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Abstract: The scarcity and contamination of water, aggravated by the effects of Climate Change,
endanger the food supply, cause health problems to humans, and are a critical concern. New research
has been carried out to improve the quality of water used in the agricultural sector. One of them is
the technology of non-thermal plasma (NTP) generated by corona discharges using air as a working
gas. In this study, the NTP is applied directly and causing the activation to three water sources:
potable, wastewater from poultry farming, and rain, on the legume “lentil.” The results show that
the NTP applied to the different water conditions modifies the legume structure, obtaining a better
germination and growth rate. In particular, it found that the best condition to stimulate the plant
structure growth is using wastewater from poultry activities, which NTP activates. Likewise, it
identified the internalization of pathogenic microorganisms such as Escherichia coli and Salmonella
typhimurium since the early development of the plant. The bacteria reduction after NTP application is
detected due to the effect of the reactive species generated by the NTP. The NTP application for water
activation can represent an alternative to solve the demand for food since the development of the
structures of legumes, particularly of lentils, is promoted.

Keywords: agriculture; bacteria-internalization; non-thermal plasma; growth-plant; pathogen

1. Introduction

Agriculture is one of the most important productive sectors around the world. The
priority needs to supply food for human, its strong relationships with cattle raising, and
the development of new technologies for energy production. Together provide a source
of employment in countries, enhancing their economic position and, reducing poverty
and undernourishment in the population [1–4]. According to the Food and Agriculture
Organization of the United Nations [5], agriculture demand tripled in the period between
1960–2015, and it is expected by 2050, more than 9 billion people and a particular population
than 11 billion by the end of this century, will demand a significant accomplishment on
this sector.

Today, food safety is threatened by an alarming scenario, a powerful and rising
pressure on environmental resources [6–8]. It is reflected in the adverse effects generated
because of anthropogenic activities associated with urbanization, industrialization, and
pollution and the intensified conditions produced due to Climate Change [9,10]. Warming,
modifications in precipitation regimes, unpredictable rainfalls, and droughts have caused
severe alterations. Degradation of physical and chemical properties as well as damage of
microbiota in non-renewable source, the soil, has carried out its declination of nutrients and
hence, a stagnating of food production. With this source, water plays a vital role because
its availability is essential to supply requirements for the irrigation of crops. Worldwide,
some regions have been affected by water scarcity and the absence of safe effluents; then,
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technological alternatives to increase efficiency in the use and tolerance to the lack of this
vital source to benefit the germination and development of crops are required [11].

The most widely used method to significantly enhance plant germination and growth
is applying chemical substances such as fertilizers, pesticides, and plaguicides. Neverthe-
less, potential adverse environmental and human health effects have been identified and
remain a critical concern [12,13]. In the last years, different technologies have been proposed
to reduce the usage of chemical substances. However, there are disadvantages such as the
high cost of physical installations and equipment, modifications in seed properties, changes
in its behavior due to light, temperature, and oxygen, as well as significant periods required
during their implementation and adverse effects generated for by-products [14–18].

Recently, novel green technology has been developed to contribute to agriculture
applications: non-thermal plasma (NTP). This is generated by an intense electric field
between two conductors and gas, resulting in a partially ionized gas containing ions,
electrons, reactive chemical species, and UV radiation [19]. Some research works have
demonstrated significant efficiencies incrementing of seedling development of NTP that
is applied to activated water or directly on seeds, implying low environmental impact.
These effects are attributed to the stimulation of sources and the change of their absorption
properties, generated by the production of hydrogen peroxide, nitrate, and free radicals,
which benefit the efficiency of water use [20–23]. Additionally, it is detected a protective
effect associated with the inactivation of microorganisms without causing any damage to
the organic structures or altering the physicochemical and organoleptic properties of food.
Some treated seeds correspond to black soybean, tomato, pepper, maize, lettuce, radish,
rapeseed, spinach, rice, and lentils [24–28].

Many studies used tap water to carry out experiments for agronomy applications [29,30];
unfortunately, in many countries, wastewater is required to irrigate crops due to water
scarcity or unavailability in some places with the required quality parameters. It is worth
mentioning that irrigation with polluted water significantly increases the risk of food
contamination; hence, it represents a severe risk to human health. According to estimations
by the Centers for Disease Control and Prevention [31], 60% of infectious diseases in people
are extended from animals by different routes, which include: direct and indirect contact,
vector-borne, foodborne, and waterborne. Hirneisen et al. [32] and Wright et al. [33]
highlight the importance of the knowledge of bacteria-root relation because its interaction
could represent a source of pollution and a potential risk for the human being, a product of
bacteria migration through the structures of the plant. Furthermore, some research works
focused on the germination rate under the influence of NTP. Nevertheless, they exclude
important and specific parameters such as those involved in the growth of root, stem, and
development of leaves, which are structures that enable anchorage of the plant to the soil,
provide support, and absorb the nutrients and water that it requires in photosynthesis as
well as in biochemical processes. The addition of these factors makes it possible to tolerate
adverse conditions resulting from Climate Change enabling their internal flow for the
development of the plant and establishing a beneficial relationship with the microbiota and
environment [34,35].

This study considered the lentil as a seed high in protein, fiber, and micronutrients.
This has importance recognized by the Food and Agriculture Organization of the United
Nations [36] as one of the most promising legumes to help solve problems in the world of
hunger and malnutrition. Evaluated the effects of the NTP generated by corona discharge
under atmospheric pressure conditions in the early growth phase of the lentil plant. This
was carried out in two stages with a plasma reactor configuration, which allows it to be
adapted to the plant structures. The first treatment stage involves activating potable water,
rainwater, and residual water from a real effluent from poultry farming by NTP before
irrigation. In the second stage, the seed/plant receives direct application by NTP after its
irrigation stage with the same water sources. Both treatments were applied six times on
average for 15 days and compared with experiments used as patterns, with seeds irrigated
with potable water, wastewater, and rainwater, without any treatment. Also, in the case of
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seeds irrigated with wastewater from poultry farming, carried out the internalization of
Escherichia coli (E. coli) and Salmonella enterica serotype typhimurium (S. typhimurium) bacteria
in the roots and stem of lentils.

2. Materials and Methods
2.1. Lentil Seeds for Experimental Tests

Lentil seeds were separated from solid wastes and washed with sterile water. Then,
they were dried and cleaned with ethyl alcohol, and moisture was removed by exposure to
environmental conditions (average temperature and pressure: 300 K, ~1 atm).

Lately, forty lentil seeds were placed in a sterile porous surface, a cotton layer
(5 mm thickness) integrated in the bottom of each glass vessel (480 cm3 volume), to simulate
soil conditions. We do not consider this last source to avoid interferences attributed to
minerals and microorganisms in the development and growth of plants. Then, irrigation
with 25 cm3 volume of liquid was carried out according to the following considerations:

• Experimental test 1: Potable water (PW).
• Experimental test 2: Activation of potable water by non-thermal plasma (ANTP-PW)

for subsequent irrigation of lentils.
• Experimental test 3: Direct application of non-thermal plasma on lentils irrigated

previously with potable water (DNTP-PW).
• Experimental test 4: Wastewater from poultry farming according to the physical and

microbiological conditions generated within 24 h. Water could contain wastes from
chicken feed, which has 12.0% raw protein, 3.5% crude fiber, 12.0% moisture, and
pH = 6.4 because of a mixture of ground cereals such as sorghum, corn, and wheat
(FW).

• Experimental test 5: Activation of wastewater from poultry farming by non-thermal
plasma (ANTP-FW) for watering the lentils afterward.

• Experimental test 6: Direct application of non-thermal plasma in lentils irrigated
previously with wastewater from poultry farming (DNTP-FW).

• Experimental test 7: Rainwater, harvested in the rainy season, 30 min after the rain
started (RW).

• Experimental test 8: Activation of rainwater by non-thermal plasma (ANTP-RW).

The time of experimental evaluation for lentil growth was 15 days, in which tests
2, 3, 5, 6, and 8 received six times the proposed treatment by NTP. The seeds were grown
under exposure to environmental conditions (average temperature and pressure: 300 K,
~1 atm). Morphological parameters concerning their length and thickness for the stem and
the primary root were determined, whereas the leaves were counted. In cases: 4, 5, and 6,
microbiological analysis was carried out to determine the internalization of E. coli and S.
typhimurium bacteria in stem and root.

2.2. Configuration of the Non-Thermal Plasma Reactor

To carry out the experiments, the configuration of the reactor, according to Figure 1,
was implemented. The negative electrode is a truncated cone shape manufactured with a
mesh of stainless steel 304 with 38.5 cm2 in surface area. It can be placed inside/outside
of a square glass vessel of 480 cm3, according to the plant size, to prevent damage to
its structures.

The reactor has a gap of 1.0 cm; the anode was a cylindrical pin of 0.2 cm2 surface area
of stainless steel. It was located at the superior side of the experimental setup, concentrically
to the cathode. The power supply to create NTP and devices for measurement of electrical
parameters are shown in Figure 2. The first consists of an oscillator with a single transistor,
which receives an input signal of 5 V of direct current and generates a pulsed signal with
a high frequency in the primary coil of an inverter transformer to be amplified in the
secondary winding of it. Lately, a voltage multiplier operates to obtain an output periodical
and under-damping signal with an average voltage of 347 kV, a pulse width of 100 µs, and
a frequency of 10 kHz. Voltage and current parameters were monitored by an oscilloscope
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Tektronix TBS 1152B-EDU through a high voltage divider and a current probe Hantek
CC-65, respectively.
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2.3. Activation of Hydric Supply by NTP and Irrigation Stage

For experimental tests, 2, 5, and 8, activation of a 25 cm3 volume of the hydric source
was carried out in a cleaned and sterile glass vessel. Cathode and anode were inserted
into the vessel, and NTP was applied continuously for 120 s, maintaining air injection in
the electrical discharge area. When the activation time finished, the vessel was closed and
shaken by 120 s to be allowed to stand undisturbed for 1800 s. It was established according
to the range value of the half-life time of ozone reported by Hoigné [37], Langlais, et al. [38],
and Epelle, et al. [39]. Later, lentils were irrigated homogeneously using the activated
water produced previously. A similar activation process for water generated from poultry
activities was carried out, requiring an additional stage to remove particles of large size
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before starting the treatment. This process was repeated every two days, according to the
hydric requirements of lentils, until complete six applications of the treatment.

2.4. Direct Application of NTP

For experimental tests 3 and 6, direct application of NTP required emptying homoge-
neously 25 cm3 volume of potable water directly in a glass vessel containing lentil seeds
in germination and, lately, growth. When the cotton base absorbed water, the corona
reactor was adapted to apply NTP. The anode of the reactor can be able to be adjusted
according to the size of the plant. As long as lentils did not have an ideal size of 50 mm,
the positive electrode could be inserted into the glass vessel to carry out the treatment.
When length had a superior value of 50 mm, the anode was placed outside of the container,
maintaining a gap to promote contact between the synergistic effects produced by applying
NTP and seeds/plants. At the final stage of direct implementation of plasma, vessels
containing seeds/plants were closed for 1800 s. It was carried out every two days on
average, considering the needs of lentils.

2.5. Measurement of Structures in Lentil Plants

At the end of the established period (15 days), lentil plants were carefully extracted to
determine the dimensions of the root and stem using a Vernier measuring device. Then,
the average length (L) of these structures was determined according to Gao et al. [40]:

L [cm] = TL [cm]/TP (1)

where TL corresponds to the measured length of plants analyzed according to each structure
and TP, the total number of plants.

In the case of the determination of the number of leaves, it was determined by counting
the units of these structures per plant. Results in this study are presented in accordance to
the statistical analyses indicated by Riley [41].

2.6. Microbiological Analysis of Water from Poultry Farming

After the remotion of particles of considerable size, took a homogeneous sample of
poultry farming for microbiological analysis.

An aliquot of 0.1 mL was taken to be inoculated in Petri dishes containing 25 mL
of Violet Red Bile agar (VRB agar, NEOGEN), used as a culture medium, by the spread
plate technique. Serial dilutions were prepared and inoculated by triplicate; incubated in
an inverted position at 310 K during 18–24 h. Later, bacteria counting was carried out to
determine bacteria concentration in water by:

BC [CFU/mL] = AB·DF/VI (2)

where BC is the bacteria concentration, AB is the average bacteria, DF is the dilution factor,
and VI is the volume of inoculum plated.

For each analyzed sample, it is essential to have a control Petri dish with VRB agar
without inoculum as a reference to ensure the sterility of the culture medium used in the
experiments.

2.7. Microbiological Analysis for Internalization Bacteria

After treatments (experimental tests 4, 5, and 6) were carried out, when the established
period for growing seeds irrigated with wastewater from poultry farming finished, the
surface of the lentil was cleaned with ethyl alcohol to be divided into two sections: stem
and root. Then, each segment (1 g) was mixed and ground in 10 mL of sterile water. Past
10 min, a pattern sample of liquid was available to achieve serial dilutions (1:101 to 1:106)
and start the microbiological analysis to determine the bacteria concentrations which were
internalized in the plant.
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The microbiological growth medium used to determine bacteria concentration inside
the structures of lentils was VRB agar. A volume of 25 cm3 of the microbiological medium
at 318 K was emptied in Petri dishes (by triplicate); once solidified, an aliquot of 0.1 mL of
each pattern sample, and dilutions, were obtained from stems and roots was distributed by
spread plate technique. Then, inoculated Petri dishes were incubated at 310 K for 18–24 h,
and quantitative internalization of E. coli and S. typhimurium in the plant was carried out by:

log10 internalization = log10 (C0 − C1) (3)

where C0 is the bacteria concentration of reference (pattern sample or without the ap-
plication of treatment) and C1 the is bacteria concentration detected after the treatment
application by NTP. Bacteria concentration is determined according to (Equation (2)).

3. Results

• The experimental conditions established in the tests of this work allowed the iden-
tification of effects generated in different hydric supplies by the application of NTP.
Figure 3a shows the voltage and current waveforms detected in corona discharge with
the injection of air (Figure 3b), in the early development of structures of lentils.
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In the following sections, the effects generated in lentils are described:
Main root: According to Table 1, lentil plants irrigated with PW reach a mean length of

33.96, s.e. 0.73 mm. The application of NTP stimulates the growth of this structure; plants
irrigated with ANTP-PW are 44.5% taller than PW, while by DNTP-PW, lentils achieve an
additional percentage of the root growth (74.8%).

The thickness of the main root (1.00 with s.e. 0.04 mm; Table 2, PW) is another modified
parameter in plants due to its interaction with NTP. Both treatments using this technology,
by activation (Table 2, ANTP-PW) or direct application (Table 2, DNTP-PW) on the plant
after its irrigation, indicate that thickness of the root shows a thickening of at least 38%
after 15 days of treatment.
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Table 1. Length of the root of lentil plants in experimental tests.

Experimental Test Mean Value
Length of the Root [mm]

PW 33.96 with C.I. (32.43, 35.50)
ANTP-PW 49.06 with C.I. (46.19, 51.93)
DNTP-PW 59.39 with C.I. (55.50, 62.73)

FW 43.37 with C.I. (41.40, 45.34)
ANTP-FW 62.59 with C.I. (59.99, 65.19)
DNTP-FW 52.28 with C.I. (50.34, 54.22)

RW 65.12 with C.I. (62.48, 67.77)
ANTP-RW 42.80 with C.I. (39.90, 45.69)

Table 2. The thickness of the root of lentil plants in experimental tests.

Experimental Test Mean Value
Thickness of the Root [mm]

PW 1.00 with C.I. (0.92, 1.08)
ANTP-PW 1.38 with C.I. (1.23, 1.53)
DNTP-PW 1.43 with C.I. (1.32, 1.55)

FW 1.02 with C.I. (0.95, 1.08)
ANTP-FW 1.43 with C.I. (1.16, 1.71)
DNTP-FW 1.03 with C.I. (0.91, 1.15)

RW 1.41 with C.I. (1.29, 1.52)
ANTP-RW 1.42 with C.I. (1.28, 1.55)

Irrigation with the effluent of FW (Table 1) enables a mean growth in the root of
43.37 with s.e. 0.94 mm, which is 27.7% higher than the hydric supply using PW. About
the thickness of the main root, it is 1.02 s.e. 0.03 mm (Table 2, FW). When water from
poultry farming is activated (Tables 1 and 2, ANTP-FW), the length of the root reaches
44.3% additional, and 40.2% in its thickness compared with the usage of the same hydric
source, but without the application of any treatment (FW). Considering the same reference,
the main root increases 20.5% in length, and ~1.0% in its thickness by direct application of
NTP on the irrigated plant (Tables 1 and 2, DNTP-FW).

By using RW to satisfy the hydric requirements of lentils, it is possible obtaining
the highest mean length in the root (65.12, s.e. 1.24 mm; Table 1), and a mean thickness
of 1.41 s.e. 0.05 mm (Table 2). With respect to RW, the closest performance is achieved
through the use of ANTP-FW, which it is ~4% slightly lower in its mean length, but it is
~1% superior in its mean thickness.

When NTP is used to activate rainwater (Tables 1 and 2, ANTP-RW), lentil plants are
34.3% lower in mean length of the root than RW, but 26.0% superior in the same parameter
to PW. In its thickness, an increment of 0.7% for RW used for irrigation is detected.

Stem: Hydric supply for lentils using PW achieves a mean height of 31.83 with
s.e. 0.86 mm (Table 3) and a mean thickness of 0.95 with s.e. 0.03 mm (Table 4). By the
application of NTP on PW, an increment of 54.2% in height structure is registered when
this hydric source is activated (ANTP-PW) and, 22.6% in the case of direct treatment on the
irrigated plant is carried out (DNTP-PW). Relative to the thickness of the stem (Table 4),
no significant differences are detected in the implementation of treatments by NTP using
potable water.

By the employment of FW, a mean height of 88.68 with s.e. 1.24 mm is generated,
it reflects a significant mean difference (~178%) with respect to the irrigation with PW
without the influence of NTP. In relation to FW, the performance in the development of the
height of the stem enhances by more than 13.0% due to both treatments applying NTP.

In the case of RW, the height of the stem reaches 45.87 with s.e. 1.04 mm, which is
44.0% higher than PW but, 93.3% lower than FW. When RW is activated, a considerable
increase is detected in the stem of height (39.0%).
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Table 3. Height of the stem according to the applied treatment after fifteen days.

Experimental Test Mean Value
Height of the Stem [mm]

PW 31.83 with C.I. (29.96, 33.70)
ANTP-PW 49.08 with C.I. (46.34, 51.81)
DNTP-PW 39.03 with C.I. (35.53, 42.53)

FW 88.68 with C.I. (86.10, 91.27)
ANTP-FW 102.40 with C.I. (98.65, 106.16)
DNTP-FW 100.64 with C.I. (97.96, 103.31)

RW 45.87 with C.I. (43.64, 48.09)
ANTP-RW 63.75 with C.I. (60.17, 67.34)

Table 4. The thickness of the stem registered as a result of different treatments.

Experimental Test Mean Value
Thickness of the Stem [mm]

PW 0.95 with C.I. (0.89, 1.01)
ANTP-PW 1.07 with C.I. (0.94, 1.20)
DNTP-PW 0.99 with C.I. (0.88, 1.09)

FW 0.95 with C.I. (0.87, 1.03)
ANTP-FW 0.98 with C.I. (0.85, 1.11)
DNTP-FW 0.96 with C.I. (0.89, 1.04)

RW 1.00 with C.I. (0.95, 1.06)
ANTP-RW 1.03 with C.I. (0.94, 1.12)

Opposite to the root case, NTP does not have a substantial influence in the develop-
ment of a more robust structure in the stem when any of the hydric sources evaluated in
this work are used.

Leaves: Features derived from hydric supply have influenced the development of
leaves in lentil plants. Table 5 is observed that, when PW is used for the irrigation of plants,
it is detected the lowest mean number of leaves (0.67 with s.e. 0.21) in the experiments
carried out. Likewise, this parameter is increased by the application of NTP in PW: 6.5-fold
by activation (ANTP-PW) and, 5.8-fold by direct implementation (DNTP-PW) on the
irrigated plant.

Table 5. The number of leaves in lentil plants irrigated with the hydric sources proposed in this work.

Experimental Test Mean Value
Number of Leaves

PW 0.67 with C.I. (0.22, 1.12)
ANTP-PW 5.00 with C.I. (3.76, 6.24)
DNTP-PW 4.55 with C.I. (4.08, 5.01)

FW 7.50 with C.I. (6.22, 8.78)
ANTP-FW 9.45 with C.I. (7.32, 11.59)
DNTP-FW 6.17 with C.I. (5.12, 7.18)

RW 5.25 with C.I. (4.26, 6.24)
ANTP-RW 3.67 with C.I. (2.89, 4.44)

Modification of aqueous source to FW in order to satisfy the requirements of plants,
benefit the development of leaves. In this regard, the mean value of leaves corresponds to
7.50 with s.e. 0.60 mm. The application of NTP has a positive influence (>25%) when it is
applied to activate the FW.

In the case of RW, the number of leaves increases 6.8-fold with respect to the use of PW;
but when ANTP-RW, its positive influence is reduced ~30% to contribute to the efficiency
in the development of these structures.
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Figure 4 presents the final stages of treatments carried out using potable water, wastew-
ater from poultry farming, and rainwater.
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In the case of wastewater from poultry farming, microbiological analysis indicates a
reduction in the concentration of S. typhimurium and E. coli bacteria at the final implementa-
tion of treatments by NTP.

Internalization of S. typhimurium bacteria. In experimental tests 4, 5, and 6 (Figure 5)
FW was used to irrigate lentil seeds. For S. typhimurium bacteria, the initial average concen-
tration in raw wastewater was 1.41 × 107 CFU/mL (mean 7.14-log10 with s.d. 0.15), and the
identified structure with a higher concentration in the plant was the root. When wastewater
is applied to lentil plants, S. thypimurium bacteria is internalized in 54.2% and 93.8% in
stem and root, respectively, concerning the reported initial concentration. When NTP
treatment is performed, applying it directly to the plant after its supply with wastewater
from poultry farming, the internalization of bacteria is decreased by 1.22 (~94.0%) for the
stem. At the same time, the root is detected 0.24-log10 (42.0%) reduction in relation to the
test in which raw wastewater is used for hydric supply. Considering the same reference,
when wastewater was activated by NTP before the irrigation stage, the highest reduction
of bacteria internalized in the root is detected in this case (0.45-log10, 65.0%), while in the
stem, the concentration reaches a decrease in 0.66-log10 (59.5%).
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Internalization of E. coli bacteria. The concentration of E. coli bacteria in raw wastew-
ater is 7.00 × 106 CFU/mL (mean 6.84-log10 with s.d. 0.90; Figure 6); internalization of this
microorganism in lentil plants is superior in root than in stem to the pattern sample. When
the plant is irrigated with raw wastewater without any treatment, bacteria penetrate the
stem at 62.4% and root at 84.0%. Once the NTP is applied directly to lentil plants after they
have been irrigated, registered a reduction of 46.7% in stem and 21.8% in root in relation to
the internalization registered using raw wastewater. On the other hand, when NTP is used
to activate wastewater to be supplied to the plant, before the irrigation process, bacteria
reach a decrease of 1.03-log10 (90.7%) in stem, and 0.26-log10 (44.7%) reduction in the root,
with respect to the supply with raw wastewater from poultry farming.
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Figure 6. Internalization of E. coli bacteria in lentil structures. Experimental conditions: (0) raw
wastewater from poultry activities, (1) without treatment application, (2) direct application of NTP
to plants irrigated previously with wastewater from poultry activities, and (3) activation of raw
wastewater used for irrigation of seeds.
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4. Discussion

The growth of the organic structures in lentils depends on water. The unavailability of
this vital source causes stomata closure and a reduction in the development of structures,
deriving in the declination of the photosynthesis process. Under these conditions, produc-
tion is affected, and the plant’s susceptibility to being damaged by pathogens can cause
infections, prompting affection in the end-consumer [42–45]. In response to the current
situation of scarcity and contamination of water, our research focuses on the application of
water sources of different characteristics. In this situation, is the NTP applied directly or
by activation.

Lentil crop belongs to the legumes (Fabaceae family), which is considered dormant,
so it needs a minimum stimulus to initiate its germination and growth stage [46]. In this
regard, NTP has a positive influence as a stimulus agent in the development of lentils,
whether applied directly or by activation of hydric supply. In this study, it is registered
for both treatments, the main stimulus activity for germination within the first two days
of the testing stage. Performance reaches ~6.0% superior to patterns (potable water or
wastewater). In addition to this, the selected period of 120 s for the application of treatments
is in accordance with those established for different leguminous plants [47]; hence, lentils
could be considered as a seed capable of receiving NTP without it representing a risk or
cause affectation in its growth.

Properties acquired by water and wastewater during NTP treatments, with the pro-
posed configuration reactor, contribute to increasing lengths [29] and thickness of structures.
Root and stem structures as well as the development of leaves are essential in the photosyn-
thesis process. According to the results, the most effective treatment to benefit the growth of
the primary root using potable water is the direct application of plasma. At the same time,
this source is replaced by wastewater from poultry farming, and activation is the suggested
treatment for developing the structures: root, stem and leaves. During the implementation
of treatments, potable water and wastewater from poultry farming undergo a slight decline
in pH (0.2) [30]. Zhou et al. [23] detected the reactive nitrogen species as substances able
to partially acidify the aqueous medium, which could be associated with an increment
in nitrogen fixation reported in legumes due to the implementation of NTP process [48].
It is known that a basic nutrient for plant growth is nitrogen [49,50]; plants can absorb it
as nitrate (NO−

3 ) or ammonium (NH+
4 ). This absorption varies for each vegetable [51,52].

Two routes of ammonium assimilation have been identified. First, it is reduced to nitrite
(NO−

2 ) by the activity of the enzyme nitrate reductase. Then it is converted to NH+
4 by the

action of nitrite reductase to finally incorporate the latter into amino acids by glutamine
synthetase and glutamate synthase [53].

In addition to this mechanism, researchers state that due to the production of reac-
tive radicals and the synergistic effects of UV radiation, shock waves, and electric fields,
the irreversible erosion of seed occurs [54] by the oxidation process of complex organic
structures. This causes surface modification and, therefore, hydrophilicity, incrementing
efficiency in the use of water used for the growth of plants [46,55]. These beneficial effects
are higher when the ambient air is supplied to generate NTP [56,57].

On the other hand, rainwater generates better results for the main root and leaves
without the application of any treatment. However, in relation to its stem, its activation
enhances the height of this structure. It is attributed to the properties of rainwater, acquired
during the interaction water-atmosphere [58], which confers to it, features such as a resource
that is difficult to substitute. Nevertheless, in this regard, NTP confers to water and
wastewater through the implementation of NTP, similar behavioral trends to rainwater.
Some studies report that rainwater contains nitrogen compounds such as NO−

2 , NO−
3 , and

NH+
4 [59,60]. And that livestock and poultry waste have significant amounts of N, P, K,

and other micronutrients; in such a way that high concentrations of NH3 (ammonia), NO−
3

y NO−
2 have been determined [61].

The biochemical activity of NTP discharges into water, known as Plasma Activated
Water (PAW), derives from synergistic effects between highly reactive oxygen and nitrogen
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species (RONS). RONS in PAW, typically include long-lived species such as NO−
3 , NO−

2 ,
hydrogen peroxide (H2O2), and ozone (O3), with typical half-lives of several minutes, sev-
eral days, and years, and other short-lived species such as hydroxyl radicals (OH•), nitric
oxide (NO•), superoxide (O−

2 ), peroxynitrate (OONO−
2 ) and peroxynitrites (ONOO−) [51].

These RONS act over potable water, wastewater from poultry farming, and rainwater in a
different form. Furthermore, long-lived species have been shown to possess bactericidal
properties [51]. The results in Figure 4 indicate the beneficial interaction of the RONS
generated with the NTP. Implying a more significant growth of the lentil with the Wastew-
ater from poultry farming because this type of water has a higher content of nitrogen
compounds.

We consider that the concentrations of NO−
3 and NH+

4 contained in each water type
influence the lentil plant growth in the root and the stem. However, the mechanisms under
which these compounds act need to be clarified; we are initiating the understanding to
better use complex molecular mechanisms for the benefit of plant resources and to improve
the yield of agricultural plants. For this reason, it is necessary to carry out further studies to
establish the reasons for the changes induced by NTP in the physiological and biochemical
processes of plants and, in this way, determine the fundamental facts in basic and applied
research in this area of study. It is possible to highlight that the treatment using the NTP
of the polluting industrial effluents deposited in the water has indicated that they do not
cause harmful effects on the environment and the health of living beings [62,63].

In addition to the positive influence of NTP in improving physical parameters in the
development of seeds, this study determines the internalization caused by the pathogen
microorganisms E. coli and S. typhimurium under the influence of the applied treatments.
According to the wastewater source, S. typhimurium bacteria achieve a higher concentration
(1.41 × 107 CFU/mL) than E. coli bacteria (7.00 × 106 CFU/mL). In the internal structures of
lentils, both bacteria are in higher concentration in the primary root than in the case of the
stem, it could be attributed to the roughness and the contact time between the hydric supply
and the root under environmental conditions, which allow bacterial penetration since the
early stage of plant development. Nevertheless, when treatments by NTP are applied,
an influence is detectable in bacteria concentration in the analyzed organic structures. S.
typhimurium bacteria significantly reduce stem structure when receiving direct treatment.
In this case, it is hypothesized that synergistic effects generated by the direct application of
NTP interact heavily with bacteria retained in the stem, complicating its internalization
motility, and making it more vulnerable than E. coli bacteria in this structure. On their
behalf, E. coli bacteria show higher vulnerability through the activation of wastewater both
in the stem and in the root than direct application of NTP, which these bacteria can resist.

The weak layer of Gram-negative bacteria is an influencing factor in the reduction
of both pathogen microorganisms considered in this study [64]. This condition makes
them more susceptible not only to the reactive radicals and chemical compounds of long
short-term (hydrogen peroxide, nitric acid [65]), but also to stress mechanisms that in-
volve synergistic exposure to UV radiation [55] and electric fields [64], even though NTP
treatments do not cause significant DNA damage [66].

5. Conclusions

Non-thermal plasma (NTP) technology is currently being carried out for application
in different areas such as materials, health, food processing, and agriculture, with the
advantage that the process is carried out at a low temperature, making it very suitable
for heat-sensitive materials. With the nature of NTP, the versatility of the design, how
inexpensive it is to implement, and being environmentally friendly, NTP offers unique
advantages over traditional processing technologies. This manuscript reports the effect of
potable water, wastewater from poultry farming, and rainwater treated with NTP directly
and indirectly (PAW) on the legume lentil’s development. The results show that the different
types of water used and treated with NTP in the legume (lentil) are promising because its
growth quality is improved, which positively affects this legume. In the conditions where
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the experiments were carried out, in the first instance, the activation using the NTP of the
wastewater from poultry farming was better. This is because it presents a more significant
legume growth and a reduction in the bacteria E. coli and S. typhimurium. The latter is
expected since it avoids pathogens’ adverse effects due to NTP’s properties. In other words,
it can use the NTP advantageously in the decontamination of legume surfaces and without
using chemical products that pollute the environment. This result is interesting since the
wastewater from poultry farming can be activated before the irrigation of the plant, taking
advantage of the bioactivity of PAW.

On the other hand, rainwater is a vital source of crops. It was determined that the
non-thermal plasma confers properties to this type of water also cause positive effects on
the development of lentil plants. Based on the results, it is found that the composition of
the water has an essential role in the germination, development, and growth of the legume
and could be expected in plants in general. This is because germination begins with water
absorption, and the action of NTP could significantly influence its absorption capacity.

Based on the studies carried out in the present investigation, it is observed that there
is an excellent potential for the application of the NTP for the activation of water. With
more research and development, given how approached these studies. The proposed PAW
could be promoted for the realization of a small prototype for the use of domestic crops
and, in the future, for industrial use. In other words, significant ideas have been identified
to carry out future studies in the area.
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