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Abstract: Crop models are frequently used to assess the impact of climate change responses. Evalua-
tion of model performance against empirical data is crucial to establish confidence, particularly for
rice (Oryza sativa L.), one of the world’s important cereal crops. Data from soil-plant-atmosphere-
research (SPAR) chambers and field plots were used to assess three versions of the ORYZA model to a
range of climate conditions. The three versions were: V1–the original, V2–V1 plus a revised heat stress
component, and V3–V2 plus a coupled leaf-level gas exchange algorithm. Comparison against SPAR
datasets, which covered a range of temperatures at two CO2 levels, indicated successive improvement
in yield predictions with the model version. Root Mean Square Error (RMSE) decreased by 520 and
647 kg ha−1 for V2 and V3, respectively, and Wilmott’s index of agreement improved by 10 and 12%
compared with V1 when averaged across 20 treatments and three cultivars. Similar improvements
were observed from 17 field dataset simulations with two additional varieties. These results indicated
the importance of improving heat sterility functions and carbon assimilation methodologies that
incorporate direct responses to air temperature and CO2 concentration in rice models. Accounting for
cultivar differences in thermal sensitivity is also an important consideration for climate assessments.

Keywords: crop model; photosynthesis; high temperature; CO2; spikelet fertility; heat stress

1. Introduction

Rice (Oryza sativa L.) is the main staple food for over half the world’s population and
is of particular importance to global food security [1,2]. The crop is vulnerable to high
air temperatures, and projected climate changes are thus of great concern [3,4] given that
a substantial portion of current production regions are already at, or above, thresholds
associated with heat stress. While rice shows positive yield and growth responses to
elevated atmospheric carbon dioxide concentration (CO2) [5–7], there is evidence that
the CO2 fertilization effect is minimized as temperatures increase [3,8]. Explanatory crop
models are frequently used to assess and identify the impact and potential adaptation
strategies associated with current and future climate impacts on crop production [9–13].
However, uncertainties remain regarding the ability of rice crop models to simulate yield
responses to rising CO2 and temperatures [14–16]. The current study focuses on the extent
to which changes to thermal stress and representation of gas exchange processes in a
popular rice model resulted in improved yield and biomass predictions.

Implementation of heat responses on plant growth and development, particularly at
high and low temperature extremes, is one of the largest sources of uncertainty among
crop models [15,17]. This is a particular concern for rice, where even a few hours of
high-temperature exposure (e.g., above 33.7 ◦C) can reduce pollen viability and spikelet
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fertility, with a consequent reduction in grain yield [18,19]. Popular rice models such as
ORYZA [20,21] incorporate the effects of a broad temperature range on developmental rates,
leaf expansion, photosynthesis and respiration rates, and other growth and development
components. However, predictions of high or low-temperature impacts on yield can be
inaccurate [22,23] despite options for simulating high heat stress and cold sterility effects
on spikelet fertility and leaf expansion rate. Similarly, a recent rice model intercomparison
study [24] found that 14 crop models underestimated the negative effects of heat stress
on grain yield due to a lack of full accounting for short-term extreme heat exposure
during anthesis.

Simulated responses to elevated CO2 are generally more consistent among crop mod-
els than temperature extremes [25], but methodologies vary considerably. This can lead
to differences when projecting interactions with temperature and other factors. A recent
survey of crop modeling approaches indicated that empirical adjustments to radiation
use efficiency (RUE) and/or transpiration efficiency coefficients are the most frequently
used [10]. While fairly robust, these and other empirical approaches can result in inaccura-
cies when assessing the effects of CO2 along with high growth temperatures and limited
water availability [26]. Predicting the response of rising CO2 and temperature is compli-
cated by the influence CO2 indirectly exerts on leaf temperature due to stomatal closure
and evaporative cooling [27,28]. Mimicking the photosynthetic acclimation effect [26] in
models is also challenging. Methods that directly account for the influence of elevated
CO2 on stomatal closure and link gas exchange with an energy balance at leaf surfaces
have therefore been suggested as more appropriate for climate change studies [29]. Cou-
pled gas exchange–energy balance methodologies have been recently implemented and
tested in corn, potato, and soybean models [30–32]. A related energy balance approach
using sub-models for photosynthesis, stomatal conductance, and transpiration was recently
incorporated into ORYZA [33] and shown to provide more accurate estimates of canopy
photosynthesis under different CO2 levels over the growing season as compared with the
original model. However, this modification has not been fully evaluated, particularly in
conjunction with varying growth temperature levels.

The objective of this study was to evaluate the effectiveness of gas exchange, and heat
stress modifications implemented in the ORYZA rice model with respect to five cultivars. In
this effort, we (1) initially modified the model to more accurately simulate growth duration
over the broader temperature range common to U.S. conditions [23], (2) modified and
parameterized the methods for simulating the impact of high heat on spikelet sterility,
and (3) tested the extent to which adding the heat stress routine along with an existing
coupled leaf gas exchange–energy balance model would improve predictive capability in
reproducing effects of temperature and CO2 on yield and above-ground biomass. Results
highlight the effect these incremental improvements have on increasing the accuracy of
rice model predictions for current and possible future climate impacts, which can serve as
foundational pieces for improvements to other crop models.

2. Materials and Methods
2.1. Datasets

Soil-Plant-Atmosphere-Research (SPAR) growth chamber data were used to evaluate
different model version responses for three cultivars grown across a wide range of growth
temperatures and two CO2 levels. Field data from the U.S. Mississippi Delta were used to
further test the response of two additional cultivars over several years of data with different
planting dates. Above-ground biomass and grain yield were obtained from multiple exper-
iments previously conducted in SPAR chambers located at the United States Department
of Agriculture—Agricultural Research Service (USDA-ARS), Beltsville, Maryland, and
the University of Florida, Gainesville, Florida, U.S. The experimental data were reported
in [6,34–38] and utilized IR30, Cocodrie, and Jefferson cultivars (Table S1). The IR30 cul-
tivar studies included 17 datasets. Five temperature treatments ranged from 25/18 ◦C to
37/30 ◦C day/night thermoperiods under elevated CO2 (660 ppm). Two additional treat-
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ments at 28/21 ◦C and 31/31 ◦C were conducted at both ambient and elevated CO2 levels,
along with an additional study at 31/31 ◦C with six different CO2 levels. Data for Cocodrie
and Jefferson cultivars came from [6] and included four constant 24 h air temperature
treatments of 24, 28, 32, and 36 ◦C at elevated CO2 (700 ppm) with an additional tempera-
ture treatment of 28 ◦C at ambient CO2. Air temperature, CO2 concentration, and active
photosynthetic radiation (PAR) were available on-site for Jefferson and Cocodrie cultivars.
Solar radiation values were obtained at the Florida location from AgMERRA and AgCFSR
datasets [39].

Experimental field data were obtained from performance trials of paddy-grown rice
within the U.S. Mississippi Delta [40]. Data for two varieties, a heat stress tolerant hybrid,
Clearfield CLXL753 (RiceTec, Inc., Alvin, TX, USA; https://www.ricetec.com/wp-content/
uploads/2017/10/2018-Product-Characteristics_HR.pdf accessed on 20 November 2022),
and a conventional tropical japonica variety, Wells, were selected based on prominence
in the dataset. The data ranged from 2012 to 2015 and included multiple planting dates
between March 11 and June 18 of each year for a total of 17 individual test sets. This varia-
tion in planting dates exposed the varieties to different temperatures during the flowering
period, during which maximum daily temperatures varied from 27 to 35 ◦C. Measurements
included planting and emergence dates, days to half-inch internode elongation and 50%
heading, and grain yield. Weather data, including daily maximum and minimum tempera-
ture, rainfall, solar radiation, relative humidity, and wind speed, were obtained from the
Integrated Agricultural Information and Management System (iAISM) [41].

2.2. Crop Model Modifications

Three model versions were evaluated, the default version ORYZA-V1, which included
a modification for the non-linear temperature dependency of plant development; ORYZA-
V2, which added a modified heat stress component; and ORYZA-V3 which added a coupled
leaf gas exchange methodology along with the changes in ORYZA-V2. The original ORYZA
phenology model used a bilinear temperature relationship to predict development rates
(Equations (A1)–(A3)). We replaced this relationship with a normalized beta function
(Equation (A11), which was previously shown to more accurately simulate the response of
growth duration over a broader temperature range [42,43]. This version of the model was
used as the default (ORYZA-V1). Prior to model calibration, cardinal base temperatures
for early leaf expansion rates were set to 10 ◦C for japonica rice varieties (Cocodrie and
Jefferson) and 12 ◦C for indica rice (IR30) to account for differences in U.S. production
environment [44,45].

The original ORYZA photosynthesis routine (Equations (A4)–(A6)) used hourly leaf-
level predictions for sunlit/shaded leaves at three depths in the canopy using absorbed
radiation and light use efficiency values [20]. This method was previously replaced
by the authors with a coupled leaf-level gas exchange model within an energy balance
(Equations (A12)–(A20)) at the leaf surface [33]. In this approach, leaf net photosynthesis is
simulated with the Farquhar, von Caemmerer, and Berry (FvCB) biochemical model [46],
which is influenced by direct inputs for solar radiation, leaf temperature, wind speed, leaf
surface CO2, and relative humidity. These equations are linked with the Ball-Woodrow-
Berry model for the stomatal conductance [47]. Both models are nested within an energy
balance which combines the output from the stomatal conductance model to estimate leaf
temperature and transpiration. These three models represent a system of interdependent
equations which are solved iteratively for leaf temperature, TL (Equation (A20)). Photosyn-
thesis and stomatal conductance are re-computed at each step until the iteration converges
on a final value of TL. A detailed description can be found in [33] and supporting mate-
rials (Equations (A12)–(A20)). Photosynthetic values for the FvCB model were originally
obtained using SPAR chamber data for the CLXL745 rice hybrid at different developmental
stages under ambient CO2 (410 ppm) at a 28/23 ◦C day/night thermoperiod. The same
parameter values were used for all cultivars in this study on the assumption that such
responses were conserved across varietal lines.

https://www.ricetec.com/wp-content/uploads/2017/10/2018-Product-Characteristics_HR.pdf
https://www.ricetec.com/wp-content/uploads/2017/10/2018-Product-Characteristics_HR.pdf


Agronomy 2022, 12, 2927 4 of 19

The potential number of spikelets per rice plant is reduced by high or low thermal
stress. The original high-temperature stress relationship in the ORYZA model was simu-
lated as an exponential function of average daily maximum temperature (Equation (A10))
during the flowering period. Subsequent versions of this approach have been added as
user-selected options by other researchers. For example, van Oort et al. [22] estimated both
the hour during the day when flowering occurs (tpeakfl) and the air temperature at this time
(Tair(tpeakfl)) as in Equations (1) and (2):

tpeak f l = tsunrise + 12.7 − 0.348 × Tmin7 (1)

Tair

(
tpeak f l

)
= Tmin + (Tmax − Tmin)× sin

(
π ×

tpeak f l − tsunrise

DL + 2 × 1.5

)
(2)

where tsunrise is estimated time of sunrise calculated as the difference of 12—half of the
daylength (DL) period, Tmin7 is the average daily minimum temperature, Tmin, of the
preceding seven days, and Tmax is the daily maximum temperature.

This approach [18] does not account for potential genetic variation with respect to
heat tolerance among varieties. These relationships were thus newly modified as part of
the current study with a function obtained from a new statistical analysis of experimental
data from [48] and parameterized to the following:

HEATTT = max
(
∑e f

f (Tair

(
tpeak f l

)
− Tc), 0

)
(3)

Sh = min
(

1.0,
exp(−0.65 − Hs × HEATTT)

1 − exp(−0.65 − Hs × HEATTT)

)
(4)

where HEATTT is the cumulative heating degree-days since anthesis, Tair is the hourly air
temperature during peak flowering time tpeakfl as defined earlier, f and ef are the dates of
flowering and end of flowering, Tc is a cultivar dependent critical temperature for heat
stress during the flowering period, Hs is a heat sensitive factor ranged from 0.1 to 0.25
(value of 0.167 is applied in this study) for tolerant and sensitive cultivars respectively
(Figure S1), and Sh is the fraction of florets which form grain.

2.3. Model Calibration and Evaluation

Calibration values were obtained for ORYZA-V1 (Table S2) and used for all three
versions. Five varieties were calibrated, three (IR30, Jefferson, and Cocodrie) using the
SPAR data and two (Wells and XL753) from field data. All phenological parameters,
including development rates (Table S2), were obtained using the calibration program
“pheno_opt_rice2” [49]. An independent set of SPAR data from 1988 (not shown in
Table S1) with day/night temperature treatments from 28/21 to 40/33 ◦C was used to ob-
tain IR30 calibration parameters. An independent set of SPAR data from [6], which covered
temperature treatments from 23/19 ◦C to 35/31 ◦C, was used to develop calibration values
for Cocodrie and Jefferson with the assumption that tropical japonica subspecies would
have similar phenological responses. Growth parameters describing biomass partitioning
and specific leaf area were fixed to those contained within the ORYZA standard crop file.
Spikelet growth factor (SPGF), which sets the potential number of spikelets that can flower,
was estimated from observed grain yield data under a control temperature treatment of
28/25 ◦C at ambient CO2 from [6,34,35] for each cultivar. Critical temperatures for heat
stress on spikelet fertility (Table S2) were obtained from [18,50]. Cultivars CXL753 and
Wells were calibrated using 2013 field data from [40], which was also used to calibrate heat
stress thresholds.

Simulations were conducted for all datasets in Table S1 to evaluate the extent to
which the temperature stress and gas exchange subroutine modifications were able to
improve the ability of ORYZA to estimate the response of yield to rising temperatures
and CO2. Simulations were subsequently conducted for the field data in Table S1. Rice
was simulated without limitation of irrigation and fertilization as per literature reports
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for both the controlled environment and field publications. Evaluation metrics included
the ratio of simulated to observed response as a measure of relative error; root mean
square error (RMSE is in Equation (A21)), and Wilmott’s index of agreement (d) [51] in
Equation (A22).

3. Results
3.1. Evaluation with SPAR Chamber Data

Only ORYZA-V3 and V1 above-ground biomass predictions were compared be-
cause V2 and V1 version responses were nearly identical. Results varied according
to cultivar (Table 1). The ratio of simulated to observed values, an indicator of rela-
tive error, was similar between model versions for IR30 (<5% error on average), and
Wilmott’s index of agreement (d) was nearly identical (Table 1). However, RMSE was
about 380 kg ha−1 higher for ORYZA-V3. This error was associated with an overesti-
mated biomass for the 1990 660 ppm 28/21 ◦C treatment. While V3 generally simulated a
stronger biomass response with elevated CO2, there was not always a consistent pattern
with temperature. In contrast, RMSE was less for ORYZA-V3 by as much as 1300 kg
ha−1 for Cocodrie and 190 kg ha−1 for Jefferson. Both model versions over-predicted
aboveground biomass at the 36 ◦C treatments for these two cultivars, suggesting the
response of vegetative growth, such as leaf area expansion, at high temperatures may
be over-emphasized.

Table 1. Comparison of observed (Obs) and simulated (Sim) above-ground rice biomass for ORYZA-
V1 and ORYZA-V3 model versions in response to CO2 and day/night temperature (T) treatments
for three rice varieties. The ratio of simulated to observed final biomass (Sim/Obs) was indicated
for each individual treatment, and Wilmott’s index of agreement (d) and RMSE computed across all
treatments for each variety.

Variety Year CO2 (ppm) T (◦C) Obs (kg ha−1)
ORYZA-V1 ORYZA-V3

Sim (kg ha−1) Sim/Obs Sim (kg ha−1) Sim/Obs

IR30

1987 330 31/31 12,925 15,078 1.17 14,540 1.12
1987 330 31/31 16,920 14,678 0.87 14,790 0.87
1987 660 31/31 17,625 20,856 1.18 22,546 1.28
1987 660 31/31 21,855 19,828 0.91 22,140 1.01
1989 330 28/21 15,275 16,038 1.05 15,999 1.05
1989 660 25/18 18,330 22,005 1.20 21,369 1.17
1989 660 28/21 20,915 20,811 1.00 22,215 1.06
1989 660 34/27 19,035 16,794 0.88 18,074 0.95
1989 660 37/30 16,685 13,607 0.82 13,265 0.80
1990 330 28/21 17,836 19,032 1.07 19,472 1.09
1990 660 28/21 22,869 23,614 1.03 27,016 1.18

Average 18,206 18,395 1.02 19,221 1.05
d - 0.84 - 0.85 -

RMSE (kg ha−1) - 2232 - 2618 -

Cocodrie

2000 350 28/28 18,036 15,174 0.84 15,979 0.89
2000 700 24/24 24,336 20,558 0.84 20,603 0.85
2000 700 28/28 25,236 19,200 0.76 21,664 0.86
2000 700 32/32 24,048 17,918 0.75 20,643 0.86
2000 700 36/36 12,312 14,267 1.16 14,945 1.21

Average 20,794 17,423 0.87 18,767 0.93
d - 0.74 - 0.84 -

RMSE (kg ha−1) - 4479 - 3145 -
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Table 1. Cont.

Variety Year CO2 (ppm) T (◦C) Obs (kg ha−1)
ORYZA-V1 ORYZA-V3

Sim (kg ha−1) Sim/Obs Sim (kg ha−1) Sim/Obs

Jefferson

2000 350 28/28 15,876 15,224 0.96 16,033 1.01
2000 700 24/24 25,848 20,695 0.80 20,670 0.80
2000 700 28/28 21,384 19,329 0.90 21,738 1.02
2000 700 32/32 20,772 18,005 0.87 20,718 1.00
2000 700 36/36 10,152 14,271 1.41 14,941 1.47

Average 18,806 17,505 0.99 18,820 1.06
d - 0.82 - 0.84 -

RMSE (kg ha−1) - 3341 - 3159 -

The ORYZA-V1 version accurately simulated the IR-30 cultivar yield response to
temperature and CO2 when maximum temperatures were below 32 ◦C. However, yields
were over-estimated above 32 ◦C by as much as 87% (Table 2). Performance was identical
with ORYZA-V2 for all data sets at the lower temperature ranges. However, the observed
declines in grain yield above 32 ◦C were more accurately simulated with about 6% relative
error. Yields for most other temperature treatments and cultivars were under-predicted by
both model versions. The ORYZA-V3 model replicated grain yield more accurately than
either -V2 or -V1 model versions. There was a 10% or larger increase in the agreement
index compared with -V1 and a lower RMSE between 400 to about 800 kg ha−1. There was
little difference between ORYZA-V2 and -V3 yield predictions for Cocodrie, but modest
improvements in RMSE between 140 to 270 kg ha−1 were observed for both IR30 and
Jefferson. As with above-ground biomass simulations, no consistent pattern was observed
with CO2 and temperature in terms of model accuracy (for temperature treatments below
32 ◦C). However, ORYZA-V3 tended to predict higher yield values than -V2 or -V1 versions,
especially for Cocodrie and Jefferson.

Yield sensitivity to the temperature at two CO2 levels is illustrated in Figure 1. All
model versions tracked the differences in temperature response for cultivars below 34, 36,
and 37 ◦C. At these higher temperatures, substantial over-predictions from ORYZA-V1
were evident. All model versions also showed a positive response to CO2 enrichment,
demonstrated by the observed values. However, ORYZA-V3 exhibited more accurate
changes to elevated CO2 at a given temperature treatment. For example, there were paired
CO2 treatments at 28 ◦C and 31 ◦C for IR30 (Figure 1a), the results of which showed smaller
relative errors than ORYZA-V2 or -V1 (Table 2). A similar response was observed among
model versions for Cocodrie and Jefferson with a paired CO2 treatment at 28 ◦C, in which
ORYZA-V3 also showed reduced relative error for the elevated CO2 response. Overall,
simulations from ORYZA-V3 were closer to the observed yield than ORYZA-V2 for all
varieties (Figure 1, Table 2).

Data from one of the 1987 IR30 studies [52], which included two planting dates (Table S1),
were used to evaluate simulated CO2 responses from 160 to 900 ppm at 31/31 ◦C (Figure 2).
ORYZA-V1 and ORYZA-V3 were compared for this case because V2 and V1 predictions
were identical at this temperature level. ORYZA-V3 more accurately captured the response
of yield to the broader range of CO2 values. Relative errors were between −7% and 9%
across the 330 to 900 ppm range for ORYZA- V3 compared with under-estimates of −8 to
−20% for ORYZA-V1 (Table 3). Errors were greater for the ORYZA-V3 model, however,
at sub-ambient CO2 levels (<250 ppm). Across all CO2 levels, the index of agreement was
higher (0.94 versus 0.91) and RMSE lower (872 versus 1065 kg ha−1) for ORYZA-V3 versus
ORYZA-V1, respectively. This suggested that the leaf-coupled gas exchange methodology
was more accurate for projecting yields under most CO2 levels.
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Table 2. Comparison of observed (Obs) and simulated (Sim) rice grain yield for ORYZA-V1, -V2,
and -V3 model versions in response to CO2 and day/night temperature (T) treatments for three
rice varieties. The ratio of simulated to observed final biomass (Sim/Obs) was indicated for each
individual treatment, and Wilmott’s index of agreement (d) and RMSE computed across all treatments
for each variety.

Variety Year
CO2
(ppm)

T
(◦C)

Obs Yield
(kg ha−1)

ORYZA-V1 ORYZA-V2 ORYZA-V3

Sim (kg ha−1) Sim/Obs Sim (kg ha−1) Sim/Obs Sim (kg ha−1) Sim/Obs

IR30

1987 330 31/31 5200 3996 0.77 3996 0.77 4169 0.80
1987 330 31/31 4300 4744 1.10 4744 1.10 5112 1.19
1987 660 31/31 6800 5587 0.82 5587 0.82 6428 0.95
1987 660 31/31 6400 6532 1.02 6532 1.02 7645 1.19
1989 330 28/21 6600 5332 0.81 5332 0.81 5687 0.86
1989 660 25/18 8400 7170 0.85 7170 0.85 7072 0.84
1989 660 28/21 10,400 7294 0.70 7294 0.70 8063 0.78
1989 660 34/27 3400 5726 1.68 3223 0.95 3627 1.07
1989 660 37/30 1000 1867 1.87 938 0.94 995 0.99
1990 330 28/21 8000 6617 0.83 6617 0.83 7077 0.88
1990 660 28/21 10,100 8788 0.87 8788 0.87 9922 0.98

Average 6418 5787 1.03 5475 0.88 5982 0.96
d - 0.88 - 0.92 - 0.96 -

RMSE (kg ha−1) - 1529 - 1334 - 1062 -

Cocodrie

2000 350 28/28 5230 4958 0.95 4958 0.95 5740 1.10
2000 700 24/24 6814 7457 1.03 7457 1.03 8013 1.11
2000 700 28/28 7823 6331 0.83 6331 0.83 7649 1.00
2000 700 32/32 6733 5873 0.84 5873 0.84 7433 1.06
2000 700 36/36 0 3344 984 - 1104 -

Average 5320 5593 0.91 5121 0.91 5988 1.07
d - 0.82 - 0.96 - 0.98 -

RMSE (kg ha−1) - 1446 - 795 - 829 -

Jefferson

2000 350 28/28 4608 4546 0.99 4546 0.99 5261 1.14
2000 700 24/24 7236 6884 0.95 6884 0.95 7510 1.04
2000 700 28/28 7236 5804 0.80 5804 0.80 7011 0.97
2000 700 32/32 5976 5391 0.90 5391 0.90 6771 1.13
2000 700 36/36 0 3052 - 934 - 1066 -

Average 5011 5135 0.91 4712 0.91 5524 1.07
d - 0.85 - 0.97 - 0.98 -

RMSE (kg ha−1) - 1539 - 824 - 681 -

Table 3. Comparison of observed (Obs) and simulated (Sim) rice grain yield for ORYZA-V1
and ORYZA-V3 model versions in response to varying CO2 concentrations. Data were averaged
from two different experiments, Exp I and II, that varied in planting date (22 January or 23 June)
from [52]. The ratio of simulated to observed yield (Sim/Obs) was indicated along with Wilmott’s
index of agreement (d) and RMSE.

Exp CO2 (ppm) Observed (kg ha−1)
ORYZA-V1 ORYZA-V3

Sim (kg ha−1) Sim/Obs Sim (kg ha−1) Sim/Obs

I & II 160 3400 2386 ± 430 0.70 1547 ± 615 0.45
I & II 250 4100 3629 ± 837 0.89 3564 ± 647 0.87
I & II 330 4800 4426 ± 948 0.92 4840 ± 608 1.01

II only 500 6830 5435 ± 1000 0.80 6382 ± 520 0.93
I & II 660 6600 5966 ± 1038 0.90 7162 ± 535 1.09
I & II 900 7300 6390 ± 1064 0.88 7865 ± 563 1.08

d - 0.91 - 0.94 -
RMSE (kg ha−1) - 1065 872 -
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Figure 1. Observed and simulated response of grain yield from three model versions versus
daily temperature value under ambient (aCO2) or elevated (eCO2) CO2 for cultivars (a) IR30 and
(b) Cocodrie and Jefferson using data from Table 2. Observed and simulated means for Cocodrie and
Jefferson were shown as averages across varieties due to very small yield differences.
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3.2. Evaluation with Field Data

Models were evaluated for Wells (Table 4) and CLXL753 (Table 5) cultivars using
four years of field data, each with multiple planting dates. Calibration results for the four
planting dates in 2013 show better metrics for ORYZA-V1 and -V2 than V3. This was due
to the calibration values for -V1 being used for all model versions. However, evaluation
data sets showed the opposite trend, where simulated yields were more accurate with
increasing ORYZA versions. For example, RMSE decreased from a high of 2089 kg ha−1

for ORYZA-V1 to a low of 1530 kg ha−1 for -V3 for the Wells cultivar and an even larger
reduction from 2429 to 955 kg ha−1 for CLXL753. The improvements in simulation for the
Wells cultivar were primarily associated with dates in 2012 and 2014, where maximum
temperature values during the anthesis period were 31 ◦C or lower (Table 4). Given
that these values were below the critical temperature threshold for heat sterility stress of
33.7 ◦C (Table S2), results for versions -V1 and -V2 were similar. However, the largest
simulation improvements were associated with V3. For four of the treatments (5 June 2014,
3 April 2015, 21 April 2015, and 3 June 2015), ORYZA-V3 over-predicted yields compared
with other versions for reasons which did not appear temperature related. Similar results
were observed for CLXL753, except that ORYZA-V3 generally showed less error for 10 of
the 13 sets (Table 5).

Table 4. Comparison of observed (Obs) and simulated (Sim) rice yield for the Wells cultivar from
three versions of ORYZA from field data at Stuttgart, Arkansas, under varying planting dates from
2012 to 2015. Calibration (Cal) results for 2013 were shown (with values in Table S2) along with
evaluation (Val) results for 2012, 2014, and 2015. The ratio of simulated to observed yield (Sim/Obs)
was indicated along with Wilmott’s index of agreement and RMSE. Average maximum daily air
temperature during flowering periods was shown as Tmax.

Tmax
(◦C)

Obs Yield
(kg ha−1)

ORYZA-V1 ORYZA-V2 ORYZA-V3

Sim (kg ha−1) Sim/Obs Sim (kg ha−1) Sim/Obs Sim (kg ha−1) Sim/Obs

Cal

28-March 2013 30.2 9382 9830 1.05 10,363 1.11 11,495 1.23
16-April 2013 30.6 10,289 10,002 0.97 10,002 0.97 11,300 1.10
30-May 2013 34.2 8928 8867 0.99 8990 1.01 10,253 1.15
17-June 2013 29.1 6607 7754 1.17 5001 0.76 5662 0.86

Average 31.0 8802 9113 1.05 8589 0.96 9678 1.08
d - 0.92 - 0.92 - 0.86 -

RMSE (kg ha−1) - 633 - 952 - 1426 -

Val

30-March 2012 30.1 11,903 8415 0.71 10,663 0.90 11,863 1.00
11-May 2012 31.0 10,794 6664 0.62 7793 0.72 8867 0.82

26-March 2014 28.3 12,055 8967 0.74 8967 0.74 9995 0.83
18-April 2014 29.2 11,349 8818 0.78 8818 0.78 10,059 0.89
2-May 2014 31.1 9432 9190 0.97 9190 0.97 10,500 1.11

21-May 2014 33.3 9028 9216 1.02 9216 1.02 10,545 1.17
5-June 2014 30.4 6708 7781 1.16 7781 1.16 8953 1.33
18-June 2014 27.2 7969 6679 0.84 6679 0.84 7705 0.97
3-April 2015 33.8 8020 8432 1.05 8636 1.08 9777 1.22

21-April 2015 34.6 7011 6852 0.98 7930 1.13 9083 1.30
5-May 2015 34.7 8574 6144 0.72 7531 0.88 8650 1.01

19-May 2015 32.3 9028 7776 0.86 8120 0.90 9277 1.03
3-June 2015 28.3 7364 8368 1.14 8368 1.14 9554 1.30

Average 31.2 9172 7946 0.89 8438 0.94 9602 1.07
d - 0.53 - 0.66 - 0.66 -

RMSE (kg ha−1) - 2089 - 1606 - 1530 -
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Table 5. Comparison of observed (Obs) and simulated (Sim) rice yield for the CLXL753 cultivar from
three versions of ORYZA from field data at Stuttgart, Arkansas under varying planting dates from
2012 to 2015. Calibration (Cal) results for 2013 were shown (with values in Table S2) along with
evaluation (Val) results for 2012, 2014, and 2015. The ratio of simulated to observed yield (Sim/Obs)
was indicated along with Wilmott’s index of agreement and RMSE. Average maximum daily air
temperature during flowering periods was shown as Tmax.

Tmax
(◦C)

Obs Yield
(kg ha−1)

ORYZA-V1 ORYZA-V2 ORYZA-V3

Sim (kg ha−1) Sim/Obs Sim (kg ha−1) Sim/Obs Sim (kg ha−1) Sim/Obs

Cal

28-March 2013 32.6 11,954 11,987 1.00 12,164 1.02 13,287 1.11
16-April 2013 30.0 12,004 11,969 1.00 11,969 1.00 12,773 1.06
30-May 2013 33.8 10,542 10,606 1.01 10,606 1.01 11,370 1.08
17-June 2013 31.5 9180 9442 1.03 8320 0.91 9427 1.03

Average 32.0 10,920 11,001 1.01 10,765 0.98 11,714 1.07
d - 0.99 - 0.97 - 0.90 -

RMSE (kg ha−1) - 137 - 444 - 883 -

Val

30-March 2012 31.3 13,820 10,265 0.74 11,849 0.86 12,330 0.89
11-May 2012 34.0 12,660 8146 0.64 9846 0.78 11,201 0.88

26-March 2014 27.6 11,147 10,936 0.98 10,936 0.98 12,188 1.09
18-April 2014 30.2 12,761 10,748 0.84 10,748 0.84 12,252 0.96
2-May 2014 31.0 12,105 10,435 0.86 10,435 0.86 11,403 0.94

21-May 2014 33.3 12,105 10,203 0.84 10,203 0.84 10,960 0.91
5-June 2014 30.6 9533 9285 0.97 9285 0.97 10,082 1.06
18-June 2014 27.6 9079 8142 0.90 8142 0.90 9395 1.03
3-April 2015 32.5 11,349 10,283 0.91 10,524 0.93 11,742 1.03

21-April 2015 34.6 11,449 8365 0.73 9658 0.84 11,082 0.97
5-May 2015 34.7 11,702 7485 0.64 9182 0.78 10,535 0.90

19-May 2015 32.9 11,349 9486 0.84 9896 0.87 11,316 1.00
3-June 2015 28.3 9634 10,200 1.06 10,200 1.06 11,150 1.16

Average 31.2 11,438 9537 0.83 10,069 0.88 11,203 0.98
d - 0.18 - 0.54 - 0.77 -

RMSE (kg ha−1) - 2429 - 1662 - 955 -

4. Discussion

Metrics for above-ground biomass and yield generally improved for ORYZA-V2
and ORYZA-V3 versus ORYZA-V1 across most temperatures and CO2 concentrations.
The largest improvements, particularly for RMSE, occurred between V1 and V2, with
incrementally fewer improvements between V2 and V3. This indicates the importance of
using an improved heat stress algorithm for both current and future climate assessments
on rice productivity. For example, ORYZA-V2, with the heat stress modification, resulted in
an averaged RMSE reduction of 520 kg ha−1 versus the V1 model for grain yield averaged
across all SPAR data (Table 2). An average reduction of 499 kg ha−1 was also observed
across all field data (Tables 4 and 5). Improvements in RMSE for ORYZA-V3, which
included the heat stress modification plus the leaf-level coupled gas exchange method,
were an additional 127 kg ha−1 and 240 kg ha−1 for SPAR and field data, respectively. The
simulation of grain yield in ORYZA is primarily driven by potential spikelet number and
less by the availability of assimilate, at least over the range of conditions typically used for
evaluating the rice model [20]. The improvement for the ORYZA-V2 version versus V1
observed for the field data also indicates that the occurrence of heat stress during anthesis is
a characteristic of the current climate in the U.S. Mississippi Delta region. Thus, improving
the simulation of heat stress on spikelet fertility and potential grain number may be more
important than the methodology used for carbon assimilation alone, especially if episodic
high heat events during anthesis and/or grain-fill periods continue to be problematic in
rice growing regions [53].
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Experimental data was insufficient to thoroughly evaluate interactions with CO2 and
temperature. However, the modifications implemented in ORYZA-V3 were effective in
improving performance metrics for grain yield in about 80% of all treatments studied.
These ranged from daytime temperatures between 24 and 36 ◦C and CO2 levels from
330 through 770 ppm. This range of improvement also included field data in which CO2
levels were at ambient levels, indicating that the gas exchange methodology is effective for
today’s climate as well as the future. Few other studies have directly tested the effectiveness
of different methods for simulating gas exchange processes for rice in response to climate
factors. Differences among yield predictions among multiple rice models to changes in
temperature and CO2 were observed by Li et al. [15] but were not attributed to specific
carbon assimilation methods. In contrast, Hasegawa et al. [54] reported greater responsive-
ness to CO2 for models that used a biochemical approach for modeling photosynthesis,
such as that used in the ORYZA-V3. Previous work with this approach showed how the
methodology could simulate reduced stomatal conductance in response to rising CO2
concentration. This, in turn, decreases transpiration, increases leaf and canopy temperature
(as much as 0.5 ◦C, not shown), and exerts an additional influence on photosynthesis [33].
However, despite these improvements, the ORYZA-V3 model over-estimated vegetative
biomass for some SPAR datasets (Table 1), which may reflect the need to also account for
photosynthetic acclimation [26], substrate-induced feedback inhibition [55,56], and/or the
influence of nitrogen and light attenuation in the canopy on photosynthetic properties [31].

All model versions were able to capture differences in cultivar sensitivity to tempera-
ture. This includes the relative broad temperature response of IR30 in which grain yield
formed as high as 37 ◦C (Table 2, Figure 1). Conversely, no yields were observed at 36 ◦C
above for Cocodrie and Jefferson. ORYZA-V2 and V3 were consistently more accurate than
the default version in terms of replicating these different temperature responses. Given
that these varieties were from different rice sub-populations (e.g., IR30 was from indica
and Jefferson and Cocodrie from tropical japonica), this result highlighted the need to con-
sider heat sensitivity differences among cultivars (Table S2). The broad range of planting
dates in field data resulted in the exposure of Wells and CLXL753 cultivars to maximum
average daily temperatures during the flowering period ranging from 27.6 to 34.7 ◦C
(Tables 4 and 5). The ORYZA-V3 and -V2 models showed significant improvement com-
pared with ORYZA-V1 in mimicking these yields. The ORYZA-V1 used a daily maximum
temperature [20] as the threshold for spikelet fertility which likely resulted in an overesti-
mation of the impact of heat stress for several field treatments for both varieties. The rice
flowers often open in the morning hours [57,58] when the air temperature is cooler than
the daily maximum. Thus, the improved heat sterility model used in this study, which
estimated the temperature at flowering time, was shown to predict heat-stress yield reduc-
tion more accurately under both controlled environments, where square wave temperature
profiles were used (Table 2), as well as more natural conditions in which temperatures
varied diurnally (Tables 4 and 5).

A strong linear relationship is known to exist between the quantity of dry matter
produced during the growth period between panicle initiation through anthesis and to
spikelet and grain number [20,59]. Factors associated with this response are likely related
to temperature, as a driving factor of developmental rate, and solar radiation. Comparisons
between simulated yields and growth stage durations for field-grown cultivars CLXL753
and Wells show high linear correlations (Table S3). Similarly, total seasonal solar radiation
accumulation was also positively correlated with yields. ORYZA-V3 and V2 exhibited
stronger correlations than -V1, suggesting that both the heat sterility improvement and
gas exchange methodologies are important in terms of capturing expected agronomic
relationships. Correlations were not significant between simulated yields and growth
duration or solar radiation for the IR30, Cocodrie, or Jefferson cultivars (Table S3). This
lower response may be associated with the narrower range of diurnal temperatures and the
similar quantity of solar radiation available across most of the SPAR chamber treatments.
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All model versions over-estimated aboveground biomass at air temperatures above
36 ◦C (Table 1). This was likely due to over-predictions of leaf area index as reported by van
Oort et al. [22], who suggested modelers consider reduced assimilate partitioning to the
leaves at lower or higher temperatures. Nagai and Makino [60] also observed differences in
the ratio of whole plant leaf area to dry weight when grown under different temperatures.
This suggests that specific leaf area values may need to be modified based on growth
temperature to properly account for leaf area expansion and associated carbohydrate re-
quirements. Differences in growth stage thermal sensitivities will be particularly important
to account for in terms of evaluating the effectiveness of changing planting dates as a heat
stress avoidance measure [61]. Further investigation into the possibility of different temper-
ature stress thresholds associated with different rice developmental stages, as suggested by
Samejima et al. [62], may also be warranted.

5. Conclusions

Improvements to heat sterility modules in rice models are crucial, and differences
in varietal temperature threshold responses need to be accounted for. Incorporation of
the simulation of gas exchange rates using a coupled leaf-level approach within a leaf
energy balance substantially improved end-of-season biomass and improved grain yield
simulations in both growth chamber and field studies across five different cultivars for
two different rice subpopulations. These methods more accurately replicated responses
compared with the original model approaches over a broad temperature range at two CO2
levels and thus can increase confidence when applying this modified ORYZA model for
climate assessment work. The improved ORYZA model was also able to capture the average
yield response of multiple cultivars to shifting planting dates across several years of field
data in which cultivars were thus exposed to different thermal regimes during flowering.
Results highlight the effect these improvements have on increasing the accuracy of rice
model predictions to current and future climate impacts, which can serve as foundational
pieces for improvements to other crop models. Our modifications to the ORYZA model
can be easily adapted to other models without substantially affecting the model structure.
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//www.mdpi.com/article/10.3390/agronomy12122927/s1, Figure S1: The measured response of
spikelet fertility (%) to hourly temperature during anthesis for heat tolerant, moderate and susceptible
cultivars as measured from Matsui et al. (2001), and (b) the modeled relationship between spikelet
fertility (Sh, 0-1) to accumulated heat stress for heat tolerant and sensitive cultivars as simulated with
main text equations (Equations (3) and (4)); Table S1: Data sources and experiments conducted in
SPAR units used to evaluate different model versions. Experiments included three cultivars sub-
jected to treatments with different day/night air temperature (T), CO2 concentration, and/or paddy
water temperatures. Some experiments were repeated with separate planting dates as indicated;
Table S2: Calibration values for cultivars IR30, Cocodrie, Jefferson, Wells, and CLXL753. Values for
IR30, Cocodrie, and Jefferson were obtained from the 1988 experiment at University of Florida, and
Cocodrie from the 28 and 24◦C ambient CO2 treatments conducted at USDA-ARS (Table 1); Table S3:
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season solar radiation and for different phenological stage durations for the five cultivars.
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Appendix A

Appendix A.1. Original ORYZA Model

Appendix A.1.1. Development

ORYZA [20] integrates growth and developmental rates at a daily time step, but hourly
climate data are estimated for certain functions. Development rate has a bilinear response
to temperature over hourly time periods. Hourly temperatures (Th, ◦C) are estimated by a
sinusoidal function of daily minimum (Tmin, ◦C) and maximum (Tmax, ◦C) air temperatures:

Th =
(Tmax + Tmin)

2
+

((Tmax − Tmin)× cos(0.2618(h − 14))
2

(A1)

where h is the time of day. Hourly increments in heat units (HUH, ◦Cd h−1) are given by
Equation (A2):

HUH =


0 Th ≤ Tbase or Th ≥ Thigh
(Th−Tbase )

24 Tbase ≤ Th ≤ Topt

(Topt −
(Th−Topt)×(Topt−Tbase)

(Thigh−Topt)
)/24 Topt ≤ Th ≤ Thigh

(A2)

where Tbase, Topt, and Thigh are the base, optimal, and maximum temperature for develop-
ment. The daily increment in heat units (HU, ◦Cd d−1) is then calculated as

HU = ∑24
h=1(HUH) (A3)

Four developmental stages are simulated (emergence, panicle initiation, flowering,
and physiological maturity), the progression of which primarily depends on cumulative
heat units which vary among cultivars.

Appendix A.1.2. Photosynthesis

Hourly leaf photosynthesis is based on an estimate of absorbed solar radiation and
light use efficiency. This rate is calculated separately for a single shaded and sunlit leaf at
each of three depths in the canopy using Equations (A4)–(A6):

An = Am(1 − exp
(
−εIa

Am

)
)− Rd (A4)
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Am =

(
49.57
34.26

)
× (1 − exp

(
−0.208(CO2 − 60)

49.57

)
) (A5)

ε = ε340ppm
(1 − exp(−0.00305CO2 − 0.222))
(1 − exp(−0.00305 × 340 − 0.222))

(A6)

where An is the net CO2 assimilation rate (kg CO2 ha−1 leaf h−1), Am is the CO2 assimilation
rate at light saturation, ε is the initial light-use efficiency (kg CO2 ha−1 h−1 (J m2 s)−1),
and other variable and units were defined in Table A1. Note that ε340 ppm is ε at a CO2
concentration of 340 ppm and linearly declines from a maximum of 0.54 when average
temperatures rise above 10 ◦C as per [63]. In these equations, constant parameter values
are used and assumed to be conserved across rice cultivars.

Leaf net photosynthesis is scaled up to the canopy level using a sunlit/shaded leaf
approach. At each depth in the canopy, absorbed flux for diffuse, direct, and total PAR
is computed for each leaf type using an exponential decay function for direct beam solar
radar radiation as in Equation (A7) based on [64]:

Ia = (1 − ρ)I0 exp(−k × L) (A7)

where Ia (J m−2 ground s−1) is the net photosynthetically active radiation (PAR) at depth L
in the canopy, I0 (J m−2 ground s−1) is the photosynthetically active radiation at the top of
the canopy, L is cumulative LAI (m2 leaf m−2 ground), ρ is the light reflection coefficient
of the canopy, and k is the canopy light extinction coefficient for PAR. Assimilation rate
and absorbed radiation are integrated using a three-point Gaussian method at each canopy
layer which is then scaled up to estimate the daily whole canopy net assimilation rate. Pho-
tosynthesis is allocated to the leaf, stem, and panicle with carbon partitioning coefficients
that vary with plant phenology and water or nitrogen stress.

Appendix A.1.3. Temperature Stress

ORYZA includes the option for users to enter an observed spikelet number as an
input value. If this option is used, heat sterility functions are not utilized, as this number is
assumed to reflect the potential grain number. However, in the more typical case where
spikelet number must be simulated in the model, the following methods are used to account
for cold and hot temperature stresses.

Spikelet sterility is affected by cumulative daily average temperatures below 22 ◦C
prior to anthesis as in Equations (8) and (9):

COLDTT = ∑ f
p(22 − Td) (A8)

Sc = 1 −
(

4.6 + 0.054 × COLDTT1.56
)

/100 (A9)

where COLDTT is cumulative cold temperature degree-days (◦Cd), Td is the daily average
air temperature, p and f are the dates of panicle initiation and flowering, and Sc is the
percentage sterility caused by cold.

Spikelet fertility is also reduced when averaged Tmax at the flowering period is above
a critical value as in Equation (A10), where the fraction of fertile rice spikelets reduced by
heat (Sh) is estimated as:

Sh = 1/(1 + exp(0.853(Tmax − 36.6)) (A10)

The actual stress factor on spikelet sterility at anthesis is calculated as the minimum
of these two stresses and reduces the number of spikelets which are then associated with
grain number and yield.
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Appendix A.2. Modified ORYZA Model

Appendix A.2.1. Development

The original bilinear model was replaced by a beta function (Equation (A11)) to more
accurately estimate hourly air temperatures. The normalized beta model ([65]) is given by
the following equation:

HUH =


(

Th − Tbase
Topt − Tbase

)( Thigh − Th

Thigh − Topt

)((Thigh−h)/(Topt−Tbase
))


TSEN

(A11)

where HUH, Th, Tbase, Topt (◦C), and Thigh were previously defined and TSEN determines
the curvature of the response.

Appendix A.2.2. Coupled Gas Exchange Model

The three sub-models (FvCB, BWB versions, and energy balance) were interdependent
and solved numerically using the Newton–Raphson method [66] through a nested iterative
procedure developed by [67]. This modification simulated the direct effects of CO2 on
stomatal closure and subsequent increases in leaf temperature which in turn influenced
photosynthesis and transpiration.

Leaf Photosynthesis

The Farquhar, von Caemmerer, and Berry (FvCB) [46] biochemical model of leaf pho-
tosynthesis as modified by [68] was used. The three rate-limiting steps in the FvCB model
for net leaf photosynthesis (An) were the ribulose 1·5-bisphosphate carboxylase/oxygenase
(Rubisco) rate (Ac), the ribulose-1,5-bisphosphate (RuBP) regeneration/electron transport-
limited rate (Aj), and the triose phosphate utilization (Tp)-limited rate (AP) (Equation (A12)
through Equation (A15)). Other inputs included the intercellular CO2 partial pressure (Ci)
estimated as a fraction of ambient CO2 partial pressure.

An = min
(

Ac, Aj, AP
)

(A12)

Ac =
(Ci − Γ∗)Vcmax

Ci + Kc

(
1 + O

Ko

) − Rd (A13)

Aj =
(Ci − Γ∗)J

4(Ci + 2Γ∗)
− Rd (A14)

AP = 3Tp (A15)

Ci= Ca × 0.7 (A16)

J =
σIa + Jmax −

√
(σIa + Jmax)

2 − 4θ Ia Jmax

2θ
(A17)

Parameter values used in this study were obtained from [33]. Temperature response
for Vcmax, Jmax and Tp were expressed in Equation (A18), where c is a scaling constant,
∆Ha is the enthalpy of activation, TL is leaf temperature in ◦C and R is the universal gas
constant (8.314 J mol−1 K−1), and parameter25 is the value of a parameter at 25 ◦C, ∆Hd is
the enthalpy of deactivation and ∆S is entropy. An estimate of each parameter at 25 ◦C was
obtained using the method of [69].

Tp = parameter25 ×
e
(c− ∆Ha

R×(273.15+TL )
)

1 + e
(∆S×(273.15+TL)−

∆Hd
R×(273.15+TL )

)
(A18)
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Stomatal Conductance

The Ball–Woodrow–Berry model (BWB) was used to simulate leaf stomatal conduc-
tance to water vapor [47]:

gs = g0 + g1 An
hs

Cs
(A19)

where gs is stomatal conductance (µmol m−2 s−1), hs is humidity at the leaf surface, Cs is
leaf surface CO2 concentration, g0 is the minimum conductance (mol m−2 s−1), and g1 is a
slope parameter. Parameter values used in this study were time invariant with g0 at 0.10
and g1 at 8.20.

Leaf Energy Balance Model

Leaf temperature (TL) was determined by a linear solution of the leaf energy bud-
get [70]:

TL = Th +
Rabs−εσT4

h − λgvVPD/Pa

cp(gh + gr) + λ
((

des(Th)
dT

)
/Pa

)
gv

(A20)

where Th (◦C) is hourly air temperature, Rabs (W m−2) is absorbed long wave and short-
wave radiation per surface leaf area, ε (0.97) is leaf thermal emissivity, σ (5.67 × 10−8,
W m−2 K−4) is Stefan–Boltzman constant per surface area, λ (44, kJ mol−1) is the latent heat
of vaporization at 25 ◦C, gv (mol m−2 s−1) is total water vapor conductance per surface leaf
area, VPD (kPa) is vapor pressure deficit of ambient air, Pa (kPa) is atmospheric pressure,
cp (J mol−1 C−1) is specific heat of air, gh (mol m−2 s−1) is heat conductance for boundary
layer per surface leaf area, gr (mol m−2 s−1) is radiative conductance per surface leaf area,
and es (kPa) is vapor pressure at leaf surface, and gb (mol m−2 s−1) is boundary layer
conductance to water vapor.

Root mean square error and Wilmott’s index of agreement [51] were given in
Equations (A21) and (A22).

RMSE =
√

N−1 ∑N
i=1(Oi − Si)

2 (A21)

d = 1 − ∑N
i=1(Si − Oi)

2

∑N
i=1
(∣∣Si − O

∣∣+ ∣∣Oi − O
∣∣)2 , 0 ≤ d ≤ 1 (A22)

where, N is the number of observations, and Oi and Si are observed and simulated values
for observation I, and d is the agreement index value.

Table A1. Equation variables and units.

Variable Description Unit Equation Number

An canopy or leaf net photosynthetic rate µmol m−2 s−1 (A4), (A12) and (A19)
Ia photosynthetically active radiation incident to leaf surface µmol m−2 s−1 (A4), (A7)
ε light use efficiency kg CO2 ha−1 h−1 (J m2 s−1) (A4), (A6)
Am CO2 assimilation rate at light saturation kg CO2 ha−1 leaf h−1 (A4), (A5)
Rd day respiration µmol m−2 s−1 (A4), (A13) and (A14)
I0 photosynthetically active radiation at the top of the canopy J m−2 ground s−1 (A7)
L cumulative LAI m2 leaf m−2 ground (A7)
ρ light reflection coefficient of the canopy (A7)
k canopy light extinction coefficient for PAR (A7)
Ac Rubisco carboxylation-limited rate µmol m−2 s−1 (A12), (A13)
AP triose phosphate utilization (Tp)-limited photosynthetic rate µmol m−2 s−1 (A12), (A15)
Aj RuBP regeneration-or electron transport-limited rate µmol m−2 s−1 (A12), (A14)
Ci Intercellular CO2 concentration µbar (A13), (A16)
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Table A1. Cont.

Variable Description Unit Equation Number

Γ* the CO2 compensation point in the absence of Rd µmol m−2 s−1 (A13)
Vcmax maximum carboxylation rate µmol m−2 s−1 (A13)
Kc Michaelis constant of Rubisco affinity for carbon dioxide kPa (A13)
O partial pressure of oxygen at Rubisco kPa (A13)
Ko Michaelis constant of Rubisco affinity for carbon dioxide kPa (A13)
J photosystem (PS) II electron transport rate µmol m−2 s−1 (A17)
TP: triose phosphate utilization µmol m−2 s−1 (A15), (A18)
Ca ambient CO2 concentration µbar (A16)
Jmax potential maximum electron transport rate µmol m−2 s−1 (A17)
σ electron transport efficiency of PS II – (A17)
θ a curvature parameter – (A17)
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