training set and 375 image–tag pairs in the test set.

4.2. Model Training

Cross entropy is used as a loss function in model training, and Equation (4) illustrates
the definition of sample cross entropy:

H(p, q) = −
t

∑
i=1

qi log(pi) (4)

where p is the predicted category probability distribution, q is the actual category probability
distribution, i is the index of the elements in the category probability distribution, and t is
the number of category labels. On this basis, the loss function of the model is defined as:

loss = − 1
ts ∑

ts

t

∑
i=1

qi log(pi) (5)

where ts denotes the number of samples used in the training phase.
We trained the U-Net-CBAM model in an end-to-end manner using the following

five steps:

(1) Determine the hyperparameters in the training process and initialize the parameters
of the U-Net-CBAM model;

(2) Input the images and labels from the training set in the GF-6 image dataset and the
Sentinel-2 image dataset into the U-Net-CBAM model, respectively;

(3) Perform forward propagation on the current training data using the U-Net-CBAM model;
(4) Calculate the loss and back-propagate to the U-Net-CBAM model;
(5) Use the Adam optimizer to update the parameters of the U-Net-CBAM model

based on the loss values, and repeat steps 2–4 until the loss is lower than a
predetermined threshold.

In the experiment, completing the training required 15 h. The hyperparameter settings
for training all the models were determined, as shown in Table 3, by referring to the
references [36–38].

Table 3. Determination of hyperparameters for the U-Net-CBAM model.

Hyperparameter Value

Batch size 4
Learning rate 0.0001

Beta1 for Adam 0.5
Beta2 for Adam 0.999

Epochs 100

4.3. Evaluation Metrics

The evaluation metrics used in this study for the network prediction results are
Precision, Mean Intersection over Union (MIoU), Recall, Overall Accuracy (OA), and
F1 [39]. The extraction results for winter wheat can be classified as TP (pixels correctly
identified as winter wheat), TN (pixels correctly identified as other types of crops), FP
(pixels misclassified as winter wheat), and FN (pixels misclassified as other types of crops).
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MIoU is used to evaluate the accuracy of segmentation:

MIoU =
∑n

i
TP

TP+FN+FP
n

(6)

Precision is used to indicate the proportion of winter-wheat pixels that are accurately
classified, as compared to all pixels identified as winter wheat:

Precision =
TP

(TP + FP)
(7)

Recall indicates the proportion of accurately classified winter-wheat pixels, as com-
pared to all actual winter-wheat pixels:

Recall =
TP

(TP + FN)
(8)

F1 is a metric used to assess the accuracy of classification models in statistics:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(9)

OA is the ratio of the number of correctly classified samples to the total number
of samples:

OA =
(TP + TN)

(TP + TN + FP + FN)
(10)

4.4. Comparison Models

SegNet and DeepLabV3+ are classical semantic segmentation models for images
and have achieved good results in camera image processing. In this study, these two
models were chosen as the comparison models to better reflect the advantages of the
U-Net-CBAM model in classification. SegNet, DeepLabV3+, U-Net, and U-Net-CBAM
models were trained using the training sets from the GF-6 image dataset and Sentinel-2
image dataset, respectively.

5. Results and Discussion
5.1. Identification of Winter Wheat

In order to compare the performance of the four models, SegNet, DeepLabV3+, U-Net,
and U-Net-CBAM, the experimental results of two representative areas were selected for
comparison—one of which is dominated by agricultural land, and the other is mixed with
facility agriculture and buildings—which are representative of the land-use structure of the
experimental area.

Figures 4 and 5 show the two images selected from the test images and the correspond-
ing results using the four methods. It can be seen that the U-Net-CBAM model misclassified
only a small number of pixels in the corners of the winter-wheat growing area. In the
SegNet results, DeepLabV3+ results, U-Net results, and U-Net-CBAM results, the misclas-
sified pixels were mainly distributed at the junction of winter-wheat and nonwinter-wheat
areas, including the edges and corner locations. The number of misclassified pixels in the
U-Net-CBAM model results was lower than that of DeepLabV3+, and the SegNet results
had the largest number of errors. Among them, the shapes extracted by the U-Net-CBAM
algorithm matched well with the actual regions in the larger winter-wheat growing regions,
and the other algorithms had more edge errors. The U-Net-CBAM algorithm showed a
better level of performance than did the other algorithms in processing the images.
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Figure 4. Prediction results using the GF-6 dataset used as training dataset: (a) Sentinel-2 original
image, (b) label, (c) SegNet, (d) DeepLabV3+, (e) U-Net, (f) U-Net-CBAM.
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After the models were trained, the test set images from the Sentinel-2 dataset were used
as input for the models, which automatically extract features from the images and make
predictions for each pixel to determine its type, finally obtaining the classification results.

As shown in Figure 6, the U-Net-CBAM model trained on the Sentinel-2 image dataset
was used to accurately extract the winter-wheat growing areas in Zengcun town.
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Figure 6. Mapping winter-wheat planting areas in Zengcun County: (a) Sentinel-2 original image,
(b) label, (c) U-Net-CBAM prediction results using the Sentinel-2A dataset as training dataset.

5.2. Comparison of Identified Results

Table 4 shows the confusion matrix of the segmentation results of the model trained
with the training sets from the GF-6 image dataset and Sentinel-2 image dataset, respectively.
Each row of the confusion matrix indicates the proportion of the actual category, and each
column indicates the proportion of the predicted category. From the confusion matrix of
the four models, it can be seen that U-Net-CBAM achieved better classification results on
both the GF-6 image dataset and the Sentinel-2 image dataset. The percentages of “Winter
Wheat” misclassified as “Nonwinter Wheat” and “Nonwinter Wheat” misclassified as
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“Winter Wheat” were 0.055 and 0.035, respectively. The percentages of “Nonwinter Wheat”
misclassified as “Winter Wheat” were 0.033 and 0.031, respectively.

Table 4. Confusion matrix of winter wheat classification.

Datasets Approach Predicted Winter Wheat Nonwinter Wheat

GF-6
dataset

SegNet Winter wheat 0.772 0.021
Nonwinter wheat 0.103 0.104

DeepLabV3+ Winter wheat 0.759 0.033
Nonwinter wheat 0.075 0.133

U-Net
Winter wheat 0.766 0.025

Nonwinter wheat 0.078 0.131

U-Net-CBAM
Winter wheat 0.761 0.033

Nonwinter wheat 0.055 0.151

Sentinel-2
dataset

SegNet Winter wheat 0.764 0.029
Nonwinter wheat 0.062 0.145

DeepLabV3+ Winter wheat 0.766 0.026
Nonwinter wheat 0.046 0.162

U-Net
Winter wheat 0.765 0.029

Nonwinter wheat 0.048 0.158

U-Net-CBAM
Winter wheat 0.762 0.031

Nonwinter wheat 0.035 0.172

Table 5 shows the evaluation criteria values of the four models on the image datasets of
the GF-6 image dataset and the Sentinel-2 image dataset, respectively. Using the statistical
analysis of the experimental results, we can visually observe that the improved models
outperformed the original models in all five of the evaluation metrics. Compared with
SegNet, DeepLabV3+, and U-Net, U-Net-CBAM performed the best in terms of accuracy,
MIoU, OA, and F1. In addition, the accuracy and MIoU of U-Net-CBAM are significantly
higher than those of U-Net, with a 4.2% and a 3.6% improvement over U-Net on the
GF-6 dataset and a 2.9% and a 2.9% improvement over U-Net on the Sentinel-2 dataset,
respectively. This implies that the introduction of an attention mechanism in the U-Net
network to improve the accuracy of extracting winter -wheat planting areas is effective. In
the experiment, we trained the model on the Sentinel-2 and GF-6 datasets, respectively, and
then tested the segmentation performance of the model on the Sentinel-2 test set. It can be
observed that all the models trained by the Sentinel-2 dataset showed better performance
in the Sentinel-2 test set. The phenomenon shows that the segmentation performance of the
training and test sets from different datasets is much lower than that from the same dataset.
In other words, cross-dataset or cross-domain segmentation is still a challenging problem.

Table 5. Extraction accuracy of winter-wheat planting areas.

Datasets Approach Precision MIoU Recall OA F1

GF-6
dataset

SegNet 0.740 0.667 0.873 0.883 0.782
DeepLabV3+ 0.806 0.725 0.865 0.899 0.831

U-Net 0.807 0.735 0.884 0.905 0.837
U-Net-CBAM 0.849 0.771 0.882 0.916 0.864

Sentinel-2
dataset

SegNet 0.838 0.766 0.889 0.915 0.860
DeepLabV3+ 0.881 0.815 0.910 0.934 0.894

U-Net 0.871 0.802 0.903 0.929 0.886
U-Net-CBAM 0.900 0.831 0.907 0.939 0.905

6. Conclusions

The extraction of winter-wheat planting areas using satellite remote sensing has be-
come a mainstream method, but the field edge results are usually coarse, leading to a
decrease in OA. U-Net can significantly improve the OA of remote sensing image segmen-
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tation results, but there are certain misclassified pixels in adjacent land-use types in the
segmentation results. In this study, by adding an attention mechanism to the basic convo-
lutional unit of the U-Net network to amplify the important features, the U-Net-CBAM
model was used to achieve the accurate extraction of winter-wheat planting areas from
high-resolution multisource remote sensing images.

It can be seen from the comparison experiments that the proposed model performs
better, and most of the evaluation indices are better than those of the comparison classifi-
cation algorithms. In the experimental design, the dataset we selected always has errors
because of manual labeling. Future research should try to use semi-supervised classification
to reduce the reliance on pixel label files, further improve the accuracy and efficiency of
winter-wheat planting-area extraction from high-resolution multisource remote sensing
images, and cope with more complex application scenarios.
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