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Abstract: Utilizing innovative agricultural practices that enhance the nutritional quality of staple
foods such as potatoes provides farmers with tools to successfully meet the challenges of feeding a
rising global population while sustaining organic food production. In the present study, we have
demonstrated the potential of white mustard (Sinapis alba) seed meal extract to improve potato
nutritional properties. Sinapis alba extract is a low-cost by-product of mustard oil extraction that
contains a relatively high concentration of biologically active compounds. When applied to soil,
S. alba extract had a positive impact on nutritional quality of potatoes. For example, total phenolic
content in potatoes treated with S. alba extract increased by ~1.5 times, and potato nitrogen content
increased from 1.52% to 1.73% with one application of S. alba extract. At the same time, application
of S. alba extract had limited impact on the accumulation of anti-nutrients such as glycoalkaloids
in potato tubers. The ability to boost the phenolics content of potatoes by applying an organic
amendment is a valuable tool in organic farming as it creates more nutritional crop. To the best of our
knowledge, this is the first study to examine the effect of S. alba extract on the nutritional quality of
potatoes, or indeed of any food crop.
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1. Introduction

Potatoes represent the third largest carbohydrate food source in the world, and they
contribute key nutrients, antioxidants, and fibers to human diet [1]. Organic potatoes
account for approximately 4.2% of the total potato market [2]. While there is a strong public
demand for organic produce, there are many challenges associated with organic potato
production. For example, one of these challenges is assessing the nitrogen sources for
meeting potato plant nutrient requirements [2].

Seed meal of Brassicaceae crops can contain up to 5% nitrogen and thus can serve as an
organic source of nitrogen in agricultural production systems [3,4]. For example, seed meal
of white mustard (Sinapis alba) is a low cost by-product of mustard oil extraction, that is both
affordable and easily accessible [5,6]. Mustard seed meal can be further extracted to obtain a
concentrated product that can serve as a soil amendment to fulfil nitrogen requirements and
provide a benefit of improving soil health [7–9]. In addition, concentrated white mustard
(Sinapis alba) seed meal extract contains consistently high concentrations of the biologically
active compounds that can potentially improve crop nutritional properties [8,10–12]. While
the antioxidant activity of mustard meal is attributed to phenolic compounds, such as
sinapine and benzoic and cinnamic acid derivatives, little is known about the effect of
mustard meal extract on potato nutritional value [13–16].

Thus, the objective of the presented study was to evaluate the effect of S. alba ex-
tract on (1) the nutritional quality of potatoes; (2) phenolic content in potato tubers; and
(3) accumulation of anti-nutrients such as glycoalkaloids. To accomplish this, we conducted
a trial in a certified organic farm to reflect the typical organic production practice. To
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the best of our knowledge, this is the first report studying the effect of S. alba seed meal
extract on nutritional quality of organic potatoes. In addition to human health benefits,
using S. alba extract in organic potato production can improve product marketability due
to the zero-waste technology used for S. alba extract production and by focusing on sus-
tainability, recovery, and reuse, and multiple high-value products [17–19]. Mustard itself
is also a great rotational and cover crop that can be used to improve soil health and re-
duce pest pressure, which makes mustard production an environmentally sustainable soil
amendment option [20,21].

2. Materials and Methods
2.1. Plant Materials

Mustard seed meal extract (MSME) was prepared using the procedure described
previously from Organic Materials Review Institute (OMRI) certified S. alba (IdaGold
variety) seed meal (Farm Fuel Inc., Watsonville, CA, USA) [7]. Briefly, cold press mustard
meal was extracted with water at room temperature. Mustard meal sludge was pressed
through the decanter centrifuge to remove most of the debris. Clarified extract was filtered
through 100 µm filter and freeze dried. Certified Organic Yukon Gold seed potatoes were
purchased from New Sprout Farms (Asheville, NC, USA).

2.2. S. alba Mustard Meal Extract Phytotoxicity Assay

Potato toxicity assays were conducted in 5 Ga (506.7 cm2 surface area) pots that were
filled with moist OMRI soil, and one seed potato was planted 5 inches deep in each pot.
The pots were organized in a random block design with five replicates per treatment.
Following treatments were used: S. alba extract applied (1) on the same day as planting,
(2) 2 weeks after planting, (3) 4 weeks after planting, (4) or left untreated to act as a control.
An application rate of 450 g/m2 of S. alba extract was used for each of the aforementioned
experimental groups by sprinkling the S. alba extract powder evenly over the surface of
the soil and watering to incorporate it. Pots were kept in a greenhouse with a 14.5-h
day length and maintained at 26/16 ◦C maximum/minimum temperatures. Soil was
maintained moist by watering every other day using a lightly sprinkling hose attachment.
Each week, percent damage was recorded for the potato plants in each pot. Percent damage
was expressed based on total aboveground biomass conditions with 0% = unaffected
and healthy-looking plant and 100% = completely dead plant. Damage was assigned the
following ranges based on a visual observation: 1–30% minor burning of leaves and stems,
30–60% significant damage, and 60–90% major damage with extended necrosis of leaves
and stems. When the potatoes were ready for harvest, fresh mass of potato yield was
measured for each pot and averaged for each experimental group. A cross section of each
tuber was manually measured.

2.3. Field Trials

The potato field trials were conducted on Soil Stewards Organic farm (Moscow, ID,
USA), a certified organic farm in Northern Idaho. Soil Stewards farm has silty clay loam Mol-
lisolls from two soil series: Latahco (Argiaquic Xeric Argialbolls) and Thatune (Oxyaquic
Argixerolls). Moscow, ID receives an average of 69 cm of rain and 124 cm of snow annually
and has an annual average temperature of 8.3◦ (U.S. Climate Data, 2018). Twenty plots
(90 × 60 cm2) were randomly assigned in one long row with a 30 × 60 cm2 buffer zone.
Within each experimental plot, four seed potatoes were planted. The potato row was wa-
tered via drip irrigation at a rate of 2.5 cm/week. Three weeks after planting, S. alba extract
(4.5 t ha−1) was applied once (1×), twice with a two-week interval (2×), or three times
with a two-week interval (3×). Application was performed by top applying the dry S. alba
extract on the surface of soil and irrigating afterwards. For the second and third application,
when the shoots already appeared above the ground, S. alba extract was applied around
the plant with 5–7 cm distance to avoid any potential plant damage. Untreated control
received no S. alba extract.
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2.4. Potato Chemical Analysis

Potato tubers were harvested, weighed to determine the yield, and visually evaluated
for quality appearance. A cross section of each tuber was manually measured. Potato tubers
were then freeze-dried. Dry tissues were pulverized using cyclone mill (UDY Corporation,
Fort Collins, CO, USA) and kept at −20 ◦C until extraction and analysis. Standard plant
analysis for macro and micronutrients was performed by Ward Laboratories, Inc., (Kearney,
NE, USA). The total starch content of the potatoes was measured using a Megazyme® Total
Starch Assay Kit. Corresponding antioxidant activity of potato extracts was assessed using
a Folin-Ciocalteu assay [22].

2.5. Phenolics and Glycoalkaloids Analysis

Freeze-dried tuber tissues (1 g) were homogenized with 20 mL of methanol in Omni
Prep homogenizer (Omni Int, Kennesaw, GA, USA) at 1500 rpm for 10 min. The suspension
was centrifuged at 4000× g rpm and 18 ◦C for 10 min and supernatant was collected. The
extraction was repeated two more times. All supernatants were combined, evaporated
until dry using a rotary evaporator, and reconstituted in 1 mL of methanol. Phenolics and
antinutrient contents were evaluated as described previously using HPLC/MS method
describe below [23,24]. Analysis of glycoalkaloids and phenolics were performed using
an Agilent 1200 Series HPLC coupled to an Agilent G6230 ESI TOF MS (Agilent, Santa
Clara, CA, USA). The chromatographic separation of glycoalkaloids was performed on
an Extend-C18 3.5 µm, 2.1 × 100 mm (Agilent Technologies Inc., Santa Clara, CA, USA)
reversed phase chromatographic column. The mobile phase consisted of 0.1% formic acid
in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B). The gradient program
started with isocratic elution using 0% B for 1 min, followed by a linear gradient to 35%
B from 2 to 11 min, followed by a linear gradient to 65% in 4 min, then organic solvent
was increased to 100% B in 2 min, kept at 100% for 1 min, and re-equilibrated back to the
initial mobile phase composition in 5 min. Column was maintained at 30 ◦C. The injection
volume was 5 µL. The flow rate was 0.4 mL/min.

Electrospray ionization was operated in the positive and negative modes with abso-
lute value for electrospray ionization potential at 3500 V. Collision-induced dissociation
potential was set at 150 and 250 V to analyze spectra for molecular ion and fragmentation
pattern, respectively. Gas temperature was 350 ◦C, drying gas (N2) flow rate was 10 l/min,
and nebulizer pressure was 2.4 × 105 Pa. The analyses were conducted in a centroid
mode within an m/z range from 100 to 1700 amu. Quantification of total glycoalkaloid
concentration was done based on the external calibration curve constructed based on the
pseudomolecular ion (Table 1). In the absences of analytical standards, glycoalkaloids
were tentatively identified based on the literature data and in silico using open-source
databases [24–26].

Table 1. Glycoalkaloids identified in potato samples using analytical standards (α-chaconine and
α-solanine) and literature and in silico search.

Retention Time, min Glycoalkaloid Pseudomolecular Ion

12.709 Solanidatetraenol isomer 862.446
12.865 Solanidadienol 866.525
12.980 α-Chaconine isomer 852.509
13.047 Solanidenol 884.487
13.059 Dehydrochaconine isomer 850.485
13.200 Solanidatetraenol 862.446
13.320 Solanidenediol 884.487
13.470 Solanidatetraenol isomer 862.446
13.592 Solanidene 1030.557
13.820 Dehydrochaconine isomer 850.485
13.854 Solanidenetriol 916.480
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Table 1. Cont.

Retention Time, min Glycoalkaloid Pseudomolecular Ion

13.865 Solanidadienol isomer 866.525
13.899 α-Solanine 868.501
14.128 α-Chaconine 852.509
14.763 Solanidadienol isomer 866.525
14.790 Leptinine II 884.487
15.616 Leptine II 926.503

2.6. Data Analysis

Data were analyzed by analysis of variance (ANOVA) using JASP (University of
Amsterdam, Amsterdam, The Netherlands), a graphical open-source software package for
basic statistical procedures [27]. Pairwise comparisons were performed using Student’s
t-test to assess the treatment differences and means were considered significantly different
at p ≤ 0.05.

3. Results
3.1. Plant Damage

Plants that were treated with S. alba extract at the same day of planting (0 days)
exhibited minimum degree of stress and recovered shortly after (Figure 1). Plants that were
applied with S. alba extract 14 days after planting were the most susceptible for damage as
reflected by leaf wilt and yellowing. For example, one week after S. alba extract application,
24% of plant leaf surface was affected and the affected area has increased to 62 % over
the next seven days. Plants that were treated with S. alba extract 28 days after planting
had significant damage with 35–54% of leaf area affected. While visible damage persisted
for several days after S. alba extract application for potatoes treated 14 and 28 days after
planting, plants did recover 14–21 days after.
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Figure 1. Damage in potatoes treated with S. alba extract at the time planting (0 days), 14 and 28 days
after planting. Plant damage was calculated as a percentage of discoloured leaf area relative to the
total area.

3.2. Plant Nutrients

Potato tubers grown in S. alba extract applied plots were analyzed for essential nutrient
content (Table 2). Potato starch content was not significantly affected by S. alba extract
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application and ranged from 52 to 58 g/100 g of potatoes on dry weight basis (Table 2).
Similarly, no changes were observed for phosphorous content in potatoes treated with
S. alba extract with the average phosphorous content of 0.26%. Potato nitrogen content
increased from 1.52% to 1.73% with one application of S. alba extract. However, no changes
were observed with the additional applications of S. alba extract. Potassium, another critical
plant nutrient, increased from 2.27 to 2.37% in potatoes treated with S. alba extract with only
2× application being statistically higher than the control treatment. Sulfur content sig-
nificantly increased in potato tubers after S. alba extract application. One application of
S. alba extract increased the concentration of sulfur by 3%, with each subsequent application
bringing an additional 3% increase. For calcium and magnesium, one S. alba extract appli-
cation resulted in a 13% and 2% increase, respectively. Concentrations of trace minerals
(zinc, iron, manganese, copper, boron, and molybdenum) were not significantly altered by
the addition of S. alba extract to potato plots.

Table 2. Selected nutritional qualities of potatoes treated with one, two, and three repeated application
of S. alba extract under field conditions. Values ± standard errors are the average of five replicates.
Values within the same row followed by a common letter are not significantly different (p ≤ 0.05).

Control
S. alba Extract

1× 2× 3×

Starch, g/100 g 52.0 ± 4.7 a 53.6 ± 3.1 a 52.2 ± 5.0 a 57.1 ± 1.8 a

Essential nutrients, %
Nitrogen 1.52 ± 0.16 bc 1.73 ± 0.15 a 1.69 ± 0.10 ab 1.73 ± 0.14 a

Phosphorous 0.34 ± 0.04 a 0.38 ± 0.03 a 0.38 ± 0.02 a 0.36 ± 0.05 a

Potassium 2.27 ± 0.15 ab 2.29 ± 0.10 ab 2.37 ± 0.13 a 2.34 ± 0.22 ab

Sulfur 0.128 ± 0.010 bc 0.132 ± 0.007 abc 0.138 ± 0.007 ab 0.143 ± 0.012 a

Calcium 0.099 ± 0.020 b 0.112 ± 0.017 ab 0.112 ± 0.005 ab 0.124 ± 0.018 a

Magnesium 0.136 ± 0.011 a 0.138 ± 0.008 a 0.143 ± 0.003 a 0.144 ± 0.009 a

Trace mineral, ppm
Zinc 20.9 ± 3.0 a 21.0 ± 1.2 a 22.4 ± 1.8 a 24.0 ± 5.7 a

Iron 271 ± 122 a 231 ± 93 a 319 ± 106 a 239 ± 135 a

Manganese 10.8 ± 1.6 a 10.0 ± 1.4 a 11.8 ± 1.6 a 11.8 ± 2.9 a

Copper 8.8 ± 0.9 a 8.4 ± 0.4 a 8.5 ± 0.8 a 8.5 ± 0.9 a

Boron 7.7 ± 0.6 a 7.2 ± 0.3 a 7.2 ± 0.5 a 7.2 ± 0.4 a

Molybdenum 0.57 ± 0.20 ab 0.67 ± 0.12 a 0.54 ± 0.09 ab 0.43 ± 0.16 b

Phenolics content, mg/g
Total phenolics 0.6 ± 0.1 c 1.6 ± 0.3 bc 2.6 ± 0.8 ab 3.3 ± 0.9 ab

Caffeic acid 2.7 ± 0.4 a 4.1 ± 0.7 a 4.1 ± 0.5 a 3.6 ± 2.0 a

Antinutrients conc., mg/g
α-Solanine 0.80 ± 0.02 a 1.15 ± 0.13 a 0.78 ± 0.44 a 1.06 ± 0.43 a

α-Chaconine 3.10 ± 0.46 a 3.52 ± 0.25 a 3.67 ± 0.26 a 3.84 ± 0.49 a

3.3. Potato Phenolics

Total phenolic content for control treatment with no S. alba extract application was
0.6 mg/g based on gallic acid equivalent (Table 2). After one application of S. alba extract,
total phenolics content accounted for 1.6 mg/g. Each consequent application of S. alba
extract resulted in the steady increase of phenolics content to 2.6 and 3.3 mg/g, respectively.
Caffeic acid was identified as one of the major contributors to the overall phenolic content
with the concentration increasing up to 1.6 times after S. alba extract application from 2.7 to
3.6–4.1 mg/g with no statistical difference between one, two, and three applications.

3.4. Potato Glycoalkaloids

Concentration of α-solanine, one of the major glycoalkaloids in potatoes, was
0.78–1.15 mg/g on dry weight basis when treated with S. alba extract with no statistical dif-
ference between one, two, and three applications. These values are not statistically different
from α-solanine concentrations (0.80 mg/g) in potatoes from control plots. Concentrations
of α-chaconine, another major glycoalkaloid, were 3.52–3.84 mg/g in potatoes treated with
S. alba extract and 3.10 mg/g in potatoes not treated with S. alba extract. In addition to these
two major glycoalkaloids, 15 other compounds assigned as glycoalkaloids were detected in
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all potato samples (Table 1). Due to the lack of analytical standards, exact concentrations of
each compound in potatoes were not quantified. However, amounts of the glycoalkaloids
were expressed on relative amount basis to reflect the changes in their distribution under
different treatments (Figure 2). Out of 15 additional glycoalkaloids, only five glycoalkaloids
(α-chaconine isomer, dehydrochaconine, solanidadienol, solanidenediol, and leptinine)
were sensitive to S. alba extract treatment (Figure 2). For example, α-chaconine isomer
amounts in S. alba extract treated potatoes were higher as compared to non-treated control.
Dehydrochaconine content, on the other hand, did decrease with the increase of S. alba
extract application. Similarly, the relative amounts of solanidadienol and leptinine II were
lower after repeated application of S. alba extract.
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4. Discussion
4.1. Plant Damage

Along with biologically active compounds, such as sinapine and sinapic acid, S. alba
extract contains ionic thiocyanate, a compound that has been shown to exhibit toxicity
toward a range of plants by inhibiting germination and stunting plant growth [28,29].
Ionic thiocyanate is freely soluble in water and can be taken up by plant roots. As a
result, the extent of ionic thiocyanate’s effect on a plant is determined by the compound
concentrations in soil and the ability of plant to uptake it from soil pore water. The timing
of S. alba mustard extract application is one the factors that defines the ionic thiocyanate
concentration in soils for plant uptake. For example, it was shown that two weeks after
application, the concentration of ionic thiocyanate declines twofold in the top 5 cm of
soil [30]. However, a corresponding increase is observed in deeper soil layer. Depending
on the root system of the specific crop, the uptake of ionic thiocyanate will be highest
when the migration of ionic thiocyanate within the soil profile coincides with the active
root uptake zone. For potatoes, the depth of the rootzone depends on the seed planting
depth, but generally falls in 10–25 cm [31]. This is consistent with the obtained results for
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potato that were applied with S. alba extract two weeks after planting and were the most
susceptible for plant damage (Figure 1). At the same time, application of S. alba extract
during the planting (0 days) inflicted minimum degree of stress on plants, presumably
due to the misalignment between the ionic thiocyanate translocation in soils and the active
uptake rootzone of potatoes. On the opposite side, delaying application of S. alba extract
to four weeks after planting did inflict significant damage to plants. However, the timing
of damage coincided with the potato senescence and tuber bulking, and it could not be
differentiated purely from the observation. While visible damage persisted for several days
after S. alba extract application for plants treated two and four weeks after planting, plants
did recover 14–21 days after. However, the plant stress induced did result in significantly
lower potato yields (Supplemental Material Table S1). For example, the yields for potatoes
treated with S. alba extract at the same day as planting and four weeks after planting
were 3.6 times lower than non-treated pots. While the number of potato tubers was not
significantly different among the treatments, the size of potatoes treated with S. alba extract
was 2.5–3 times lower compared to the control. Thus, based on the greenhouse data,
the field application of S. alba two weeks after planting minimizes the effects of ionic
thiocyanate on potato plants (Figure 1). However, the plant yields were still significantly
affected by multiple S. alba extract applications with both the number and average size of
potatoes being lower than for non-treated control. Previously, it was also reported that the
use of mustard in potato did not improve total tuber yields or marketable yields [32].

4.2. Plant Nutrients

Several plant nutrients were monitored in potatoes treated with S. alba extract (Table 2).
While starch content of potatoes was not affected, application of S. alba extract to soil
resulted in the increase of minerals such as nitrogen, potassium, sulfur, and calcium
contents in potatoes (Table 2). Nitrogen content was not significantly different when the
application of S. alba was increased from one application to two or three applications during
the growing season. While S. alba has relatively high nitrogen content (2.1% by weight),
the uptake of nitrogen from soil is limited to the plant available form of nitrogen. Thus,
while the absolute nitrogen concentrations were higher with the repeated application rates,
they were not proportional to the increase in the nitrogen input through S. alba application.
Phosphorous concentrations in tubers were not affected by the application of S. alba extract.
While both organic and inorganic phosphorous in soil increased significantly after S. alba
application, the translocation of phosphorous into tubers was not observed [9].

While the concentrations of potassium in potato tubers were increased up to 25%
after S. alba extract application, the increase was not significantly different among three
application rates suggesting the that the plant uptake is limited by factors other than the
plant available potassium content. In general, potatoes contain more potassium than other
commonly consumed vegetables [33]. However, potassium shortages are associated with
low protein content in potato tubers [34,35]. Thus, S. alba extract has potential to serve as
an organic fertilizer to not only boost potassium content in potato tuber, but also positively
affect other nutritional properties.

S. alba extract is sulfur rich due to the presence of sulfur-containing glucosinolates, that
can be converted by enzyme myrosinase to inorganic sulfate, that, in turn, can be uptaken
by plants. The potential of S. alba extract to increase sulfur content in potato tubers is
advantageous as sulfur represents an essential dietary component for human diet and plays
an important role in disease prevention [36]. In addition to the increased sulfur content of
potato tubers, sulfur fertilization provides the benefit of improved micronutrients uptake,
infection reduction in potato plants, and minimizing defects in potato tubers [37–39].

Based on the results from this study, S. alba extract can also act as an additional booster
of calcium and magnesium in potato tubers (Table 2). The adequate calcium content in
food, especially in gluten-free foods such as potatoes, is important for maintaining healthy
bones and muscular systems [40].
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4.3. Potato Phenolics

Total phenolic content in potatoes is generally one of the highest among other staple
vegetables like carrots and onions [41]. The application of S. alba extract had a positive
effect on the overall phenolics content in potatoes (Table 2). However, the total phenolic
content value in potatoes from this trial was relatively low as compared to previously
reported values [42,43]. While the lower value could be due to the specific variety used,
it could also be due to the atypically dry growing season. Nevertheless, the application
of S. alba extract resulted in more than a two-fold increase in total phenolic content of
tubers. Every additional application of S. alba extract increased the phenolic content by
~1.5 times (Table 2). Phenolic compounds in potatoes are mostly represented by substituted
hydroxycinnamic and hydroxybenzoic acids such as caffeic acid [44,45]. Caffeic acid
represented the major phenolic compound in analyzed potatoes that increased after S. alba
extract treatment, indicating the potential for boosting it in potatoes by using soil organic
amendments. Caffeic acid has been shown to exhibit antioxidant and anticarcinogenic
activity and its increase in potatoes is beneficial for human health [46].

4.4. Potato Glycoalkaloids

In addition to monitoring phenolics, potato glycoalkaloid content in potato tubers was
measured. Glycoalkaloids are considered antinutrients as they are toxic to human and are
generally undesirable [42,47]. At the same time, it has been shown that low concentrations
of glycoalkaloid can exhibit anticancer activity [48]. The concentration of α-solanine, one
of the major glycoalkaloids in potatoes, was not significantly different in the potatoes
treated with S. alba extract compared to the control untreated potatoes. At the same time,
concentrations of α-chaconine, another major glycoalkaloid, were statistically higher in
potatoes after S. alba extract treatment but were not different for the three S. alba extract
application rates. Still, the concentrations of α-chaconine were far below the established
health-based maximum levels for human consumption [49]. The observed changes in
other glycoalkaloids indicate that changes induced by S. alba extract are glycoalkaloid
chemistry dependent.

5. Conclusions

To the best of our knowledge, this is the first study to examine the effect of S. alba
extract on the nutritional quality of potatoes, or indeed of any food crop. S. alba extract
is an organic amendment that has the benefit of boosting soil health and can potentially
be beneficial for improving potato quality. Specifically, we have demonstrated that out of
all measured nutritional properties, phenolic content of potatoes was the most impacted
by the addition of S. alba extract. The ability to increase the phenolics content of potatoes
by applying an organic amendment is a valuable tool in organic farming as it creates a
more nutrient-dense product. At the same time, more research needs to be done to evaluate
the overall applicability of S. alba extract in organic management practices to assure the
productivity and sustainability of the system, especially regarding the yield reduction
associated with the application of S. alba extract.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12112782/s1, Table S1: Potato plants above ground
biomass and tuber yields after S. alba extract treatment for greenhouse and field trials. Data are
average for six individual plants (greenhouse study) or five plots (field study). Values within the
same set followed by a common letter are not significantly different (p ≤ 0.05).
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