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Abstract: In Morocco, monitoring and estimation of wheat yield at the regional and national scales are
critical issues for national food security. The recent Sentinel-2 imagery offers potential for managing
grain production systems on a field and regional level. The present study was planned based on a
time series of six remote sensing indices and Multiple Linear Regression (MLR) methods for real-time
estimation of wheat yield using the Google Earth Engine (GEE) platform in a highly heterogeneous
and fragmented agricultural region, such as the Tadla Irrigated Perimeter (TIP). First, the spatial
distribution of wheat in the TIP region was mapped by performing Random Forest (RF) classification
of Sentinel 2 images. Following that, using MLR models, the wheat yield of nine sampled fields
was estimated for the different phenological stages of wheat. The yield measured in-situ was the
independent variable of the regressions. The dependent variables included the remote sensing indices
derived from Sentinel-2. The remote sensing index and the phenological period of the greatest model
were investigated to estimate and map the wheat yield in the entire study area. The RF generated
the wheat mapping of the study area with an overall accuracy (OA) of 93.82%. Furthermore, the
coefficient of determination (R2) of the tested MLR was from 0.53 to 0.89, while the Root Mean Square
Error (RMSE) varied from 4.29 to 7.78 q ha−1. The best model was the one that uses the Green
Normalized Difference Vegetation Index (GNDVI) in the tillering and maturity stages.

Keywords: Google Earth Engine; Multiple Linear Regression; remote sensing indices; Sentinel-2;
wheat yield

1. Introduction

Cereals are vital to national food security all around the world. Accurate and timely
estimation of cereal production on regional and national levels is essential for developing
countries like Morocco. Moreover, due to the increasing demand for food grain, early
crop production information is critical for planning emergency response and food aid
initiatives [1]. To estimate production, both area and yield must be considered. In many
countries, such statistics are obtained from traditional data collection techniques, for exam-
ple, sample surveys, expert assessments, farmer reports, and allometric models [2]. These
approaches are costly, time-consuming, and necessitate extensive fieldwork. The estimating
process may involve significant errors due to limited field observations and the subjectivity
of respondents’ responses.

The opportunities for improving the quality of Moroccan agricultural statistics are
considerable. Accessibility of remote sensing data and the efficiency of the recent Google
Earth Engine (GEE) platform in reduction of processing time, computation, and automa-
tion, could aid in the more effective collection of agricultural statistics. The Tadla Irrigated
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Perimeter (TIP) in central Morocco, is chosen as a study area due to its agricultural impor-
tance, particularly in cereals production [3]. The TIP as well as other Moroccan irrigated
perimeters are expected to develop irrigation management, crop monitoring, and yield
estimation approaches to increase production and save water [4].

Several sensors with a variety of spatial and temporal resolutions have been used
worldwide to estimate yield. The Advanced Very-High-Resolution Radiometer (AVHHR)
has been the most extensively used sensor for crop monitoring and yield forecasting on a
large scale since the early 1980s [5]. Recently, satellite data including Moderate Resolution
Imaging Spectroradiometer (MODIS), Landsat, and Sentinel data have been exploited for
yield forecasting and monitoring, with significant results [2,5]. In Spain, Belin et al. [6]
combined AVHRR-NDVI data and drought indices at different time scales for early pre-
diction of wheat and barley production. In China, Prasad et al. [7] used MODIS-NDVI
data to estimate regional yield production using a linear regressive relationship between
spatial accumulation of NDVI and the production of winter wheat. In Pakistan, Hassan
et al. [8] evaluated the feasibility of using MODIS-derived vegetation indices to predict
pre-harvest wheat yield with the statistical modeling approach. In the lowlands of the Tisza
river catchment, Nagy et al. [9] employed Landsat-8 derived vegetation indices (NDVI
and SAVI) and a linear regression model for early season prediction of wheat production.
In Afghanistan, Arab et al. [10] evaluated Landsat-8 time-series vegetation indices for the
prediction of grape yields using a machine learning approach. In Pakistan, Usman et al. [11]
evaluated MODIS and Landsat multiband vegetation indices for wheat yield forecasting
using a step-wise regression model. In Tunisia, Mehdaoui et al. [2] exploited red-edge bands
of Sentinel-2 to improve the prediction of durum wheat yield at the field and regional scale.

According to previous studies, remote sensing indices such as the Enhanced Vegetation
Index (EVI), Green Normalized Difference Vegetation Index (GNDVI), and Weighted
Difference Vegetation Index (WDVI) have recently been used in several studies for crop
monitoring and crop yield forecasting [12].

Despite the increasing importance of remote sensing for the scientific community
and agricultural statistics, it faces several significant technical challenges in its operational
application. The low spatial resolution of some images is one of the most significant
limitations [2]. This is highly relevant in Morocco where small portions of land ownership
have resulted in fragmented agricultural areas such as the TIP region. Some of these
drawbacks have been remedied with the latest release of Sentinel-2. The publicly accessible
data from the Sentinel-2 missions of the European Space Agency (ESA) provide open
imagery at a high spatial and temporal resolution.

Sen2Cor is a Level-2A (L2A) processor of Sentinel-2 whose primary function is to
remove atmospheric effects from single-date Sentinel-2 Level-1C products to provide a
Level-2A surface reflectance product. Furthermore, the cloud shadow algorithm’s imple-
mentation in Sentinel-2 Level 2A has been evaluated to enable accurate cloud shadow
computation for all configurations of solar angles and viewing angles in the northern and
southern hemispheres [13].

Several methods, including biophysical crop-simulation models, crop growth models,
agrometeorological and machine learning models [2,14,15] have been developed to forecast
crop yield using remotely sensed data, with statistical regression methods being the most
used [16,17]. Using remote sensing data, more complicated machine learning models have
been used to anticipate agricultural yield [18].

Machine learning models have the disadvantage of being less interpretable than
regression models with a priori functional form requirements.

However, these methods are more useful when different factors such as climate,
temperature, humidity, air temperature, and water temperature are used as inputs in yield
prediction; the algorithm requires a considerable number of inputs to be trained [19].

The regression models are founded on empirical relationships between in-situ yield
measurements and vegetation indices [2,5]. These techniques do get by without a large
amount of data and are easy to apply. [16].
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There is currently no scientific publication in Scopus that combines the use of the high
spatiotemporal resolution of Sentinel-2 images, the phonological stages of wheat, and the
new computational capability of the GEE cloud platform to develop an accurate model for
predicting wheat yield in Morocco, in a region with highly heterogeneous and fragmented
landscapes.

We believe that this approach can be extended to the estimation of the yield of other
crops by studying in a comprehensive approach the relationship between remote sensing
indices data and typical phenological stages of crops.

Therefore, this paper was planned as follows: (1) to assess six remote sensing indices
derived from Sentinel-2 and phenological stages in developing an accurate model for wheat
yield prediction using MLR technique, (2) to deduce the optimal phenological stage and
remote sensing index for forecasting wheat yield, and (3) to extrapolate the best performing
model to the TIP regional scale.

2. Materials and Methods
2.1. Study Area

The study area represents an irrigated perimeter of the Beni Mellal-Khenifra region
in central Morocco, namely, the Tadla Irrigated Perimeter (TIP), which is located between
32◦12′0” N 7◦0′0” W and 32◦36′0” N 6◦24′0” W with an average altitude of 400 m (Figure 1).
The TIP covers over 100,000 hectares of irrigated land and is one of the most important
large-scale irrigation systems in Morocco. The TIP is divided into two compartments: the
Northern bank’s Beni Amir perimeter and the Southern bank’s Beni Moussa perimeter.
The climate is arid to semi-arid, with temperatures ranging from 6◦ in January to 48◦ in
August [3,20]. The landscape is mainly fragmented and heterogeneous; 86% of parcels
are less than 5 ha, and only 5% of parcels exceed 10 ha [20]. Land use is predominantly
agricultural, with the main crops being cereals (wheat, barley, corn), sugar beet, alfalfa, and
arboriculture (citrus, pomegranate, olives).
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Figure 1. Location of the study area at the national scale (left). Scene of Tadla Irrigated Perimeter
(right).

2.2. Image Acquisition and Pre-Processing

The Sentinel-2 Multi-Spectral Instrument (MSI) is aboard two orbiting satellites
(Sentinel-2 A/B) that provide images at high spatial and temporal resolution (10 m, 20 m,
and 60 m every 5 days) [21]. The MSI is composed of 13 spectral bands. The Level-2A
product, which gives Bottom Of Atmosphere (BOA) reflectance images, was applied in this
study. This product provides 12 spectral bands (Cirrus band B10 is not included) (Table 1).
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Table 1. Characteristics of Sentinel-2 MSI L2A images.

Band Description Resolution Wavelength

B1 Aerosols 60 m 443.9 nm (S2A)/442.3 nm (S2B)
B2 Blue 10 m 496.6 nm (S2A)/492.1 nm (S2B)
B3 Green 10 m 560 nm (S2A)/559 nm (S2B)
B4 Red 10 m 664.5 nm (S2A)/665 nm (S2B)
B5 Red Edge 1 20 m 703.9 nm (S2A)/703.8 nm (S2B)
B6 Red Edge 2 20 m 740.2 nm (S2A)/739.1 nm (S2B)
B7 Red Edge 3 20 m 782.5 nm (S2A)/779.7 nm (S2B)
B8 NIR 10 m 835.1 nm (S2A)/833 nm (S2B)

B8A Red Edge 4 20 m 864.8 nm (S2A)/864 nm (S2B)
B9 Water vapor 60 m 945 nm (S2A)/943.2 nm (S2B)
B11 SWIR 1 20 m 1613.7 nm (S2A)/1610.4 nm (S2B)
B12 SWIR 2 20 m 2202.4 nm (S2A)/2185.7 nm (S2B)

The Sentinel-2 images were filtered from the GEE catalog based on the presence of
minimal or no clouds in the scene by setting the threshold of cloud cover (less than 5%
cloud cover).

This study examined a set of 15 Sentinel-2 images from November 2020 to May 2021,
which represents the wheat growing season from germination to full maturity, to develop
the yield estimation models.

2.3. Tools Used

The workflow for the computation of vegetation indices from the time series images
was implemented in the Google Earth Engine (GEE) environment using a Java scripts
interface. To execute the classification of TIP crops, the preprocessed images were also
uploaded from the GEE asset. The charts of vegetation indices time series were then
exported to extract vegetation indices values for the different dates of the agricultural
season 2020/2021 (from November 2020 to May 2021). The Sensitive Analysis between
Remote Sensing Indices and Crop Yield was generated in the programming and numeric
computing platform MATLAB. The founding wheat map was exported from GEE as
Geocoded raster and imported to QGIS software for visual interpretation.

2.4. Methods

The goal of this research is to develop a forecast model of durum wheat yield based
on satellite data. The methodology is divided into four parts. Firstly, the six vegetation
indices were computed for the different dates between November 2020 and May 2021
from the spectral bands of Sentinel-2. Secondly, the six remote sensing indices are used
for assessing the relationship between yield measured in-situ as input of the estimation
model of durum wheat yield. The yield measured in-situ was the independent variable
of the regressions. The dependent variables included the six vegetation indices. Thirdly,
the greatest phenological period was deduced and chosen as input for the prediction of
the yield model. Fourthly, the durum wheat regression models were developed and the
wheat mapping of TIP for the season 2020/2021 was obtained to extrapolate the yield
estimation from the nine wheat fields of the season 2020/2021 to the TIP regional scale.
The methodological approach was developed and analyzed in the GEE cloud computing
platform and MATLAB software. Figure 2 describes the overall flowchart of this study,
as well as the processing approach and individual steps.
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Figure 2. Flowchart of the proposed method for wheat yield estimation using LR, MLR, and Google
Earth Engine.

2.4.1. Wheat Yield Measurements

The measurement of yield was conducted on 9 durum wheat fields during the
2020/2021 agricultural season. The different plots of wheat were identified and vectorized
as Regions of Interest (ROIs). The coordinates of the ROIs were recorded using GPS. Their
areas vary from 11.5 ha to 21 ha (mean = 16.22 ha, median = 16 ha). The location of durum
wheat fields for the year 2020/2021 is shown in Figure 3. Seven phenological stages have
been observed during the field campaigns: sowing, germination, tillering, jointing, heading,
maturity, and harvesting. The calendar of phenological stages of durum wheat is presented
in Figure 3. The yield value for durum wheat varies from 22.68 q ha−1 to 59.16 q ha−1

(mean = 46.91 q ha−1, median = 52.55 q ha−1 ). Yield measurements from the 2019/2020,
2018/2019, and 2017/2018 agricultural seasons were used for validation of the yield model
developed based on 2020/2021 yield data.
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2.4.2. Remote Sensing Indices Computing

The growing conditions in each crop stage have a significant effect on crop production.
Six vegetation indices were calculated based on their potential to monitor crop growth and
estimate yield production: The Normalized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), Green Normalized Difference Vegetation Index (GNDVI), Sentinel-2
Red Edge Position (S2REP), the Weighted Difference Vegetation Index (WDVI) and the Leaf
Area Index (LAI) (Table 2). Previous studies indicate that these remote sensing indicators
have recently been incorporated into crop monitoring and yield forecasting [14].

The NDVI is the most widely used vegetation index among the many that have been
developed. The empirical regression models that are used to estimate yields employ it
as an independent variable [2]. The NDVI is derived from reflectance in the red (R) and
near-infrared (NIR) portions of the spectrum.

The EVI has attracted considerable attention in the context of monitoring the quality
and quantity of vegetation. It is represented as an optimized vegetation index to provide an
improved vegetation signal with higher sensitivity in areas with dense biomass [22]. The
EVI is calculated from reflectance in the R, blue (B), and NIR portions of the spectrum [23].

Generally, the NDVI and GNDVI are employed to estimate yield since they have a
significant association with the amount of the plant in the field. The GNDVI is created from
the green (G) and NIR bands, the same as the NDVI formula [24].

The greatest absorption in the red part and the maximum reflectance in the NIR part
are distinguished by the S2REP, which was created specifically for Sentinel-2.

The WDVI is distinct from the ratio indices, as it is a distance-based index that was
developed for correcting the near-infrared reflectance of soil background [14].

The LAI is a biophysical variable that measures the density of green vegetation and
describes the state of the vegetation cover [25]. The LAI index refers to the ratio of leaf
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area to the ground area under broadleaf canopies. Preceding research has focused on the
correlation between NDVI and LAI values derived from satellite data and monthly field
measurements to develop regression curves [5]. The least-squares method was used to
resolve this issue. Table 2 shows the basis for the calculation of the remote sensing indices.

Crop production and growth condition are highly correlated at the pixel level [5].
The value of each pixel’s remote sensing index was directly obtained for the nine fields of
durum wheat, and an averaging of pixel values was then performed for each field. NDVI,
EVI, WDVI, S2REP, GNDVI, and LAI were used to examine the relationship between the
six remote sensing indices and the measured in-situ yield throughout the growing season
(from November to May) for the year 2020/2021.

Table 2. Remote sensing indices calculated from Sentinel-2 images.

Index Equation S-2 Bands Used Original Author

NDVI (NIR − R)/(NIR + R) (B8 − B4)/(B8 + B4) [26]

EVI 2.5(NIR − R)/(NIR + 6R −
7.5 ×BLUE + 1)

2.5(B8 − B4)/(B8 + 6B4 −
7.5 × B2 + 1) [27]

WDVI (NIR − 0.5 × R) (B8 – 0.5 × B4) [28]

S2REP 705 + 35 × (((NIR + R)/2)
− RE1)/(RE2 − RE1))

705 + 35 × (((B7 + B4)/2) −
B5)/(B6 − B5)) [29]

GNDVI (NIR − GREEN)/(NIR +
GREEN) (B8 − B3)/(B8 + B3) [27]

LAI 0.57 × exp(2.33 × NDVI) 0.57 × exp(2.33 × ((B8 −
B4)/(B8 + B4))) [30]

2.4.3. Sensitive Analysis between Remote Sensing Indices and Crop Yield

Regression models for yield prediction are essentially based on empirical correlations
between in-situ yield data and vegetation indices [2,5]. They are simple to implement and
do not necessitate a large number of inputs [15]. In this research, Pearson’s correlation
coefficient (R) of remote sensing indices and durum wheat yield was computed throughout
the phenological growing stages from November to May. Pearson’s correlation coefficient
(R) is a measure of the degree and direction of the linear regression between two continuous
variables recorded on an equal interval. R values vary from −1 to 1 (R > 0 denotes a
positive linear relationship, R = 0 denotes no relationship, and R < 0 denotes a negative
linear relationship) [5].

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

where xi and yi indicates remote sensing indices and the value of durum wheat yield at
different periods, n represents the number of samples, x and y are the average values of xi
and yi.

2.4.4. Crop Yield Estimation Model

For crop yield estimation and forecasting studies, regression approaches are commonly
used [2]. They are simple and clear to establish and do not necessitate numerous inputs.
These are based on empirical relationships between historical yields and remote sensing
indices. Because of their modest data needs and ease of deployment, they are frequently
the favored approach [5,16,31]. In this study, the correlation between durum wheat and
remote sensing indices was examined throughout the growing stages to deduce the optimal
remote sensing index and phenological dates for predicting yield using the MLR technique.
The six remote sensing indices were the independent variables while the durum wheat
yield was the dependent variable.



Agronomy 2022, 12, 2853 8 of 16

2.4.5. Model Performance Evaluation

The established model performance was achieved in two steps. Firstly, the correlation
between predicted and measured yield values was examined by using model fitting and
performance statistics such as the coefficient of determination (R2), root mean square
error (RMSE), and normalized nRMSE. Secondly, the regression model developed using
measured yield data from the 2020/2021 season was validated using data from 2019/2020,
2019/2018, and 2018/2017 seasons.

R2 = 1− ∑n
i=1(Pi −Mi )

∑n
i=1(M−Mi)

RMSE =

√
n

∑
i=1

(Pi −Mi)
2/n

nRMSE = RMSE/M ∗ 100

where n, Pi, Mi, and M represent numbers of samples, predicted values, measured values,
and the mean value of Mi.

2.4.6. Crop Classification

To upscale the yield estimation from the nine wheat fields to the entire study area, the
crop classification map of TIP was generated. This map was developed from the pixel-based
image classification of multi-temporal data from September 2020 to March 2021, using RF
classifier.

The Random Forest (RF) algorithm developed by Breiman et al. [32] is a collection
of several decision trees, with each tree contributing a single vote for the most frequent
class [33]. Due to the construction of a set of Decision Trees (DTs), the RF classifier is more
effective and avoids the overfitting issue that is present in DT classifiers [32].

The traditional bands (Blue, Green, and Near Infrared), SWIR bands, red-edge bands,
and vegetation indices (NDVI and EVI) were used as inputs for classification. The training
data involved 736 plots where 512 were for training (70%) and 224 for validation (30%).
The accuracy verification was performed with five evaluation indices: the Overall Accuracy
(OA), Kappa coefficient, user’s accuracy, producer’s accuracy, and F1 score using validation
parcels that were not included in the training model.

2.4.7. Wheat Yield Mapping

The following procedure was used to create the wheat mapping at the TIP regional
level: -Extract the wheat class from the crop classification result and convert it to a shapefile;

-Apply the resulting equation of the greatest model.

3. Results
3.1. Sensitive Analysis between Remote Sensing Indices, Phenological Dates, and Crop Yield

Sentinel-2 provided 5-days temporal resolution, allowing the collection of more spec-
tral reflectance values at each stage of durum wheat phenological development. Through-
out the phenological stages, the Pearson’s correlation between remote sensing indices and
measured yield was examined from November to May. In the study region, generally,
the sown stage is in late November, the germination stage is from late November to early
December, tillering is from December to early January, jointing is in January, maturity is
from late March to the end of April, and harvesting is from May to early June (each stage of
growth is depicted in Figure 3). For each six remote sensing indices, the correlation values
were calculated for the nine wheat fields for the season 2020/2021 (Table 3 and Figure 4).
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Table 3. Pearson’s Correlation coefficient between remote sensing indices and wheat yield in the
different phenological stages.
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The results show that all selected remote sensing indices presented a higher correlation
with wheat yield in the tillering and maturity stages of wheat. These periods cover the
months of December and April. Specifically, the greatest correlation results were found for
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the last ten days of December and the first ten days of April. The majority of the annual
precipitation fell during the growing season, especially in the tillering period. As a result,
there is adequate moisture and favorable weather conditions for developing new tillers.
Moreover, the maturity stage refers to the end of the doughy stage, the grain gradually
loses moisture, turns a straw color, and becomes exceedingly rigid and mature. Between
January and February, the correlation was reduced as that is when the production of tillers
ceases and the plant enters the jointing and heading phases. The correlation increases as
the heading period progresses until it reaches the mature phase. Harvesting can occur
once the plant has achieved full maturity, and the lowest correlation values were recorded.
In the last 10 days of the tillering stage (last 10 days of December), the wheat yield was
negatively correlated with the remote sensing indices, while in the first days of maturity
the wheat yield was positively correlated. The WDVI had the highest correlation coefficient
(R) values in the last 10 days of December, with (−0.92) on 22 December and (−0.81) on
27 December. Figures 5 and 6 show the correlation charts between durum wheat yield and
remote sensing indices on 22 December 2020 and 1 April 2021.
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3.2. Yield Estimation Model

In this study, six remote sensing indices were examined to develop the best performing
yield estimation model during the growing stages of wheat. Each model used nine wheat
fields and six remote sensing indices linked to the tillering (last 10 days of December) and
maturity stages (first 10 days of April). The MLR was used as a technique to develop
and assess the remote sensing models where the six remote sensing indices were the
independent variables and the durum wheat yield was the dependent variable (Table 4).
Results show that the six remote sensing models generated had R2 values ranging from 0.64
to 0.89, RMSE between 4.29 and 7.78, and nRMSE from 8.96% to 16.34%. The model with
a higher R2 value and lower RMSE value represents the most suitable model for durum
wheat yield estimation.
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Table 4. Yield estimation models for durum wheat using remote sensing indices.

MLR Models Equations R2 RMSE (qha−1) nRMSE
(%)

Model 1 y = −118.86 × NDVIL10Dec + 39 ×
NDVIF10Apr + 61.26 0.87 4.69 9.84

Model 2 y = −229.12 × EVIL10Dec + 26.47 ×
EVIF10Apr + 74.93 0.88 4.43 9.31

Model 3 y = −509.43 ×WDVIL10Dec + 34.73 ×
WDVIF10Apr + 110.35 0.87 4.59 9.64

Model 4 y = −2.25 × S2REPL10Dec + 3.45 ×
WDVIF10Apr − 843.82 0.64 7.78 16.34

Model 5 y = −250.36 × GNDVIL10Dec + 65.47
× GNDVIF10Apr + 118.2 0.89 4.29 8.96

Model 6 y = −37.13 × LAIL10Dec + 5.30 ×
LAIF10Apr + 79.9 0.84 5.17 10.86

The best model was obtained when using GNDVIL10Dec and GNDVIF10Apr, with
R2 = 0.89, RMSE = 4.29, and nRMSE = 8.96%.

3.3. Validation of MLR Model

To assess the estimation performance of the developed model, the predicted and
measured yields were compared using the coefficient of determination (R2), root mean
square error (RMSE), and normalized RMSE (nRMSE). Model 5 was selected as the opti-
mal estimation model for durum wheat. It has combined variables of GNDVIL10Dec and
GNDVIF10Apr. The correlation between measured and retrieved yield was R2 = 0.89 while
the root mean square error was RMSE = 4.29 qha−1 (Figure 7).
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Based on the model developed for the growing season 2020/2021, the wheat yield for
the seasons 2017/2018, 2018/2019, and 2019/2020 were assessed by deducing the estimated
yield from Model 5 and the respectively measured yields (Table 5). The results show that
the R2 ranged between 0.53 to 0.93 from the season of 2017/2018 to the season of 2019/2020.

Table 5. The comparison of wheat yield in situ measured and retrieved from remote sensing indices
in 2017/2018, 2018/2020, 2019/2020, and 2020/2021.

Model Yield Measured/Retrieved (qha−1) R2 RMSE

Model
5

2020/2021 Measured
Retrieved

27
25.9

22.6
26.7

57.7
52.9

48.8
54.8

46.8
52.2

55.8
46.6

59.1
59

58
59.3

52.5
51 0.89 4.26

2019/2020 Measured
Retrieved

33
32.7

66
58

43
39.1

55
63.3

55
72.5

47
62.46 0.53 8.78

2018/2019 Measured
Retrieved

54
60

53
62

44
51

43
55 0.79 5.87

2017/2018 Measured
Retrieved

65
64.1

53
44

32
30.9

62
62.3 0.93 3.04

The best correlation was found in 2017/2018 (R2 = 0.93 and RMSE = 4.26 q ha−1),
while the worst correlation was found in 2019/2020 (R2 = 0.53 and RMSE = 8.78 q ha−1).

The results showed that the accuracy of the wheat yield estimating model, based on
remote sensing indices, is satisfied, and can be promoted in actual practice.

3.4. Extrapolation of Wheat Yields from the Field to the Region Scale

The wheat yield estimation was upscaled to the entire study area using the wheat crop
classification map generated from the RF classification. This map was produced from the
pixel-based classification of Sentinel-2 time series in the early season of wheat growth (from
September 2020 to March 2021). Table 6 shows the overall accuracy as well as the wheat
accuracy characteristics of the resulting RF classification.
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Table 6. Overall accuracy, Kappa index, wheat user and producer accuracy, and F1 score of the
classification result.

Accuracy Index Accuracy Values

Overall accuracy 93.82%

Kappa index 0.92

Wheat user accuracy 90.46%

Wheat producer accuracy 94.96%

Wheat F1 score 92.66%

The most accurate model for predicting durum wheat yield (Model 5) was selected for
upscaling and mapping the spatial distribution of wheat yields across the full research area.
Figure 8 shows the produced yield map. The extrapolated model produced a yield map that
was classified into 4 classes: <40 q ha−1, 40–60 q ha−1, 60–80 q ha−1, and 80–100 q ha−1.
The highest yields were concentrated in the Southern bank of the Beni Moussa perimeter,
while the lowest yields were recorded in the Northern bank of the Beni Amir perimeter.
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4. Discussion

This study paves the way for an approach to estimate yield in the early period of
wheat growth using Sentinel-2 time series data and GEE cloud computing. To develop a
yield estimation model and extrapolate it from layers to the entire region, this investigation
evaluated six vegetation indices and the computational performance of GEE. Six remote
sensing indices (NDVI, EVI, WDVI, S2REP, GNDVI, and LAI) were extracted from dense
Sentinel-2 time series in this investigation. Using the usual method, this amount is hard
to process. In the GEE, on the other hand, the cloud computing process was fast and took
only a few seconds.

This survey showed a strong correlation between vegetation indices linked to a spe-
cific phenological stage and yield production, which should be exploited in future yield
estimation studies.

More specifically, the results of this paper show that in the tillering and maturity stages
of wheat, all selected remote sensing indices had a greater correlation with wheat yield.
The most significant correlations were discovered during the last ten days of December and
the first ten days of April. These findings are in accordance with previous studies. Křen
et al. [34] found that the essential period for the creation of spring barley production and
grain quality is governed by the growth stages of tillering. Sultana et al. [35] revealed that
the correlation between grain yield and NDVI at maturity is stronger than the NDVI values
observed at other growth stages.

Based on these two phenological growth stages, the remote sensing indices were
examined to develop the model estimation equations using MLR. The model created with
the GNDVIL10Dec and GNDVIF10Apr as the independent variables was found to be the
most accurate (R2 = 0.89). Naqvi et al. [12] compared the accuracy of different indices
(GNDVI, NDVI, EVI, and WDVRI) in district Chakwal, Pakistan, for wheat yield, and the
GNDVI gave one of the most accurate results, with R2 = 0.82. The relationship between
measured wheat yield and the values extracted from the regression model developed
with GNDVIL10Dec and GNDVIF10Apr was examined from the growing season 2017/2018
to 2020/2021. The results reveal that the R2 values ranged from 0.53 to 0.93. The best
correlation was found in 2017/2018 (R2 = 0.93 and RMSE = 4.26 q ha−1), while the worst
correlation was found in 2019/2020 (R2 = 0.53 and RMSE = 3.04 q ha−1). Cavalaris et al. [36]
used NDVI, EVI, NDMI, and NDWI derived from Sentinel-2 for modeling durum wheat
yield. The best-performing model was achieved by combining the NDVI integral from
20 April to 31 May as the plant signal, the NDWI on 29 April as the water signal, and the
NDWI of bare ground as the soil signal (R2 = 0.629, RMSE = 538 kg/ha), which was lower
than our results.

A further result was found in the extrapolation of the model to the TIP region. The
map produced showed a heterogeneous distribution of yield between the Northern bank of
the Beni Amir perimeter and the Southern bank of the Beni Moussa perimeter. The greatest
yields are concentrated in the Southern bank, while the lowest yields are distributed in
the northern bank. This difference could be explained by the salinization of soils within
the Beni Amir perimeter as a result of the cessation of the use of saline groundwater and
surface water of the Oum Er Rabia River, as well as management issues. This result is
in accordance with the El Harti et al. [3] study, in which authors stated that the area of
Beni Amir soils is affected by salinity due to unsuitable irrigation and intensification of
agricultural practices.

We believed that this study can be extended for forecasting the yield of many crops in
the early season by thoroughly examining the publicly accessible data from the Sentinel
missions of the European Space Agency (ESA) and typical phenological stages of crops.

Furthermore, by accounting for the seasonal characteristics of crops, this study can
also be generalized for predicting yields in other countries.
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5. Conclusions

The use of remote sensing indices and cloud computing in agriculture policy and
practices is still in its early stages in the Tadla Irrigated Perimeter region. This was the first
time a Multiple Linear Regression model derived from remote sensing indices through the
growth stages of wheat was developed to estimate crop production in the TIP, which is the
key wheat-producing region.

To that end, the best and most appropriate indices were initially identified by testing
correlations between the six indices and measured durum wheat yield.

This study proved that a strong correlation between vegetation indices and yield was
obtained in the tillering and maturity stages of wheat, with R2 values ranging from 0.64
to 0.89.

The best model was obtained when using GNDVI in the tillering and maturity stages
of wheat development, having R2 equal to 0.89 and RMSE equal to 4.29 q ha−1.

The proposed method offers a simple and clear way to map the spatial distribution of
wheat yield from the field to the regional scale. It employs remote sensing products ready
for processing via the cloud, reduces time, and does not require supplementary inputs,
allowing it to be extended across the entire national scale.

However, the developed model can be viewed as the first and most basic model
for predicting the yield of wheat in the TIP; further variables can be added to the MLR
model in the upcoming studies such as temperature, humidity, air temperature, and water
temperature.
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