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Abstract: The belt uniform (BU) sowing pattern can improve the yield of winter wheat, but whether
and how the BU sowing pattern can increase yield under different sowing densities is unknown. The
field study was conducted in Guiyang (Guizhou province) during the growing season in 2017–2018,
2018–2019, and 2019–2020. Four winter wheat cultivars were used in field experiments to investigate
the changes of the dry matter accumulation and partition, yield and yield components at maturity
under five sowing densities (75, 150, 225, 300, and 375 plants per m2), and three sowing patterns:
line and dense (LD) sowing with 33.3 cm row spacing (LDS); the belt uniform (BU) sowing with
15 cm (BUN), and 20 cm (BUW) row spacing. The BU sowing pattern significantly increases shoot dry
matter and grain yield in all four winter wheat cultivars under all five sowing densities and in each
growing season, particularly under the high sowing density of 300 and 375 plants m−2. Harvest index
was unaffected by the different sowing densities and sowing patterns. While spike number increased,
grain weight per spike decreased with the increase in sowing density. The 1000-grain weight and
grain number per spike were unaffected by the sowing patterns. The variation in the shoot dry weight
can explain 94% variation in grain yield and 66% variation in spike number. Allometric analysis
showed that more dry matter was partitioned to the spike than to the stem and leaf. We conclude
that the BU sowing pattern can increase grain yield under high sowing densities associated with a
high shoot dry matter accumulation and its partition to the spike.

Keywords: dry matter accumulation; allometric growth; harvest index; yield components

1. Introduction

Wheat is a main cereal crop grown worldwide [1], and is the third most important
staple crop in China. More than 15% of wheat yield is needed to fulfill the wheat demand
being driven by the increases in the population and diet changes by 2030 in China [2].
The reducing of the arable land area and changing of the climate and environmental
degradation [3–6], which limited productivity and increasing of the food supply, was
largely dependent on the high-yield breeding strategies [7] and development of the new
agronomic practices, such as sowing patterns [8,9] and optimal sowing density [10,11].

Sowing pattern is an important factor in sustainable agriculture, as it influences plant
distribution in the field, which in turn affects the functional traits related to photosynthesis,
growth, and yield [12,13]. Raised-bed sowing can increase wheat and rice yield [14–16],
and furrow sowing can increase the yields of winter wheat [17]. A wide-precision planting
pattern, with 6–8 cm sowing width can also increase winter wheat yield [18]. Our previous
study showed that the belt uniform (BU) sowing pattern could significantly increase the
winter wheat yield [8]. Thus, development the new sowing patterns made a great contri-
bution to the yield improvement. Previous studies showed new sowing methods could
increase the yield by increasing the spike number (SN) per m2 [18,19] and biomass [8,20,21].
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Biomass accumulation is essential for the yield formation, as more biomass partition to the
grain can achieve high yield [22,23]. However, the spike growth related to the stem and
leaf and its roles in yield performance were not known under different sowing patterns.

Apart from the sowing pattern, the appropriate sowing density is also a very important
factor determining grain yield. Optimal sowing density depends on the variety, soil type,
precipitation, and soil nutrients [10,24,25]. Sowing density is a determinative factor for
winter wheat grain yield and varies with the sowing pattern [26,27], which is associated
with the changing of the inter- and intra-plant competition for nutrition, water, and light
nutrients for crop growth, resulting in the variation in the grain yield [28], particularly
under excessively high density [29]. Previous studies showed the crop yield response
curvilinear to sowing density, reaching a maximum at the optimal sowing density [30,31].
Thus the yield response and the underlying mechanisms related to the yield performance
were needed to investigate under different sowing patterns.

Previously, we showed that the belt uniform (BU) sowing pattern can improve the
yield of winter wheat [8], but how the dry matter accumulation, partition to the grain, and
grain yield responds to different sowing densities under the BU pattern is unknown. In
this study, we aim to investigate the changes of the dry matter accumulation, partition
to the grain and yield, and yield components under five sowing densities (75, 150, 225,
300, and 375 plants per m2) and three sowing patterns (line and dense (LD) sowing with
33.3 cm row spacing (LDS); the belt uniform (BU) sowing with 15 cm (BUN), and 20 cm
(BUW) row spacing). We hypothesized that (1) the belt uniform sowing pattern (BU) can
increase winter wheat yield under high sowing density, (2) high dry matter accumulation
is coordinated with high dry matter partition to the spike to increase the wheat yield at
high sowing density.

2. Materials and Methods

A three-year field experiment was conducted in Guiyang, Guizhou province, China.
The soil at the experimental site is yellow soil, according to the Chinese soil classification
system. The soil organic matter is 6.60 g kg−1 and the available P, N, and K are 4.85 mg kg−1,
31.50 mg kg−1, and 141.69 mg kg−1, respectively.

The experimental plot was 2 m wide and 2 m long; there were 6 rows in each plot.
Three sowing patterns were adopted in this study, the line and dense (LD) sowing with
33.3 cm row spacing (LDS); the belt uniform (BU) sowing with 15 cm row spacing (BUN);
and the BU with 20 cm row spacing (BUW (Figure 1). Four winter wheat cultivars, two
common (Guinong 19 (G19) and Guinong 30 (G30)), and two containing high anthocyanin
(about 50 mg kg−1; Guizi 1 (G1) and Guizi 4 (G4)) released by Guizhou university were
used in this study. The wheat cultivars were planted at five densities of 75, 150, 225, 300,
and 375 plants per m2. The sowing dates were 5 November 2017, 19 November 2018, and
23 November 2019, while the corresponding harvest dates were 11 May 2018, 18 May 2019,
and 23 May 2020 for 2017–2018, 2018–2019, and 2019–2020 growing seasons. A completely
randomized experimental design was used in this study and three plots were used for each
cultivar, sowing density, and sowing pattern for a total of 180 plots (3 sowing patterns × 4
cultivars × 5 densities × 3 replicates). Nitrogen (N), phosphorous (P), and potassium (K) at
rates of 160 kg N ha−1, 35 kg P ha−1, and 35 kg K ha−1 were supplied to the experimental
plots before sowing, according to the local practice.

The weather data were obtained from the weather station near the experiment site.
The mean temperatures were 10.2, 9.5, and 11.0 ◦C, whereas the precipitation was 377, 316,
and 367 mm for the 2017–2018, 2018–2019, and 2019–2020 growing seasons, respectively
(Supplementary Materials Figure S1).
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After drying, 20 representative spikes for each plot were used to measure the grain weight 

and grain number per spike. The other spikes were threshed by hand to get the grains, 

then weighted and combined with the grain weight of the 20 representative spikes to get 

the grain yield for each plot. The shoot dry weight was obtained by adding the dry weight 
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Figure 1. The three sowing patterns ((A): line and dense sowing with 33.3 cm row space (LDS).
(B): belt uniform sowing with 20 cm row space (BUN). (C): belt uniform sowing with narrow (15 cm)
row space (BUW)) used in this study. All sowing patterns have the same seed rate.

2.1. Sampling and Measurements

At final harvest, when each cultivar reached maturity, two center rows on each plot
were harvested by cutting each plant at about 1 cm above soil surface. The sample for each
plot was sealed in a nylon bag, which was tagged with the plot information. Then all the
bags were transported to the lab after harvest for processing.

The spike number was counted and recorded for each sample, and then we cut the
spike from the shoot and placed it in the envelope with plot information. The leaf and stem
were separated and placed in the envelopes separately. All the samples were dried in the
oven at 80 ◦C for 48 h, and then weighed to get the dry weight for different parts. After
drying, 20 representative spikes for each plot were used to measure the grain weight and
grain number per spike. The other spikes were threshed by hand to get the grains, then
weighted and combined with the grain weight of the 20 representative spikes to get the
grain yield for each plot. The shoot dry weight was obtained by adding the dry weight of
the spike, stem, and leaf. The harvest index (HI) =grain yield/shoot dry weight. The grain
yield (g m−2) = grain yield for each plot/harvest area. The spike, leaf, and stem dry weight
(g m−2) was calculated by dividing the dry weight by harvest area.

2.2. Statistics Analysis

The effects of the sowing density and sowing pattern, and their interaction on grain
yield, shoot dry weight, HI, and yield components were analyzed by a two-way analysis
of variance (ANOVA) by using Gen-Stat 19.0 (VSN International Ltd., Rothamsted, UK).
All figures were drawn with Origin 2020 (Origin Lab, Northampton, MA, USA). The
figures were shown as box plot, using the combined data for four cultivars. The linear
model was used to fit the curve between the grain yield and shoot dry weight, between
the spike number and shoot dry weight. The linear model was used to fit the curve
among the spike, leaf, and stem dry weight, and the slopes were used to compare the
allometric growth among the spike, leaf, and stem by multiple comparison (Duncan test).
The Spearman correlation was used to generate the correlation matrix among the grain
yield, yield components, shoot dry weight, and HI.

3. Results
3.1. Yield and Yield Components

The results show that the belt uniform sowing (BU) could significantly increase the
grain yield in all four winter wheat cultivars in each sowing density in three consecutive
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growing seasons (Figure 2A–C). The yield improvements with BU in the high sowing
density (300 and 375 plants m−2) were significantly higher than in lower sowing density
(75 and 150 plants m−2). The high grain yield with BU was associated with the higher
shoot dry weight in the three years (Figure 2D–F). Compared to the grain yield and shoot
dry weight, the harvest index (HI) was stable under different sowing densities and sowing
patterns (Figure 2G–I).
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Figure 2. The changes of the (A–C) grain yield (g m−2), (D–F) shoot dry weight (g m−2), and
(G–I) harvest index under three sowing patterns (SP; line and dense sowing with 33.3 cm row
spacing (LDS); belt uniform sowing with 20 cm row spacing (BUW); and belt uniform sowing with
15 cm row spacing (BUN)) and five sowing densities (SD; 75, 150, 225, 300, and 375 plants m−2) in
the three consecutive growing seasons. The different letters mean significant difference between the
sowing patters at the same sowing density.

The spike number was significantly increased with the sowing density, and the spike
number with belt uniform sowing patterns was significantly higher than the line and
dense sowing (LDS) patterns (Figure 3A–C); the interaction between the sowing density
and sowing patterns on the spike number was significant. The other yield components
(thousand-grain weight and grain number per spike) were stable under different sowing
patterns, but the grain number per spike was decreased with the increase in the sowing
density (Figure 3D–I); additionally, the grain weight per spike was also decreased when the
sowing density increased (Figure 3J–L). The grain yield and spike number gap between the
belt uniform and line and dense sowing pattern were significantly positive with the shoot
dry weight gap between the belt uniform and line and dense sowing pattern (Figure 4).
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Figure 4. The relationship between the (A) grain yield (g m−2) gap and shoot dry weight (DW) gap
(g m−2), (B) spike number (m−2) gap and shoot dry weight (DW) gap (g m−2), between the belt
uniform (BU) and line and dense (LD) sowing patterns and five sowing density (SD; 75, 150, 225, 300,
and 375 plants m−2) in the three consecutive growing seasons.
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3.2. Allometric and Correlated Analysis

The leaf, stem, and spike dry weight were significantly increased with the increase
in the sowing density (Figures 5, 6 and S2). The slopes between the spike and stem dry
matter under belt uniform sowing patterns were significantly higher than the line and
dense sowing patterns in three ((B) Guizi 4, (C) Guinong 19, and (D) Guinong 30) of the four
wheat cultivars (Figure 5), while the slopes between the spike and leaf dry matter under
belt uniform sowing patterns were significantly higher than the line and dense sowing
patterns of all four wheat cultivars (Figure 6). The slopes can be used to show the relative
growth between different organs, thus the high slopes clearly indicated more biomass was
partitioned to the spike than the stem and leaf in belt uniform sowing patterns than under
line and dense sowing patterns. The ratio between the stem and leaf dry weight was varied
among the four wheat cultivars (Figure S2).
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Figure 5. The ratio of spike dry matter to stem dry matter for (A) Guizi 1, (B) Guizi 4, (C) Guinong 19,
and (D) Guinong 30 under three sowing patterns (SP; line and dense sowing with 33.3 cm row spacing
(LDS); belt uniform sowing with 20 cm row spacing (BUW); and belt uniform sowing with 15 cm
row spacing (BUN)) and five sowing density (SD; 75, 150, 225, 300, and 375 plants m−2) in the three
consecutive growing seasons. *** p < 0.001.
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Figure 6. The ratio between the spike dry matter to leaf dry matter (A) Guizi 1, (B) Guizi 4,
(C) Guinong 19, and (D) Guinong 30 under three sowing patterns (SP; line and dense sowing
with 33.3 cm row spacing (LDS); belt uniform sowing with 20 cm row spacing (BUW); and belt
uniform sowing with 15 cm row spacing (BUN)) and five sowing density (SD; 75, 150, 225, 300, and
375 plants m−2) in the three consecutive growing seasons. *** p < 0.001.

The correlation analysis showed the grain yield was significantly correlated in relation
to the shoot dry weight, spike number per m2, grain number per spike, and grain weight
per spike, and the highest correlation was observed between the grain yield and shoot
dry weight (Figure 7); while the shoot dry matter can explain the 94% change in the grain
yield. The shoot dry weight was significantly positive with the spike number per m2, grain
number per spike, and grain weight per spike; while the highest correlation was observed
between the shoot dry weight and spike number per m2, indicating that most of the g
variation (66%) in the spike number can be explained by the variation in the shoot dry
weight. The negative relation between the thousand-grain weight and grain number per
spike, spike number per m2, and grain number per spike, as well as spike number per m2

and grain weight per spike were observed (Figure 7).
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(HI), thousand grain weight (TKW), spike number per m−2 (SN), grain number per spike (GNS), and
grain weight per spike (GWS). *** p < 0.001.

4. Discussion
4.1. Yield Components and Grain Yield

In our previous study, we found that the belt uniform sowing could improve the
grain yield of four different wheat cultivars [8]. In this study, we further found that the
belt uniform sowing could increase the winter wheat grain yield in five different sowing
densities that varied from 75 to 375 grains per m2. Especially in the higher sowing density
(300 and 375 grain per m2), the grain yield gap between the belt uniform sowing and line
and dense sowing was larger than that under lower sowing densities (75 and 150 grains
per m2). Thus the belt uniform sowing patterns could achieve higher grain yield than line
and dense sowing patterns, especially under the high sowing density (300 and 375 grain
per m2). The variation in yield components is associated with the improvement of the grain
yield [32–35]. Wang et al. [11] observed the spike number per m2 significantly increased
while the grain number per spike and grain size significantly reduced with the increasing
of the sowing density, and this was also observed in other studies [36,37]. In our study, the
spike number per m2 was significantly increased while the other two yield components
were not significantly changed with the sow densities increasing under belt uniform
sowing patterns (Figure 3). Additionally, a significant interaction between the sowing
density and sowing pattern on spike number per m2 was observed for three consecutive
years, indicating the belt uniform sowing could not only produce more spike number but
also can maintain the grain size and grain number per spike to achieve the high grain yield
potential. The high sowing density can lead to grain yield loss because the competition
among the plant individuals was increased with sowing density [29]. However, we found
the belt uniform sowing patterns could achieve higher grain yield under high sowing
density than line and dense sowing patterns, which was associated with the reducing of
competition among individuals at higher sowing density, and this may be the other reason
why the belt uniform sowing can obtain high grain yield.

4.2. Dry Matter Accumulation and Partition and Yield Formation

The dry matter accumulation played an important role in yield formation because
the high dry matter accumulation may provide more carbohydrates to format the flower
and grain, improve grain filling, and increase grain size [33], which was the determined
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factor related to the grain yield in wheat. In this study, a significant increasing in the
shoot dry matter was observed in belt uniform sowing in five sowing densities. The
variation in the shoot dry matter can explain 94% of the increasing in the grain yield and
66% of the improvement of the spike number per m2 (Figure 3). A significant interaction
between the sowing density and sowing pattern on shoot dry weight was observed in three
consecutive years, indicating that the belt uniform sowing could produce more shoot dry
weight, especially under high sowing density. Increasing the leaf area index to improve
the interception of the solar could be one reason to achieve high shoot dry weight [38,39]
in belt uniform sowing. Furthermore, the optimal canopy architecture can increase the
photosynthesis rate to benefit dry matter accumulation [10,31]. The high shoot dry matter
accumulation may help to explain why both the grain size and grain number per spike
were maintained in a belt uniform sowing pattern.

The dry matter partition also showed an important role in yield performance. Previous
studies showed new cultivars could allocate more dry weight to the seed to achieve high
yield potential in crops [33,40,41]. The genetic improvement of the grain yield was tightly
linked to the increase in the harvest index in wheat and other crops [2,23,35,40]. In our study,
we found that the harvest index was not significantly changed under different sowing
densities and patterns, indicating that the yield improvements were dependent on the dry
matter accumulation rather than the harvest index. However, the allometric analysis shows
the relative growth of the spike was higher than the leaf and the stem (Figures 4 and 5),
especially under high sowing density, and this result clearly shows that more dry matter
was partitioned to the spike than the stem and leaf. Thus, the increasing of the shoot dry
weight was coordinated with the high dry matter partition to the spike to achieve the high
yield potential at high sowing density with the belt uniform sowing pattern.

5. Conclusions

In this study, the BU pattern achieved significantly higher grain yield than line and
dense sowing patterns, and this was associated with the improvement of the shoot dry
weight and the spike number per m2. The relative growth of the spike to stem and leaf was
higher in the belt uniform sowing than the line and dense sowing, which was the other
reason for high yield potential in BU patterns.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy12122936/s1, Figure S1: The precipitation and mean tem-
perature changes in the field experiment during the growing season for (A) 2017–2018, (B) 2018–2019
and (C) 2019–2020; Figure S2. The ratio of the stem dry matter to leaf dry matter (A) Guizi 1,
(B) Guizi 4, (C) Guinong 19 and (D) Guinong 30 under three sowing patterns (SP; Line and dense
sowing with 33.3 cm row spacing (LDS); Belt uniform sowing with 20 cm row spacing (BUW); and
Belt uniform sowing with 15 cm row spacing (BUN)) and five sowing density (SD; 75, 150, 225, 300
and 375 plants m−2) in the three consecutive growing seasons.
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