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Abstract: Recent innovations are increasingly recognizing applications in precision agricultural
systems that use data science techniques as well as so-called machine learning techniques. Big data
analytics have created various data-intensive decision-making opportunities. This study reviews
the big data analysis practices in the agriculture industry to resolve various problems to provide
prospects and exciting fields of application in China. In the successful implementation of precise
farming, the high-volume and complicated data generated present challenges for the economic
growth of China. Emerging deep learning techniques seem promising and must be reinvented
to meet current challenges. Thus, this paper suggests a big data analytics agriculture monitoring
system (BDA-AMS) to ensure the highly accurate prediction of crop yield in precision agriculture and
economic management using a deep learning algorithm. The convolution neural network gathers
the raw images from UAVs and performs early predictions of crop yield. The simulation analysis
using an open-source agricultural dataset resulted in a high parameter–precision ratio (98.8%), high
accuracy (98.9%), a better performance ratio (95.5%), an improved data transmission rate (97.8%),
a reduced power consumption ratio (18.8%), and an enhanced weather forecasting ratio (94.8%),
production density ratio (98.8%), and reliability ratio (98.6%) compared to the baseline models.

Keywords: big data analytics; precision agriculture; crop yield; deep learning; prediction

1. Introduction
1.1. Background and Origin of the Research

As the specific sector of economic growth develops, agriculture creates jobs in the
largely rural communities in China. Agriculture is the most consistent word used to
indicate the various ways in which plants and domestic animals are provided with food and
through which other goods are produced for the global human population. The agriculture
system complements a very broad range of agriculturally integral and descriptive activities,
such as cultivation, domestication, crops, farming, and vegetation, and proper handlings
such as mixed food production, deforestation, and new competition [1]. Agricultural
analysis and actual farming production systems rely on and generate a host of internal and
external data information system resources as well as control economic management in
China. Agriculture manufacturing provides possibilities in developed countries to pull
people out of poverty and offers job options and food as well as other raw materials [2].
Agriculture provides more employment from agricultural machinery manufacturers, food
processing plants, logistics, utilities, and production, playing an important part in the
support and promotion of China’s economic management and representing the backbone
of everything [3,4].

Precision agriculture has now improved and might continue to change farming man-
agement, as farmers take the mixture of resources, search lands, and inputs into account
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regarding how they use conservation techniques, how they should price their crops, and
how they consider the long-term scale of their activities [5]. Several scientific contributions
involve precision agriculture (PA), particularly in terms of data collection strategies, data
analysis, high-sensitivity identification, field activity, and accurate agriculture evaluation.
Precision agriculture has resulted in significant data development in agriculture, which
has challenged researchers and farmers to find new ways to analyze and use data for
improved decision-making [6,7]. Precision agriculture uses data, web data, and stream
data from different sources, such as crop growth monitors, agro-informatics websites, and
satellite images, for decision-making and to predict agricultural big data interactions [8].
The function of unmanned aerial vehicles (UAVs) is essential for fostering large-scale
monitoring and data-acquiring applications in precision agriculture. They reduce the
dependence on non-existence or on the increased costs of third-party accessibility and
computing resources [9,10].

Big data is an emerging concept that describes any structured data, sub-data, and
unstructured data that are capable of being exploited. Big data are generated at the intersec-
tion between geoprocessing, field development, climate, and consumer knowledge [11]. A
combination of technologies and analytics are involved in big data applications in agricul-
ture [12]. Big data applications involve collecting, compiling, and promptly analyzing new
data to enhance and guide analysts and farmers in making choices [13]. Geographic data
details are site-specific information that is historically correlated with precise cultivation,
such as land-specific properties and crop yields. Big data are always referred to as the
next big thing in many agriculture circles [14]. Increasing information gathered on crop
production at the farm level (big soil data) and detailed weather data (big climate data)
are forming the backbone of precision agriculture technology and will help to develop the
agricultural economic management of China [15]. The design of big data technology in
agriculture can either guide farmers in helping long-organized supply chains to become
efficient or can lead farmers to execute short production processes along with distributors
and the government [16,17]. Scale-neutral big data technologies are being developed to
prevent farmers from choosing one form of agricultural production over another [18].
As large amounts of data are collected to inform individual agriculture and fields, the
expansion of technology makes them possible to be applied to different proportions of
farmers [19]. Big data analytics aims to create an effective decision-making framework that
functions as a guide to agricultural production. The present research will collect focused
categories that will allow different types of consumers to obtain their data [20,21]. The
study of the varying factors affecting crop yield can be based on big econometric data [22].
While UAV contributions are well-known and significant for the development of sustain-
able agricultural production, incorporating these components into the perception layer is
expected to considerably boost solutions for tracking, production analysis, forecasting, and
decision-making [23,24].

1.2. Literature Works

Ma Li et al. [25] proposed Agricultural Economic Development (AED) in China. AED
analyzes the coupling properties and spatial–temporal trends of agrarian labor shifts and
rapidly urbanized economic growth through empirical and structural analytical techniques
centered on framing regional-level information from 1991, 2000, and 2010 collected in
China. In conclusion, several suggestions for developing the central, secondary, and
primary economies and the vitality of rural economies are made that are centered on
combined types and spatially distributed features of economic–labor friction correlations.

Long Liang et al. [26] developed the agricultural subsidies assessment of cropping
system (ASACS). ASACS was used to evaluate lifecycle assessment (LCA) to determine
the environmental effects in Huantai County, which experiences high-density and high-
intensity cultivation when implementing the winter/summer corn replacement method.
Over the period from 1996 to 2012, there was a reduced energy capacity, climate change
potential acidification ecotoxicity, and turbid possibility.
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Wenjing Li et al. [27] discussed a hybrid modeling approach (HMA). Their proposed
HMA aims to investigate factors that decide the acceptance of precision agriculture in-
novations in Chinese farming in crop structures and makes suggestions for potential
technology developments. The requirements that make it easier for farmers to implement
such technologies were the best indicators. These factors must be taken into consideration
by policymakers and utility companies to promote innovations

Keswani, B. et al. [27] initialized the IoT and big data-based decision support (IoT-DSS)
to produce appropriate valve control commands. Precision agriculture requires production
changes in the region, sales growth, resource support, and environmental impact according
to an automated processor’s range of information and documentation. The collection of
information in real time is performed using the proposed implementation technique of the
IoT node tested in the region. An IoT-DSS system is proposed to accumulate 17 global and
environmental parameters when predicting the possible impact on soil MC within 1 h. This
article discusses the system’s entire architecture, the implementation approach, and the
proposed IoT-based DSS framework’s performance.

Sieverding, H., M. et al. [28] introduced an LCA primer for the agricultural community.
The term LCA is commonly used to describe several methods and analytical resources. Life-
cycle analysis provides a transdisciplinary method where teams with various competencies
and experiences can better use all occupations. This paper aims to provide the agricultural
population and the agriculturists associated with LCAs with an initial treatment. Agricul-
tural LCAs can differ greatly because agricultural products have multiple end uses, are
complex, and can be produced by various practices, resources, and production systems.
Crop LCAs are subject to different data points, aggregation methods, production processes
and facilities, yields, and analytical assumptions.

Mohapatra, A. G. et al. [29] deliberated smart data-based decision support (SDSS) by
considering the temperature, soil, water, crop information, and agriculture quality and
uniformity from the challenging information-based systems currently being maintained.
This work (SDSS) was carried out alongside DSS to produce accurate SMS alerts using
interfaces between the GPS module and an efficient heating irrigation control method.
The farm data that are aggregated in real time are introduced to the radial basis model’s
neural network function. The soil data are supported by the DSS model for the appropriate
generation of SMS notifications to the farmer’s mobile device. The proposed smart DSS
system reduces the amount of wastewater resulting from precipitation by considering
temperature, land, water, and crop data.

Pham, T. N et al. [30] indicated that many diseases affect the quality of fruits and grains
and pose a serious threat to global food security, while convolutional neural networks
(CNN) and artificial neural networks (ANN) provide fast and accurate tools for identifying
plant diseases. A list of multiple measurement-related features representing blobs was
chosen and then sorted using a wrapper-based feature selection method based on a hybrid
technique based on the model’s effectiveness. They preferred the application that used an
ANN input, and their findings were compared to those from a different methodology that
successfully used CNN models that had been improved by transfer learning. The results
showed that their methodology can be applied to reduced devices such as smartphones to
support farmers on the land.

Bhat, S. A et al. [31] introduced the current big data applications used in smart agricul-
ture and some of the challenges of big data technology in the agricultural sector. This work
compared and discussed the computational characteristics and limitations of different ma-
chine learning (ML) techniques in precision agriculture. Most of these big data applications
are applicable to large industrial farms, and very little work has been carried out on small
farms in the developing world.

Based on this literature review, there are some issues with existing methods. Hence, in
this paper, BDA-AMS has been proposed to identify the crop growth level and to improve
production. Big data can be used to create various data-intensive decision-making opportunities.



Agronomy 2022, 12, 2905 4 of 19

Big data analysis has become an integral part of agricultural economic management
and has played an important role in crop production, agricultural product processing,
transportation and storage, and safety prevention, and has largely improved the efficiency
of management in precision agriculture. Through big data analysis, management depart-
ments are able to quickly integrate resources, improving the efficiency of the management
of the agricultural economy and laying a good foundation for agricultural development.

2. Big Data Analytics-Initiated Agriculture Monitoring System (BDA-AMS)
2.1. Reasons for System Design

This paper discusses precision agriculture using big data analysis for crop yield
prediction, reducing labor, and improving agriculture monitoring systems to enhance
China’s economic management. Big data analytics in agriculture provide meaningful
insight to advance weather decisions, improve crop efficiency, and reduce the possible
usage of fertilizers and pesticide costs. The management of the social and economic growth
of China mainly depends on precision agriculture and crop yield production. The details of
agriculture regarding precision spraying and the details of crop yield are stored on a cloud
platform in which precision agriculture and agriculture monitoring systems are used to
develop China’s economic management.

Various big data sources in precision agriculture use UAV components with organized
and unstructured data types. In agriculture, big data applies to the huge amount of data
generated from social and measured agricultural work. The processing and management
of big data is a difficult challenge across the traditional platforms and methodologies
used to manage China’s economic condition. Big data analysis and UAV solutions can
support farm production companies and departments in carrying out agricultural growth
and productivity analyses, supporting expected agriculture trends, and identifying social
status. Big data analysis and ICT applications can take real-time management measures
in precision agriculture. Knowledge of big historical information can be mined, and
trends can be discovered to forecast harmful agriculture events. This paper suggests a
big data analytics-initiated agriculture monitoring system (BDA-AMS) to ensure high-
precision crop yield predictions using a deep learning algorithm based on the social and
economic background.

2.2. BDA-AMS’ Basic Framework and Main Principles

BDA-AMS’ basic framework is roughly expressed in Figures 1 and 2.
Figure 1 demonstrates cloud computing-based precision agriculture. In all ways,

agricultural activities are responsible for a substantial amount of data input/production as
well as remote sensing data and use much of their external information to direct farmers’
decisions through the use of weather data and satellite images. Usually, three features of
large agricultural concept data, including volume, variation, and velocity, are employed.
In other words, the variety of data obtained in massive quantities due to high speed from
agricultural activities can be called big data. In the interest of big agricultural data, the data
produced from distributed resources and constrained sources to be extracted, processed,
and analyzed to cloud computing in agriculture can provide analysts and decision-makers
with massive solutions to solve economic problems. The benefit of the cloud is that it
is capable of gathering and centering complete data independent of their origin from
special blocks during extensive data management processes for detailed processing, such
that valuable information is recorded to maintain the related economic issues. This can
be achieved using new database architectures, including research methods, databases,
and distributed storage, when processing extensive information to spread loads across
several nodes using the maximum abstraction of the parallel mechanism. Using precision
agriculture and the crop production to predict the agricultural economic management is
utilized with the data obtained from the database server and the remote user, as illustrated
in Figure 2.
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Agricultural economic management comes from agricultural production, not only for
the process, or for the result, and strives to achieve fine management. In the information
age, agricultural economic management based on information technology can be roughly
represented as in Figure 3.
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The virtualization network provider is an integral part of the architecture. It is respon-
sible for developing the user profile to question the system and to design the required big
data resources to achieve the user’s requirements. The datasets are generated from different
sources, including sensors, weather and climate stations, satellites, and government entities,
to enhance China’s economic management. Data collection is an essential task, as it can
keep the data streams together before the storage process is complete. This work focuses
more on the composition of excellent data and profile services, while their proposed devel-
opment will discuss the transaction service. Important technological advances have been
made in big data, data collection, decision-making systems, and agricultural information
technology, and many farmers use integrated crop management technology to reduce waste
and to increase the value of the economic background of crops.

Figure 4 shows an agricultural field using a sensor node and a database system. The
WSNs in the agricultural field can contribute to farm precision and to various parameters,
such as temperature, soil condition, precipitation, air pressure, and precision agriculture, to
develop economic management. Big data must develop automated tools or techniques for
decision-making that can apply the appropriate amount of input at the right moment and
at the right locations to increase the output quality of crops (water, fertilizers, pesticides,
etc.). Farmers do not need to continually monitor agricultural economic management to
acquire information from new automated irrigation systems in modern agriculture. The
proposed monitoring system can be performed by gathering real-time soil, temperature,
and air quality data using sensors in a more accurate approach that utilizes agricultural
economic management. The proposed use protocol is a resource method in which a field
observation can be taken out automatically using sensors and the requirements defined
by users to save farmers’ energy and time in continuous field monitoring to determine
where irrigation is required in general. In addition to making more intelligent decisions,
predictive analysis is needed such that irrigation can occur automatically when a rising
water requirement exists to meet the needs of economic problems.

The primary issue when developing communication protocols is energy conservation
for wireless sensor networks (WSNs), which requires consistent data from network field ap-
plications (such as military applications, healthcare applications, and traffic management),
while some applications, such as agriculture and industrial applications with efficient
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precision, require network information when appropriate. The proposed communication
protocol uses a regionally dependent static clustering method to provide adequate coverage
across an extensive area in agriculture economic management. The whole network area is
divided into fixed regions, where various types of interacting sensor nodes are accessible.
The communication network allows aggregated sensor nodes, and there is less energy in
specific nodes than in other nodes, sending data directly to the base station (BS). Other
highly powered nodes use IoT sensor node technology to transmit data into the BS. This re-
duces the consumption of sensor node energy in any data transmission cycle and improves
the system capacity. A protocol for adequate irrigation in the agricultural sector is proposed
for efficient, energy-efficient, periodic threshold-sensitive regional basis-based integrated
routing to improve economic management. The proposed communication protocol for
precision agriculture is the most effective energy-efficient routing protocol.
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Figure 5 explores smart agriculture-based system technologies for farmers. Smart
farming is a new concept that includes managing farms using national information tech-
nology to increase the quantity and efficiency of products while reducing the number of
human workers required. IoT systems implemented on a farm can gather and process data
in a repetitive process that allows farmers to rapidly respond to analytical challenges and
environmental conditions to improve economic management. Precision farming is a prime
factor for IoT methods that can increase the control and precision in farming. Simply added,
plants and bovine animals are precisely controlled, with perfect precision determined by
the devices used in modern agriculture. The main difference between precision farming
and the classical approach is that it allows for one square meter per plant/animal rather
than per field. As with precision agriculture, intelligent farming techniques enable farmers
to better monitor each animal’s needs and to change their food to avoid symptoms and
improve health. In precision agriculture, smart sensors provide data for farmers to monitor
and maximize crops and to deal with changing environmental factors. By placing sensors,
farmers can micro-detect their crops, maintain energy levels, and reduce their impact on
the environment.
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Smart agriculture research aims to determine a farm management decision-making
system. Smart farming considers these systems essential, from seed planting and watering
to health in the harvested sector, and these systems can solve population development
problems, climate change, and functions, gaining technological attention. Telematics
systems enable farmers to closely follow their sets of vehicles and trucks using GPS trackers,
which allows agricultural managers to know exactly where all the tractors and cars are at
any given time. The collected user data analyses can be used to collect data that farmers
can use to refine their farming, allowing farmers to make smart agricultural decisions
regarding production density, from preparation to cultivation, and smart objects identify
themselves by their ability to record and analyze information. Smart agriculture uses both
hardware (IoT) and software for data collection and provides actionable insight into all
farming agriculture economies before and after planting.
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Figure 6 depicts a crop yield prediction system based on smart agriculture and data
storage. Smart agriculture is an adaptive concept that refers to the management of farmers
using precision IT technologies to increase product quantity and quality while minimizing
the number of human workers required. Smart farming is an alternative method for the
efficient use of water to grow crops, and the addition of imaginative farming approaches
to conventional agriculture limits real-time control, reducing human resources, time, and
precise estimates of the required irrigation water while protecting crops against disasters
such as diseases and floods. These developments help farmers to reduce the costs of
growing and maintaining yields and increase farmers’ income by producing a large number
of crops using modern agriculture to improve economic management. The resulting papers
compare traditional and intelligent agricultural activities, smart farming technologies, and
WSNs in the farming realm as well as autonomous water application.
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2.3. Operation of System

The loss of WSN data transfer happens due to environmental implications. When
transmitted by data, most wireless sensor communication technologies cover a short range
of sensors or routers within the WSN. Multi-tire, ad hoc, and mesh network topologies will
prolong connectivity within the network. Some of the critical problems in WSNs are the
scale and location of a sensor node. The performance and life of a WSN primarily depend on
sensor node deployment. The deployment system for a WSN covers two groups—random
and determinist deployments—with haphazard approaches being used for deployment in
expansive open environments and deterministic point-by-point strategies being used for
small-scale deployments.

The automated WSN and GPRS irrigation system was established, and this device
transmits soil moisture and temperature information to the sensors throughout the root
area of a plant’s wireless communication system. The sensor information is gathered at
a gateway and sent to a webpage. This algorithm sets the temperature and soil moisture
threshold values programmed for a microcontroller-based gateway to control irrigation
measurements. This paper highlights the advantages of intelligent agriculture over con-
ventional framing and numerous technologies and implementations. By installing smart
agriculture systems, farmers will benefit from higher profits, better yields, easier land mon-
itoring, and productive water use. Finally, numerous WSM and different approaches have
been proposed for independent irrigation in agriculture. The whole agriculture system can
be automated to create sustainable agriculture through technologies such as the Internet
of Things, fog computation, and cloud computing, which reduce the waste of time and
reliable resources. Table 1 shows the symbols and descriptions.

σZ = N ∑k
j=1 λ1 O1 | Uj | (1)
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Table 1. Symbols and descriptions.

Symbol Description

G Measured resistance

σ Molar conductivity

FB Temperature traction

O Molar

N Cell-constant

Uj Value of the ion charge

eq Translation factor of temperature

q Temperature

a0 a1 Regression coefficients

Y Number-dependent variable

According to Equation (1), the limiting molar conductivity is calculated. In this equa-
tion, N is a cell-constant that accounts for the geometrical electrodes due to the geometry of
the time field, σ is the limiting ion molar conductivity, O is the molar concentrations (mol
O−3), and Uj is the absolute value of the ion charge.

FB25 = eq·FBq (2)

According to Equation (2), Figure 7 shows how the temperature consumption is
formulated. For comparison purposes, FB is represented by the reference temperature
traction of the electric current and the volume of 25 µC. The calculation of FB depends on
the separation between the electrodes. The greater the distance, the deeper the calculation
and reference are at a specific temperature (q, FBq), and eq is a translation factor in the
temperature assigned in Equation (2)

FBa =
1
2

πaG (3)
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According to Equation (3), the measuring volume for field collection is calculated.
In all plant trials to determine heat tolerance, FBa is traditionally the standard test and
uses approximately two inner potential salinity electrodes. G is measured by resistance,
and FBa is the inverse of G. A relationship between FBa and FBq is required for the soil
surface spacing at a depth of approximately that of the interelectrode results obtained in
Equation (4):

FBy =
FBaj−aj−1 −

(
FBaj . aj

)
−

(
FBaj−1·aj−1

)(
aj − aj−1

) (4)

As determined in Equation (4), the fixed electrode is updated. FBa can be used to
determine the discrete plant depth range, FBy by calculating FBa in successive levels by
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increasing the distance between the electrodes from one electrode to another. The current
source is calculated according to the idea that it can be superseded using Equation (4),
where aj is the inter-place that is equivalent to the sampling depth, and aj−1 is the inter-place
that is equivalent to the previous sample depth in Equation (5):

x̂ = e(y) + ξ (5)

x̂j = a0 + a1yj + ξ (6)

The linear regression and data processing calculated using Equations (5) and (6) are
evaluated. This is the supervised learning approach to forecast possible trends of historical
data objects. In this case, Y is the number-dependent variable, and the numerical value of
x is approximated. Equation (6) indicates the difference between the real value and the
forecasted value. Y is estimated to be e(y), and x̂ is implied symbolically. When there
is a linear dependence between x and y, linear regression can be used. In this case, the
algorithm used in model y as a function of x demonstrates Equation (7):

E(T) =
1
K

K

∑
j=1

ξ2
j (7)

According to Equation (7), MapReduce is calculated. MapReduce is used to measure
the mean absolute percentage error values and to compute the patterns in the data predicted
in the regression model. In this case, the x vector consists of k digits (×1, ×2, ×3 to 1, 1

K n),
and k is the number of the data object attribute values in the dataset in Equation (8):

a1 =
yx− y x

x2 − x2
(8)

Using Equations (8) and (9), the regression coefficients are evaluated. The equations
are used to calculate regression coefficients a0 and a1. The sum of the vectors of y and a1 is
proportional to the number of dimensions in functional space and in the error word—the
real and expected values differentiate the target variable. The symbol is used to denote the
target variable’s expected value using the model and x + a1 + y. Algorithms are used for
learning, and a1 is used in the dataset objects. The aim is to decrease the difference between
the real and forecasted values for all the data objects. This difference may be determined
by decreasing the square amount of the difference between the actual and the forecasted
targeted values in Equation (9):

a0 = x− a1 − y (9)

R(On + E) =
R(On) T(E|On)

R(E)
(10)

Figure 8 shows the low computational cost of Equation (10). As this algorithm func-
tions with the assumption that each class system is nonlinear, a closed form was used to
identify the highest probability of training, and computational costs were low. The training
datasets include a series of E-tuples composed of n properties, and tuples were tested for
the different classes: R(On + E). The BDA-AMS has been proposed to achieve a precision
ratio, high accuracy, a better performance ratio, an improved data transmission rate, a
reduced power consumption ratio, and an enhanced weather forecasting ratio, production
density ratio, mean absolute percentage ratio, and reliability ratio.
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3. Results and Discussion

The BDA-AMS method has been proposed to improve agricultural and efficiency
performance based on the following parameters: the precision ratio, accuracy ratio, im-
proved data transmission rate, reduced power consumption ratio, and enhanced weather
forecasting ratio, production density ratio, mean absolute percentage ratio, and reliability
ratio.

3.1. Precision Ratio (%) and Mean Absolute Percentage Ratio (%)

Precision agriculture is a technical method for improving communication between
agricultural produce, normal food, and input land, electricity, water, fertilizers, and pesti-
cides, and agricultural products that are used in modern agriculture. Precision agriculture
can improve simplified methods and massively develop an area’s status, improving China’s
economic management. Farmers are informed of advanced technologies that can contribute
to creative and precise agriculture, agricultural production is clever, thorough, and data-
centered, and multi-storage systems are used in big data analytics. The productive and
accurate extent and appropriate implementation of irrigation in agriculture and in farming
water management are designed to respond to crop requirements, reducing mistakes and
adverse environmental impacts. Figure 9 shows the precision ratio (%) and the mean
absolute ratio (%).

In conclusion, farmer’s age, farm size, farmer perceptions of the provision of the re-
quired information for precision agriculture in the case of the sample tested, and attendance
in workshops and exhibitions have essential effects on the acceptance of intelligent agri-
culture. The error rate reduction obtained from the proposed model is used for economic
management in agriculture. The mean absolute error must be as low as possible, and the
mean square error ratio should be equal to one if a simple method has been used. The
mean absolute regression error and the linear regression of simple public information for
the tested concentrations were obtained from jack-knife procedures.

3.2. Data Transmission Rate (%) and Reliability Ratio (%)

The high volume and the need for an efficient and practical analysis of real-time
data for agricultural production have resulted in the creation of new technologies and
frameworks to acquire, store, process, interpret, and analyze extensive datasets for decision-
making based on future predictions to improve economic management. On small farms,
precision agriculture is appropriate, and it protects various GPS and GIS sensors in a
specific cultivable area for up to several hundred meters. In terms of the environment for
manufacturing plants, these systems handle datasets that include satellite imagery, sensors,
and weather data, and propose a collection of techniques based on the user’s specification,
type of data, and processing requirements, including characteristics to consider for the
efficient processing of agricultural information. Figure 10 explores the data transmission
rate (%) and the reliability ratio (%).
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This paper proposes a profile-based approach for managing farm data in a cloud
architecture. Smart agriculture provides enormous amounts of agricultural data and
information, improving economic management for farms in modern agriculture systems.
Methodologies and implications have been created as appropriate to reduce harmful effects
and to improve the process’ reliability and accuracy. The sensor node has been shown
to operate reliably in the field and to collect information from over 100 hectares, and the
device has a revolving radius of 3 m. A data processing interface would later replace this
device. The data design should be analyzed with a simple case A/D processor to increase
the reliability.
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3.3. Accuracy Ratio (%)

Through monitoring in real time, smart agriculture reduces power and time expenses
and accurately estimates the water needed for irrigation, solving traditional farming disad-
vantages based on economic management. The approach uses ontology to concentrate on
stability and system adaptability by integrating the machine learning algorithms used by
analyzing logged datasets to accurately identify critical thresholds for plant-based parame-
ters and to derive new information and expand system ontology. A WSN can accomplish
this objective by acquiring approximate values from the available data and rendering
accurate values. To consider the optimum agreement between the calculated data accuracy,
the estimated energy to perform the task, and the price, elements must be chosen, thus
prioritizing sensor use. The accuracy measurements of sensors on the LCD screen were
seen and verified. Finally, before the evaluation, the sensors were configured to guarantee
data accuracy and to allow users to overcome challenges during the system’s calculation
process. Figure 11 shows the accuracy ratio (%).
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3.4. Performance Ratio (%)

To develop and improve economic management, the measurements need to be evalu-
ated with the standard system goal, quantitative and efficiency results, lead time aspects,
and signal variations, and the appropriate approach for extracting signal distractions and
for designing and managing the action selected to correct the performance of agricultural
processes needs to be determined. This implies that critical performance and result mea-
surements can be quickly evaluated upon access to update data sources for the successful
planning and management of the economy. Enhanced technology enables a system to
learn its performance through interaction with an external environment from the point of
view of data processing. The proposed preferred system for analytical data processing and
improved technologies are selected for general decision-making problems in agricultural
economic management. In this design, the best-performing different data sources were
combined with data pre-processing technology to improve the accuracy of the resources,
developing an efficient and personalized working environment to increase agricultural
production. Figure 12 explores the performance ratio (%).
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3.5. Power Consumption Ratio (%)

Source node data dissemination allows the operating parameters for nodes such as
power transmission, sample frequency, service ratio, and period duration to be monitored.
Deep usage is a mighty challenge, because as that premium period mechanism is imple-
mented at a node, power consumption is not optimal. The proposed system introduces time
monitoring with low power consumption. This program identifies the nodes with a higher
and lower packet loss ratio to transmit the sync code. Finally, with good time precision, the
program implements low power consumption, allowing modern agriculture to enhance
the economy. An effective management method uses the power of plant photosynthesis to
power down by reducing the process to develop land quality, crop resistance, and nutrient
density. Figure 13 shows the power consumption ratio (%).
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3.6. Weather Forecasting Ratio (%)

The weather forecast affects the success of a farmer’s decisions, and forecasts can help
us to make confident choices every day. These choices include crop irrigation, implantation
time, and days appropriate for fieldwork, and farmers’ decisions can lead to viable crops
or failures. In agriculture, the climate is the most influential factor, and no crop model
can be created without considering the atmosphere. Various weather forecasts evaluate
agriculture and predict yield, disaster management, and various other fields. In weather
forecasting, different machine learning algorithms, including support vector machines
and soft computing methods, have been used for all the above reasons. Table 2 shows the
weather forecasting ratio (%).

Table 2. Weather forecasting ratio (%).

Number of
Devices

Weather Forecasting Ratio (%)

IoT-DSS LCA SDSS CNN-ANN BDA-AMS

10 21.836 15.937 17.852 19.231 84.622

20 20.401 16.765 17.727 19.342 85.711

30 19.094 14.657 17.494 19.659 86.315

40 18.024 14.922 17.571 23.987 87.318

50 18.882 16.342 17.790 23.567 88.724

60 17.852 12.212 18.234 23.459 90.648

70 17.727 14.254 18.345 25.671 91.727

80 15.974 13.084 18.675 30.222 92.922

90 15.571 16.145 18.879 33.567 93.321

100 15.128 14.124 19.111 34.987 94.864
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3.7. Production Density (%)

The effects of climate change on crop production have been proposed, and an enforced
facts system for agriculture is essential for sustainable development. The production
density determines the accessible amount of product used to encourage increased food
safety and crop production and creates a wealth of alternative crop options. There are
multiple advantages of the nutritious food advice from big data for the end-users of the
method, and various analyses are precious for nutritionally based vegetable production
and delivery systems that are completely dependent on economic management. Plant input
and crop values have made it necessary for farmers to use the information and to make
difficult choices regarding agriculture for the existing crop, soil, and environmental data.
The analysis of the new production data shows optimized production and farming that is
more vulnerable to climate change. Table 3 shows the production density ratio (%).

Table 3. Production density ratio (%).

Number of
Devices

Production Density (%)

IoT-DSS LCA SDSS CNN-ANN BDA-AMS

10 31.836 65.937 77.852 84.231 91.622

20 30.401 66.765 77.727 84.342 92.711

30 39.094 64.657 77.494 85.659 92.315

40 38.024 64.922 78.571 86.987 93.318

50 38.882 66.342 78.790 86.567 94.724

60 47.852 72.212 79.234 87.459 94.648

70 47.727 74.254 80.345 88.671 95.727

80 45.974 63.084 81.675 89.222 96.922

90 55.571 66.145 82.879 90.567 97.321

100 55.128 64.124 83.111 90.987 98.864

The BDA-AMS ensures high-precision crop yield predictions using a deep learning
algorithm to achieve the following parameters: a precision ratio, high accuracy, a better
performance ratio, an improved data transmission rate, a reduced power consumption
ratio, an enhanced weather forecasting ratio, and an improved production density ratio
and mean absolute ratio, when compared to the initialized IoT and big data-based decision
support (IoT-DSS), lifecycle analysis (LCA), smart data-based decision support (SDSS), and
convolutional neural network (CNN) and artificial neural network (ANN) methods.

4. Conclusions and Future Work

Predictive analyses can be utilized for making smart agricultural decisions by gath-
ering data on temperature, soil and air quality, crop growth, equipment, labor costs, and
availability in real-time. This is called precision agriculture. Big data can play an essential
role in managing the real-time data collection of massive streaming data in precision agri-
culture. With the growing demands for the scale of big data, data analysis reliability and
performance are challenges. Farmers must move away from traditional agricultural meth-
ods to precision agriculture to improve farm productivity and to maintain healthier food
supplies. Precision agriculture operates in collaboration with information technologies to
improve agricultural techniques. This paper proposed BDA-AMS to ensure high-precision
predictions for crop yield to improve the economic management of China by utilizing a deep
learning algorithm. The neural network gathers raw images from UAVs and predicts crop
yield at an early point. Thus, the experimental results show that the proposed BDA-AMS
is able to predict crop yield, reduce labor, and improve agriculture monitoring systems.
The convolutional neural network gathers the raw images from the UAVs and performs
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early predictions of crop yield to achieve the following parameters: a high parameter preci-
sion ratio (98.8%), high accuracy (98.9%), a better performance ratio (95.5%), an improved
data transmission rate (97.8%), a reduced power consumption ratio (18.8%), and an en-
hanced weather forecasting ratio (94.8%), production density ratio (98.8%), mean absolute
percentage ratio (96.2%), and reliability ratio (98.6%), when compared to other methods.
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