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Abstract: Aboveground biomass (AGB) in managed grasslands can vary across a suite of environ-
mental and management conditions; however, there lacks a quantitative assessment at the national
scale of China. Although the potential effects of individual drivers (e.g., species, nutrient fertilization,
and water management) have been examined in China’s managed grasslands, no attempts have
been made to comprehensively assess the effects of multiple variables on AGB. Using a meta-data
analysis approach, we created a database composed of AGB and associated attributes of managed
grasslands in China. The database was used to assess the responses of AGB to anthropogenic factors,
in addition to a suite of natural variables including climate, soil, and topography. The average
AGB in managed grasslands of China is approximately 630 g m−2 of dry matter, ranging from 55 to
2172 g m−2 (95% confidence interval). Medicago sativa is the most widely planted species in China’s
managed grasslands, followed by Elymus dahuricus and Bromus japonicus. The national average AGB
of these three species was around 692, 530, and 856 g m−2, respectively. For each species, AGB shows
a large discrepancy across different places. In general, grassland AGB depends substantially on
species, environments, and management practices. The dependence can be well described by a linear
mixed-effects regression in which a series of biotic and abiotic factors are used as predictors. We high-
light that establishing managed grassland can potentially contribute to not only AGB enhancement,
but also grassland restoration on degraded natural grasslands.

Keywords: aboveground biomass; managed grasslands; plant species; management; climate;
soil; topography

1. Introduction

Covering nearly 40% of the Earth’s surface, grassland is the world’s largest terrestrial
ecosystem [1], providing food and ecosystem services and contributing substantively to
regulating the global carbon cycle and climate change [2]. Due to either anthropogenic
activities (e.g., cultivation and overgrazing) or climate change (e.g., drought), grasslands have
been degrading across the world, leading to substantial decreases in the production of forages
and livestock [2,3]. To combat terrestrial ecosystem degradation, the United Nations (UN)
General Assembly declared 2021–2030 the “UN Decade on Ecosystem Restoration”, which
outlined the urgent need for global restoration of degraded lands, including grasslands.

China has the world’s second largest area of grasslands, a majority of which has been
degrading to some extent due to both climate change and/or anthropogenic activities
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since more than half a century ago [4–6]. Grassland degradation is characterized mainly
by decreases in plant species diversity, plant cover, and productivity. Synchronously oc-
curring with degradation, grassland biodiversity and productivity have also been widely
declining [7,8]. China’s grassland aboveground biomass (AGB) was generally 30–50%
lower than that of approximately 60 to 70 years ago [9]. Decreases in grassland AGB pose
massive threats to food security and ecosystem health. To address this issue, the estab-
lishment of managed grasslands by planting grass species with high quality and quantity
forage production and/or supplying additional nutrients and water has widely been recom-
mended [10,11]. However, to date, managed grasslands make up only approximately 3% of
China’s total grassland area, which is substantially lower than those in developed regions
such as Europe and Australia. Overall, to meet the growing needs of forage and livestock
production, the establishment of managed grasslands is becoming an increasing trend [11].

Over the past two decades, a number of managed grassland experiments aimed at
assessing the responses of plant productivity to environmental and anthropogenic factors
have been conducted across China (Appendix B). Specifically, in this study, managed
grasslands are defined as the grasslands managed by introducing species with high-quality
and high-quantity forage production combined with a series of recommended management
practices, such as nutrient fertilization and irrigation [11]. Most existing field-scale managed
grassland experiments, however, focused on the effect of a single factor, such as plant
species [12,13] and nutrient fertilization [14,15], on AGB. It is well known that grassland
productivity is coregulated by both natural and anthropogenic attributes, such as irrigation
and climatic, edaphic, and topographic conditions [16–19]. However, the regulating effects
of these drivers have seldom been assessed [9], leaving a gap in knowledge on the dynamics
of grassland AGB under changing environments and/or management. Moreover, potential
forage production through establishing managed grasslands remains unclear at the national
scale, which prevents policy makers and local shepherds from projecting the expected
benefits from establishing managed grasslands.

In this study, we conducted a data synthesis of 101 publications to collate AGB ob-
servations in China’s managed grasslands. By employing a suite of environmental and
management covariates, we further clarified the regulating effects of these predictors on
managed grassland AGB in China.

2. Materials and Methods
2.1. Data Compilation

Using the keywords of aboveground biomass, productivity, production, China, and managed
grasslands (or managed pasture), peer-reviewed publications reporting AGB measurements
in managed grasslands in China were collected by searching Web of Science (WoS; since
the publication year of 1990) to construct a synthesis dataset during October–December
2021. The online datasets used for the literature search in WoS included the WoS Core
Collection and Chinese Science Citation Database (articles written in Chinese). We ulti-
mately obtained 101 studies (19 in English and 82 in Chinese) by screening the return
publications using the following criteria: (1) managed grasslands were involved; (2) grass
species were specified; (3) amount of AGB was reported; (4) experimental locations with
precise latitude and longitude coordinates were specified; (5) observation year was directly
reported; (6) if fertilization was adopted, type and amount of fertilizers [e.g., nitrogen (N),
phosphorus (P) and potassium (K)] were reported; and (7) water management (i.e., rainfed
or irrigation) was reported or could be obtained through personal communications. We
finally obtained 864 individual AGB measurements widely distributed in China’s main
grassland areas (Figure 1). In all the managed grassland experiments included in our study
(Appendix B), zero-grazing was adopted. In general, the standing tissue of grasses was cut
and harvested manually for measuring AGB during its peak amount for a year (e.g., July
or August). All other agronomy regarding fertilization and water management for each
experiment was summarized in a dataset, which is publicly obtainable via this link: https:

https://figshare.com/articles/dataset/AGB_of_managed_grasslands_in_China/19641654
https://figshare.com/articles/dataset/AGB_of_managed_grasslands_in_China/19641654
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//figshare.com/articles/dataset/AGB_of_managed_grasslands_in_China/19641654 (ac-
cessed on 1 July 2022).
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Figure 1. Locations of managed grassland experimental sites collected from literature reviews.

We obtained a set of global and/or national layers of environmental covariates, in-
cluding edaphic, climatic, and topographic variables (Table A1), as potential predictors of
managed grassland AGB. These variables have widely been used to assess the possible
regulation effects of environment on changes in grassland aboveground biomass [20] and
terrestrial carbon cycles [21]. Here, 10 soil physical and chemical properties (Table A1)
were obtained from the ISRIC-WISE soil profile database [22] with a spatial resolution of
1 km2. We also obtained 16 topographic attributes with the same resolution as the WISE
database from Amatulli, et al. [23]. In addition, we determined 19 bioclimatic attributes
(T1–T11 and P1–P8; Table A1) quantifying biologically meaningful variables using monthly
maximum and minimum temperature and precipitation [24] at each location in the obser-
vation year of the experiment. Specifically, for the observation year, we first extracted the
monthly maximum and minimum temperature and precipitation from Peng, et al. [25]
using the location information of each measurement. Then, the 19 bioclimatic variables
(Table A1) were calculated using the biovars function in the R package dismo. Global
gridded rasters of these 19 bioclimatic attributes (representing the period of 1980–2000)
with a spatial resolution of 1 km2 were derived from WorldClim [24]. More details of
these global spatial covariate layers are described in Table A1. The collated AGB measure-
ments and their associated predictors are documented and publicly available from: https:
//figshare.com/articles/dataset/AGB_of_managed_grasslands_in_China/19641654 (ac-
cessed on 1 July 2022). The spatial distribution of grasslands was obtained from the National
Land Cover DataSets (NLCD) of China developed from Landsat TM digital images [26].

2.2. Drivers of Managed Grassland AGB

We first produced boxplots characterizing the mean, median, and interquartile range of
AGB among different groups of environmental and management attributes. Then, we used
linear mixed-effects regression (LMER) to examine the relationship of a suite of predicting

https://figshare.com/articles/dataset/AGB_of_managed_grasslands_in_China/19641654
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variables with AGB. We assumed that AGB is potentially associated with soil properties,
climatic factors, topographic conditions (Table A1), plant species, and management prac-
tices. In fitting the LMER, plant species was treated as a random effect, i.e., the coefficients
of other predictor variables were modified by species, and all numerical variables were
standardized to unit variance; therefore, the absolute magnitude of the coefficients for
the predictor variables reflected their relative importance [27]. A principal component
analysis (PCA) was applied to eliminate potential correlations in the 10 edaphic variables,
19 climatic variables, and 16 topographic variables (Table A1). The most important principal
components (PCs) with variances greater than 1 were retained for the regression [28]. PCA
and LMER were performed using procomp in the R package stats and lmer in the R package
arm, respectively, in R 4.0.3 [29].

Furthermore, we performed a machine learning-based regression (i.e., a random forest
model) to assess the drivers of AGB. Before fitting the regression, the variance inflation
factor (VIF) was calculated and used to minimize the multicollinearity of environmental
covariates. Specifically, the variables with a VIF value larger than 10 were excluded from
further regressions. Treating the remaining covariates together with species, fertilization,
and irrigation regimes as independent variables, and AGB as a dependent variable, we
then fitted the machine learning-based model, which inherently quantifies the variable
importance of predictors using importance scores for each predictor in the regression.

3. Results
3.1. AGB in China’s Managed Grasslands

In total, 16 dominant plant species were identified in these studies (Figure A1). In
general, the top four species with the highest frequencies identified among the 107 studies,
including Medicago sativa, Elymus dahuricus, and Bromus japonicus, were generally more
widespread than the remaining species (i.e., Poa pratensis, Leymus chinensis, Elymus sibiricus,
Agropyron cristatum, Lolium perenne, Onobrychis viciifolia, Dactylis glomerata, Festuca ovina,
Trifolium repens, Astragalus adsurgens, and Phleum pratense; Figures A1 and A2).

The data synthesis suggested that, by averaging across the 101 sites in China (Figure 1),
AGB in managed grasslands was estimated to be 630 g m−2 of dry matter (ranging from
55 to 2172 g m−2, lower and upper limit of 95% confidence interval). Among the four
most widely distributed species (Figure A1), Bromus japonicus had the highest average AGB
(856 g m−2), followed by Medicago sativa (692 g m−2) and Elymus dahuricus (530 g m−2,
Figure 2). A large variability existed in the observed AGB (Figure 2). For example, the
uncertainty (expressed as CV, i.e., standard deviation divided by mean) of observed AGB
for Medicago sativa was 96% (data not shown).

Regardless of other factors, such as species and water management, AGB under fer-
tilization (e.g., nitrogen, phosphorus, and potassium) was on average 50% higher than
that under zero fertilization (Figure 3a). Similarly, the adoption of irrigation enhanced
the average AGB by approximately 100% compared with that under rainfed conditions
(Figure 3b). When pooling all data together, we found that AGB was generally higher in re-
gions with higher mean temperatures during the plant growing seasons (i.e., April–October;
Figure A3a), while the correlation between AGB and PG (accumulated precipitation during
the growing season) was much weaker (Figure A3b). By excluding the impacts of fertiliza-
tion and irrigation, we found that the AGB of Medicago sativa, for example, was generally
higher in regions with a warmer and wetter growing season (Figure 3c,d).
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Figure 2. Observed AGB of different grass species planted in managed grasslands. Red dots show the
average, and boxplots show the median and interquartile range with whiskers extending to 1.5 times
the interquartile range. Different letters above the boxes indicate significant differences (p < 0.05)
between the AGB of different species.
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Figure 3. AGB as impacted by management and environmental factors. (a): fertilization;
(b): water management; (c): mean temperature during plant growing seasons (April–October; TG);
(d): accumulated precipitation during plant growing seasons (April–October; PG). Red dots show
the average, and the boxplots show the median and interquartile range with whiskers extending to
1.5 times the interquartile range. Blue stars between two boxes of AGB indicate significant differences
(p < 0.05) between the two groups of data as determined by t test. Observed AGBs of all species
were analyzed in (a) and (b), while only AGB of Medicago sativa under zero fertilization and rainfall
conditions were used in (c) and (d).
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3.2. Comprehensive Assessment of Drivers on Managed Grassland AGB

We further introduced three sets of environmental factors, i.e., soil, climate, and topog-
raphy. Principal component analysis (PCA) suggested that the first two soil principal com-
ponents (PCs), four climate PCs, and four topography PCs could explain 71% (Figure 4a),
94% (Figure 4c), and 77% (Figure 4e) of the variances in the 10 soil attributes, 19 climate
variables, and 16 topography properties (Table A1), respectively. For the first two PCs of
soil, the most important contributing variables were ORGC (organic carbon) and CLPC
(clay content) (Figures 4b and A4a). For the first four PCs of climate, the most important
contributing attributes were P1 (annual precipitation), T10 (mean temperature of warmest
quarter), T3 (isothermality), and P4 (precipitation seasonality) (Figures 4d and A4b). For
the first four PCs of topography, the most important contributing variables were TRI (to-
pographic position index), Northness, PCURV (profile curvature), and Aspectsine (aspect
sine) (Figures 4f and A4c).
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Figure 4. Principal component analysis of edaphic ((a) and (b); first row), climatic ((c) and (d); second
row) and topographic ((e) and (f); third row) variables at the managed grassland sites. See Table A1
for detailed descriptions of the variables. The first column shows the loadings of each environmental
variable to the top two most important principal components (PCs); the second column shows the
percentage of explained variances of the first ten PCs.
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Using these PCs as predictors, together with species, which were treated as random
effects, and nutrient fertilization attributes as co-predictors, a linear mixed-effects regression
(LMER) was fitted to the observed AGB (Figure 5). On average, the fitted LMER explained
68% of the variances in AGB (Figure 5). In general, AGB was significantly and positively
correlated with nitrogen fertilization (Figure 5). AGB was also positively and significantly
correlated with the first two PCs of climate variables (Figure 5). Thus, annual precipitation
(P1, the most contributing variable of PC1 of climate, Figure A4b) and mean temperature
of the warmest quarter (T10, the most contributing variable of PC2 of climate, Figure A4b)
were generally positively correlated with AGB. The first PC of soil was generally negatively
correlated with AGB (Figure 5). Variations in AGB were also regulated by topographic
factors, and AGB was significantly correlated with the first three PCs of topography
(Figure 5).
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Figure 5. Coefficients of the fitted linear mixed-effects regression (LMER) in simulating AGB. Intercept
is the intercept of the LMER. M, NO, NH, P, and K are the amounts of different fertilizers (manure,
nitrate nitrogen, ammonium nitrogen, phosphorus, and potassium, respectively) applied during a
plant growing season. PC1, PC2, PC3, and PC4 are the most important principal components (PCs)
of different groups of driving factors (i.e., soil, climate, and topography). The R2 for the LMER
model is 0.68. *, ** and *** under the predicting variables indicate that the coefficients are statistically
significant at the levels of p < 0.05, p < 0.01 and p < 0.001, respectively. Detailed principal component
analyses on the predictor variables are presented in Figure A4.

The fitted machine learning-based model (i.e., random forest) indicated that 57% of
the variances in AGB can be explained by the species, management of fertilization and
irrigation, and the environmental attributes selected in Section 2.2 (Figure 6a). As indicated
by the random forest model, three climatic variables (i.e., T8, P2, and T4) are the top three
most important regulators of AGB (Figure 6b).
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4. Discussion

Managed grasslands in China are mainly distributed in the northern and western
regions, from Inner Mongolia to the Qinghai–Tibetan Plateau (Figure 1). These regions are
generally characterized by a relatively cold and/or dry climate due to high altitudes and/or
more northern latitudes [30,31]. As such, both temperature and precipitation were found to
be positively correlated with grassland AGB (Figure 3c,d). As expected, fertilization signifi-
cantly increased AGB compared with zero fertilization (Figure 3a), which is consistent with
existing findings that addition of nutrients (e.g., nitrogen, phosphorus, and potassium) can
enhance the nutritional quality of plant tissues, thereby promoting grassland AGB [32–34].
This is because in the world’s most terrestrial ecosystem [35,36], including China’s grass-
lands [37,38], plant productivity is widely acknowledged to be nutrient-limited. Apart
from nutrients, water availability is another strong constraint on plant productivity in
global terrestrial ecosystems, particularly in grasslands [39,40]. This can help to explain the
general promoting effect of water irrigation on AGB (Figure 3b). Moreover, in a system
with sufficient water supply, the impact of precipitation on AGB can be eliminated [41],
which underpins our results that, when irrigation was involved, precipitation seemed to
have limited influence on AGB (Figure A3b). In addition, our results demonstrated the
coregulating effects of edaphic and topographic attributes on AGB (Figures 5 and 6b),
which are generally comparable with the findings in the literature [42–44].

Regardless of plant species, AGB in managed grasslands averaged approximately
630 g m−2 of dry matter, ranging from 6 to 7 times China’s national natural grassland
AGB [45–48]. Although grasslands account for approximately 40% of China’s land [4,49],
only around 3% of the grassland area is under managed conditions (i.e., managed grass-
lands), which is substantially lower than those in developed regions such as Europe,
Australia and New Zealand [11]. In addition, improving management practices and species
varieties can help to enhance AGB. It has been reported that Medicago sativa is one of the
world’s most popular species due to its high forage productivity, high nutritional quality,
and wide adaptability to different climatic and edaphic conditions [50]. Our results indicate
that, on average, the AGB of Medicago sativa can reach approximately 700 g m−2 (Figure 2),
i.e., ~7 Mg ha−1, which is only half the production of that in developed countries, such as
the USA [51]. This could be attributed to the fact that most managed grassland experiments



Agronomy 2022, 12, 2913 9 of 21

in China (Appendix B) were conducted on existing degraded lands with relatively poorer
soil nutrient condition.

Despite the positive effect on AGB, management of grasslands at large scales should
be undertaken with caution due to the possible negative consequences on other ecosystem
functionalities. For example, growing evidence has suggested that nutrient enrichment due
to fertilization can lead to widespread decreases in grassland biodiversity [52], which is
deemed another key characteristic of grassland degradation [53]. Moreover, conversion
from natural lands to managed grasslands can possibly result in significant losses of
ecosystem carbon stock. In natural grasslands, root biomass, rather than AGB, constitutes
the majority of the total plant biomass carbon stocks [45,47]. Furthermore, the largest carbon
reservoir of grassland is soil, containing more than 90% of the carbon in the whole grassland
system [54]. A number of studies have indicated that conversion from natural grasslands
to managed grasslands would not only reduce root biomass [55–57] but also substantially
decrease the soil carbon pool [58,59], thereby causing a net warming effect on climate.
In contrast, in regions that have already suffered from degradation, the establishment of
managed grasslands can significantly enhance both root biomass productivity and soil
carbon content [60,61]. On this basis, we suggest that priority of managed grassland
establishment should be given to grasslands that have been severely degraded to benefit
not only forage production but also ecosystem restoration. In addition, since managed
grassland is in general established in areas with soil degradation possibly caused by water
limitation, we highlight a need for introducing the plant species with high drought tolerance
and/or deep rooting capacity in the future.

5. Conclusions

We comprehensively and quantitatively assessed the aboveground biomass (AGB) of
dominant plant species in China’s managed grasslands. We found that the establishment of
managed grasslands via practices such as introducing advanced species, fertilization, and
irrigation can potentially increase aboveground biomass. The magnitude of enhanced AGB
through establishing managed grasslands is associated with a series of biotic and abiotic
factors, such as species and climatic, edaphic, and topographic attributes. We highlight
the need for a more extensive establishment of managed grasslands, particularly in areas
suffering degradation of natural grasslands, thereby favoring not only livestock production,
but also grassland restoration. Apart from improving management practices, introducing
plant species with drought tolerance and/or deep rooting capacity may also contribute to
productivity enhancement and grassland restoration.
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Appendix A

Table A1. Environmental covariates.

Covariates Code Description Unit

Edaphic variables

CFRAG Coarse fragments (>2 mm) %
BULK Bulk density g cm−3

ORGC Organic carbon g kg−1

SDTO Sand content %
CLPC Clay content %
STPC Silt content %
TAWC Available water capacity cm m−1

TOTN Total nitrogen g kg−1

CNrt C:N ratio -
PHAQ pH measured in H2O -

Bioclimatic variables

T1 Annual mean temperature ◦C
T2 Mean diurnal range ◦C
T3 Isothermality (T2/T7×100) %
T4 Temperature seasonality (standard deviation×100) ◦C
T5 Max temperature of warmest month ◦C
T6 Min temperature of coldest month ◦C
T7 Temperature annual range (T5–T6) ◦C
T8 Mean temperature of wettest quarter ◦C
T9 Mean temperature of direst quarter ◦C
T10 Mean temperature of warmest quarter ◦C
T11 Mean temperature of coldest quarter ◦C
P1 Annual precipitation mm
P2 Precipitation of wettest month mm
P3 Precipitation of driest month mm
P4 Precipitation seasonality (coefficient of variation) %
P5 Precipitation of wettest quarter mm
P6 Precipitation of driest quarter mm
P7 Precipitation of warmest quarter mm
P8 Precipitation of coldest quarter mm

Topographic variables Elevation Elevation m
Roughness Roughness -
TRI Terrain Ruggedness Index -
TPI Topographic Position Index -
VRM Vector Ruggedness Measure -
Aspectcosine Aspect Cosine -
Aspectsine Aspect Sine -
Slope Slope -
Eastness Index from −1 to 1 of how east or west a site faces -
Northness Index from −1 to 1 of how north a site faces -
PCURV Profile curvature ◦

TCURV Tangential curvature ◦

dx First order partial derivative (E-W slope) -
dy First order partial derivative (N-S slope) -
dxx Second order partial derivative (E-W slope) -
dyy Second order partial derivative (N-S slope) -
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