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Abstract: The actual root carbon storage (ARCS) and potential root carbon storage (PRCS) of grass-
lands play an important role in the global carbon balance and carbon neutralization. However,
estimation of these indicators is difficult. In addition, their spatial patterns and crucial driving factors
also require clarification. In this study, an approach for accurate estimation of ARCS and PRCS was
developed incorporating a support vector machine model and high-accuracy surface modeling. Based
on field data collected from Altay Prefecture in 2015, the estimation accuracy (R2) of root biomass
in the 0–10, 10–20, and 20–30 cm soil layers of grassland were 0.73, 0.63, and 0.60, respectively. In
addition, the spatial patterns of actual root carbon density (ARCD) and potential root carbon density
(PRCD) were analyzed. The ARCD increased with the increase in elevation. High PRCD was located
on hillsides with a gentle slope. The dominant interaction factors for the ARCD spatial pattern
were temperature and precipitation, whereas the main interaction factors for the PRCD pattern were
temperature and slope. The grassland ARCS and PRCS in Altay Prefecture were estimated to be 48.52
and 22.69 Tg C, respectively. We suggest there is considerable capacity to increase grassland ARCS in
the study area.

Keywords: root carbon storage; potential storage; grassland; HASM; Altay Prefecture

1. Introduction

Plant carbon storage is a crucial component of the terrestrial ecosystem carbon cycle.
The carbon sequestration by terrestrial plants is limited compared with soil carbon stor-
age [1]. However, soils cannot fix CO2 actively; this function is entirely undertaken by
plants. Plants fix CO2 from the atmosphere through photosynthesis and store a portion
of the organic carbon in the soil through their roots [2,3]. Therefore, plants are important
contributors to soil organic carbon stocks in terrestrial ecosystems [4,5].

In grassland ecosystems, plant carbon storage is mainly concentrated in the roots
rather than in photosynthetic organs. The root biomass accounts for 70–85% of the total
biomass [6]. Thus, root carbon storage largely determines the overall capacity for plant
carbon storage in grasslands [7,8]. This is quantified as the actual root carbon storage
(ARCS). To address the global dilemma of carbon emission and storage, it is necessary
to calculate the potential carbon holding capacity of roots. However, no standardized
definition of potential carbon storage is accepted universally. Current research primarily
refers to the difference between the peak carbon storage, which could be achieved through
climate change and management measures, and the actual carbon storage [9]. Therefore,
potential root carbon storage (PRCS) is defined as the holding capacity of grassland root
carbon storage that can be improved in the future.
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Carbon storage in the photosynthetic organs of grasslands can be reliably estimated
from remote sensing data [10–12], but it remains difficult to estimate storage in below-
ground biomass. Estimation of the ARCS of grassland ecosystems is pivotal to understand
the global carbon cycle. Traditionally, three major approaches have been used to estimate
ARCS over large spatial domains. One strategy is to simulate the carbon cycle process in a
grassland ecosystem by using a macroscopic biogeochemical model to derive ARCS [13,14].
In China, the national grassland ARCS has been estimated as 1.85 and 2.78 Pg C using the
Denitrification–Decomposition Model and the Terrestrial Ecosystem Model, respectively.
Divergent parameters and differences in spatial resolution of the two models account for
the discrepancy in results, even if the parameters with the highest correlation coefficients
are used in the models [15,16]. A second approach is to estimate aboveground biomass
from remotely sensed images and then derive ARCS based on empirical root: shoot ra-
tios [17]. However, multiple uncertainties reduce the credibility of the outputs. Third, the
actual root carbon density (ARCD) is estimated using root biomass and carbon content
from sample data. Subsequently, the ARCS is derived by multiplying ARCD and the area.
However, the field investigation required in the initial step of this approach is time and
labor intensive [18].

Assessment of potential carbon storage is an additional aspect of carbon cycle re-
search [19–21]. Such assessment plays an important role in optimizing current ecolog-
ical management measures and formulating future environmental management strate-
gies [22,23]. Several approaches have been used to estimate the peak carbon storage.
Temporal- and spatial-based methods have been used in ecosystems. Temporal methods
rely on time-series changes in carbon storage for determination of the peak value [24]. This
approach is a popular means of predicting potential carbon storage. The spatial approach
is premised on the theory of natural succession of ecosystems [25]. The accessible carbon
storage is considered to be maximal when all types of plants have attained their highest
succession stage. Both methods have been used for estimation of potential carbon storage
in soils but rarely to estimate that in roots.

In recent years, maintenance of the ARCS capacity and functions in grassland has
been challenged by climate change and human activities. If grasslands shrink in area,
even slightly, it will immediately affect the capacity of grassland soils to store organic
carbon, putting enormous pressure on the global carbon balance and carbon neutrality [26].
Currently, research on ARCS and PRCS in central Asian grasslands is limited [27].

In this study, a typical grassland region of central Asia was selected to study the
spatial patterns and key spatial drivers of ARCS and PRCS in grassland based on a field
survey conducted in 2015. The study area is located near the Altai Mountains and contains
seven types of grassland, ranging from temperate desert in arid and semi-arid areas to
alpine meadow. The dominance of grassland in the region provides an ideal simulation test
area for grassland root carbon research. In practice, conducting large-scale field surveys
of grassland roots in complex terrain is time consuming and impractical. Therefore, the
present research aimed to improve the feasibility of studying root carbon storage. The
objectives of this study were three-fold: (1) to develop an approach to estimate and map
grassland root biomass in complex terrain with improved accuracy in relation to ecological
and topographic factors; (2) to examine the spatial characteristics of ARCD and PRCD of
grassland in areas where multiple grassland types coexist; and (3) to analyze the crucial
spatial drivers of ARCS and PRCS of the grasslands.

2. Materials and Methods
2.1. Study Area

Altay Prefecture (45◦00′00”–49◦10′45” N, 85◦31′36”–91◦04′23” E) is located in the
southern foothills of the Altai Mountains in northwest China (Figure 1). It is a typical area
in central Asia with a total land area of 1.18 × 105 km2. Two main landforms, namely
mountains and plains, coexist in the area. The climate is cold-temperate continental, with
mean annual temperature of 4.5 ◦C and mean monthly temperature ranging from −16 ◦C
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in January to 21 ◦C in July. It is an arid to semi-arid area with mean annual precipitation
of 200 mm (400–600 mm in the mountains) and evaporation of 1682.6 mm yr−1. The
terrain exhibits a low-to-high gradient from south to north with obvious spatial hetero-
geneity. The grasslands comprise lowland meadow, temperate desert, temperate desert
steppe, temperate steppe, temperate meadow, mountain meadow, and alpine meadow. The
dominant species are Achnatherum splendens, Seriphidium terrae-albae, Stipa glareosa,
Agropyron cristatum, Stipa capillata, Poa versicolor subsp. relaxa, and Carex duriuscula
subsp. rigescens. Temperate desert accounts for 67% of the total grassland area.
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Figure 1. Sampling locations and grassland types in Altay Prefecture, China.

2.2. Data
2.2.1. Field Survey Data

With consideration of the different grassland types and human disturbance, 187 sites
(10 m × 10 m) were randomly established across Altay Prefecture during the growing
season (June to August) of 2015. When sampling, three replicate plots were sampled
from a diagonal line of each site with similar topographical conditions, soil attributes, and
grassland types. The distance between plots at a site was more than 2 m. Meanwhile, three
samples were collected from the 0–10 cm, 10–20 cm, and 20–30 cm soil layers at each site.
In total, 187 plant samples (green part) and 561 soil samples were collected. The recorded
field data comprised the longitude, latitude, and elevation of the sampling site confirmed
by GPS and the type, height, coverage, root biomass, and soil bulk density of the grassland.
Height was represented by the relative altitude and was measured with a tape measure.
Field coverage was determined using the square grid method, which was calculated as the
ratio of grass grids to the total number of grids. For measurement of the root biomass at
each site, soil samples were collected at depths of 0–10 cm, 10–20 cm, and 20–30 cm and
placed separately in plastic bags. Each soil sample was transferred to a 60-mesh nylon bag
(0.3 mm) and washed with running water. The roots were collected with a 60-mesh sieve
(0.3 mm), oven-dried at 65 ◦C for 48 h, and the dry weight was recorded to measure root
biomass. The soil bulk density of the 0–10, 10–20, and 20–30 cm soil layers was determined
using the ring knife method to collect soil core samples, which were dried at 105 ◦C for 48 h.

2.2.2. Terrain and Climate Data

The slope, aspect, and curvature of the terrain were determined from advanced
spaceborne thermal emission and reflect radiometer global digital elevation (ASTER GDEM)
images obtained from the Land Process Distributed Active Archiving Center (LP DAAC)
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(https://lpdaac.usgs.gov/, accessed on 20 August 2022) with spatial resolution of 30 m.
Meteorological data were obtained from weather stations of the China Meteorological
Information Center (http://data.cma.cn/en, accessed on 20 August 2022), consisting of
annual mean temperature, ≥10 ◦C accumulated temperature, annual mean precipitation,
and moisture index, with spatial resolution of 1 km. Ivanov’s moisture index was calculated
using the following formula:

K =
R
E0

=
R

∑12
i=1 0.0018(25 + ti)

2(100− fi)
(1)

where K is annual humidity, R is annual precipitation, E0 is annual evaporation, ti is
monthly average temperature, and fi is monthly average evaporation.

2.2.3. Remote Sensing Data

Three remote sensing indices were applied in this research: normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), and soil-adjusted vegetation
index (SAVI). The NDVI comprised the composite data sensed by the medium-resolution
imaging spectrometer (MOD13Q1) obtained from NASA (https://ladsweb.modaps.eosdis.
nasa.gov/, accessed on 20 August 2022) with spatial resolution of 1 km. The EVI and SAVI
were extracted from Landsat8OLI satellite images with spatial resolution of 30 m from the
Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 20 August 2022) using ENVI
image analysis software. All remote sensing index data were collected in the peak season
of plant growth in 2015 (day 255) and obtained using the following respective formulas:

NDVI =
NIR− R
NIR + R

(2)

EVI = 2.5
NIR− R

NIR + 6R− 7.5B + 1
(3)

SAVI =
NIR− R

NIR + R + L
(1 + L), (L = 0.5) (4)

where NIR, R, and B represent the reflectance in the near-infrared band, red band, and blue
band, respectively, and L is the soil adjustment factor.

2.2.4. Thematic Map Data

Other data used in this research were soil textures and grassland types in Altay
Prefecture, which were obtained from the resource and environmental data cloud platform
of the Chinese Academy of Sciences (http://www.resdc.cn/, accessed on 20 August 2022).

2.3. Spatial Estimation of Grassland Root Biomass
2.3.1. Correlation Analysis and Indicator Selection

Outliers were identified with box plots and were eliminated during data preprocessing
to ensure the quality of the data. Box plots can truly and intuitively present the original
appearance of the data, and objectively identify outliers based on quartiles and interquartile
ranges [28,29]. In this study, two outliers were identified and eliminated, which may be due
to sampling error. Subsequently, a Pearson correlation analysis was performed between
the 185 field samples and 19 ecological factors. The threshold for the correlation test (r)
was −0.75 < r < 0.75 (Table 1). With increase in soil depth, the correlation between root
biomass and most ecological factors weakened gradually. In addition, nine ecological
factors with applied relevance were selected (|r| > 0.60) as independent variables for the
model building of the root biomass prediction: elevation, slope, temperature, accumulated
temperature, precipitation, moisture, soil bulk density, coverage, and NDVI.

https://lpdaac.usgs.gov/
http://data.cma.cn/en
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.gscloud.cn/
http://www.resdc.cn/
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Table 1. Correlation coefficients (r) between grassland root biomass and ecological factors.

Items Indices
Soil Layers

0–10 cm 10–20 cm 20–30 cm

Position
Latitude 0.49 ** 0.49 ** 0.49 **

Longitude −0.18 * −0.18 * −0.21 **

Terrain

Altitude 0.66 ** 0.65 ** 0.62 **
Slope 0.63 ** 0.61 ** 0.61 **

Aspect −0.04 −0.09 −0.09
Curvature −0.11 −0.08 −0.05

Climate

Precipitation 0.71 ** 0.70 ** 0.69 **
Temperature −0.70 ** −0.69 ** −0.65 **
≥10 ◦C

Accumulated
temperature

−0.75 ** −0.73 ** −0.70 **

Moisture 0.75 ** 0.73 ** 0.72 **

Soil

Clay 0.39 ** 0.40 ** 0.40 **
Sand −0.24 ** −0.26 ** −0.24 **
Silt 0.08 0.10 0.08

Density −0.74 ** −0.73 ** −0.72 **

Plant

Coverage 0.72 ** 0.71 ** 0.68 **
Height 0.04 0.02 0.02
NDVI 0.67 ** 0.65 ** 0.60 **
EVI 0.58 ** 0.58 ** 0.52 **

SAVI 0.50 ** 0.47 ** 0.41 **
Note: * p < 0.05, ** p < 0.01.

2.3.2. Data Segmentation and Statistics

Reasonable data segmentation involves generating training datasets and validation
datasets to ensure that they present similar statistical features [30,31]. This process is a
foundation for reliable model building. In this research, the training dataset (n = 130,
70%) and the validation dataset (n = 55, 30%) were obtained by holistic ordinary least
squares regression. Their mathematical parameters were further counted (Table 2). The
biomass of grassland roots ranged from 28.85 to 2485.20 g m−2 in the 0–30 cm soil layer.
The biomass decreased with soil depth. In the 0–10 cm soil layer, the root biomass was
169.87–2485.20 g m−2 with a mean value of 809.57 g m−2 and SD of 511.81 g m−2. In
the 10–20 cm soil layer, root biomass was 104.76–862.95 g m−2 with a mean value of
328.31 g m−2 and SD of 167.33 g m−2. The lowest root biomass was in the 20–30 cm soil
layer, with a mean value of 155.61 g m−2 and SD of 94.40 g m−2. The training data showed
a unimodal and skewed distribution. The skewness coefficients were 0.96, 0.84, and 0.95 for
the 0–10 cm, 10–20 cm, and 20–30 cm soil layers. The verification data showed a unimodal,
skewed distribution. Their mathematical parameters were similar in the 0–30 cm soil layer.
In addition, the skewness coefficients were greater than zero. They showed some slightly
higher values mixing in datasets of root biomass.

Table 2. Descriptive statistics for grassland root biomass in the training data and verification
data (g m−2).

Training Data (n = 130) Verification Data (n = 55)

0–10 cm 10–20 cm 20–30 cm 0–10 cm 10–20 cm 20–30 cm

Min 180.68 107.42 29.46 169.87 104.76 28.85
Max 2485.20 862.95 471.45 2401.21 808.69 484.32

Mean 809.57 329.10 153.45 809.65 326.44 160.72
SD 511.81 167.33 94.40 510.83 172.40 110.36

Median 640.69 270.35 127.52 648.58 266.06 132.93
Skewness 0.96 0.84 0.95 1.15 0.91 0.93
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2.3.3. Estimation Models and Spatial Interpolation Methods

Machine learning is a scientific discipline that involves the construction and study
of algorithms that can learn from data [32]. As the core of artificial intelligence, machine
learning has been widely used to solve complex problems in engineering applications
and science [33–36]. In this study, three machine-learning models were used to estimate
root biomass, comprising support vector machine (SVM), principal component regression
(PCR), and random forest (RF). Based on statistical principles, SVM seeks to minimize the
risk of structural learning to improve the generalization ability of the learning machine
and achieve the purpose of obtaining statistical laws when the sample size is small. It can
solve data problems, such as small sample sizes, nonlinearity, and high dimensionality [37].
PCR extracts principal components that rely on the variance, and then performs regression
based on the principal components. The approach can handle massive datasets and data
dimensionality reduction [38,39]. An RF composed of multiple decision trees is a represen-
tative model of integrated learning. The final output is determined by each decision tree
in the forest. The method can overcome the problems of overfitting and low precision of
decision trees and is suitable for the prediction of high-dimensional data [40,41]. In the
present study, SVM and PCR were implemented with The Unscrambler X 10.4, and RF was
implemented with R 4.1.1.

Spatial interpolation can convert measured data from discrete points into continu-
ous data surfaces, which is the main method used to achieve the spatialization of point
data [42,43]. Previous studies have shown that field-measured data cannot adequately
reflect spatial changes in the target, even if the data are of high quality. In the present
research, the spatial interpolation methods used were high accuracy surface modeling
(HASM), radial basis function (RBF), and spline with tension (SPL). Based on the existing
spatial interpolation results, HASM superimposes the optimized residual surface to obtain
the surface of the target [44]. RBF is based on characterizing the localized features of the
data by introducing a kernel function [45]. SPL relies on polynomial fitting to generate
smooth interpolated surfaces. The loss of accuracy is inevitable, although these spatial inter-
polations enable surface creation from point data. In this study, HASM was implemented
with Matlab 2014b, and RBF and SPL were implemented with ArcGIS 10.7.

The regression prediction of the sample data was realized with multivariate envi-
ronmental factors combined with a machine-learning model. Based on the prediction
results, the spatial interpolation method was then used for two-dimensional surface cre-
ation from one-dimensional data. An optimal combination of the estimation model and
spatial interpolation was determined for estimation and mapping of the root biomass of
the grasslands.

2.3.4. Accuracy

Simultaneously, the prediction results obtained from the optimal combination were
compared with the measured values. The accuracy of the target was determined by
univariate linear regression. The estimated accuracy, as reflected by the coefficient of
determination (R2), root mean squared error (RMSE), and mean absolute error (MAE),
relied on the verification data (30% of the total data). The values of R2, RMSE, and MAE
were calculated with the formulas:

R2 =
SSR
SST

=
∑N

i=1
(
ti − t

)2

∑N
i=1
(
Ti − t

)2 (5)

RMSE =

√
∑(ti − Ti)

2

N
(6)

MAE =
1
N

N

∑
i=1
|Ti − ti| (7)
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where SSR and SST are the explained sum of squares regression and the total sum of
squares, respectively; ti, t, and Ti are the measured value, mean measured value, and
estimated value, respectively; and N is the size of the verification dataset.

2.4. Estimation of ARCS and PRCS of Grasslands
2.4.1. Calculation of ARCS

Determination of the carbon content coefficient is crucial to the conversion from root
biomass to ARCD. Universally, the carbon coefficient of plants used internationally is
0.45 [6,46]. The coefficient is widely applied in the carbon density conversion for different
plants and plant organs. The carbon content of grass roots in deep soil layers is higher
than that in the surface soil layer. Therefore, it is infeasible to use a single carbon content
coefficient to convert the carbon density of different soil layers, which will amplify the
error of the calculated carbon storage. In the present research, different carbon content
coefficients were used in the conversion of the ARCD in different soil layers according to
their outcome [47]. In addition, the ARCS was determined by multiplying the ARCD and
area. The respective formulas used were:

ARCD =
1
n

n

∑
i=1

(
RBij ×ωj

)
, (j = 1, 2, 3) (8)

ARCS = ∑(ARCD× k) (9)

where ARCD and ARCS are actual root carbon density and actual root carbon storage of
the grassland, respectively; RB is root biomass; ωis the carbon content coefficient, which is
0.38, 0.40, and 0.42 in the 0–10 cm, 10–20 cm, and 20–30 cm soil layers, respectively; i is the
sample number; j is the depth of the soil layer, where j1 to j3 are the 0–10 cm, 10–20 cm, and
20–30 cm soil layers; n is the sample size; and k is the area.

2.4.2. Calculation of PRCS

A spatial segmentation approach was employed to calculate the PRCS of the grassland.
First, the largest ARCD of the investigated data in each grassland type was regarded as
the peak value. The potential root carbon density (PRCD) was then defined as the mean
distance between the peak value and other values. In this study, the PRCS was determined
by multiplying the PRCD and area. The respective formulas used were:

PRCD =
1
n

n

∑
i=1

(ARCDmax − ARCD) (10)

PRCS = ∑(PRCD× k) (11)

where PRCD and PRCS are potential root carbon density and potential root carbon storage
of the grassland, respectively; ARCDmax is the peak value of ARCD; i is the sample number;
n is the sample size; and k is the area.

2.5. Drivers of Spatial Pattern

The information from the sample sites was re-extracted to explain the formation of
patterns in the grasslands of Altay Prefecture. In the present research, the process of
indicator selection and correlation testing were run again to obtain the dominant drivers.
Equation fitting was employed to determine their trends. Simultaneously, the impact of the
interaction between ecological factors on the target cannot be ignored. Thus, the functions
for factor detection and interaction detection implemented in the Geodetector software
(2015) were employed to identify the dominant interaction factors in the formation of the
spatial pattern of root carbon storage. Geodetector is a statistical method for detection of
spatial heterogeneity and its driving factors [48]. The contribution of partial variance to
the integral variance is identified as the interpretation ability of variables to the target. The
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q-value ranges from 0 to 1 and aids in understanding spatial confounding, sample bias,
and overfitting. The higher the q-value, the stronger the interpretation ability.

3. Results
3.1. An Optimal Approach for Spatial Estimation of Root Biomass

An optimal approach for estimation and mapping of grassland root biomass was de-
veloped by the combination of a machine-learning model and spatial interpolation method,
designated SVM + HASM. The estimation for the 0–10 cm soil layer is presented as an ex-
ample (Table 3). Compared with the PCR and RF models, the SVM model achieved higher
accuracy and a smaller error (R2 = 0.74, RMSE = 259.66 g m−2, and MAE = 213.58 g m−2).
The SVM model offered the strongest foundation for the following spatial interpolation.
Generally, digital mapping through spatial interpolation will further decrease the accuracy.
Accordingly, a small loss in accuracy indicates a superior interpolation function. In the
present research, the loss in accuracy of R2 with HASM was 0.01–0.02, whereas R2 declined
about 5–10 times that of HASM with the RBF and SPL methods by 0.04–0.08 and 0.06–0.10,
respectively. In addition, HASM resulted in the lowest error. These results indicated that
HASM provided an excellent function for mapping. In this study, SVM and HASM per-
formed best for estimation and mapping, respectively. The combination of the two methods
generated the optimal results (R2 = 0.73, RMSE = 273.84 g m−2, and MAE = 213.61 g m−2).
Therefore, the spatial pattern of root biomass in the 10–20 cm and 20–30 cm soil layers was
estimated with R2 = 0.63 and R2 = 0.60, respectively, with this combination.

Table 3. Accuracy of different combinations of estimation models and spatial interpolation methods
for mapping of grassland root biomass in the 0–10 cm soil layer in Altay Prefecture, China.

Machine-Learning
Models

Spatial Interpolation
Method

0–10 cm

R2 RMSE MAE

SVM

- 0.74 259.66 213.58
HASM 0.73 273.84 213.61

RBF 0.66 289.70 244.46
SPL 0.64 317.84 260.13

PCR

- 0.72 275.18 231.37
HASM 0.70 282.66 222.63

RBF 0.66 296.96 250.13
SPL 0.65 305.84 259.19

RF

- 0.70 282.75 234.21
HASM 0.69 284.39 224.92

RBF 0.66 300.88 253.80
SPL 0.64 309.32 258.88

3.2. Spatial and Statistical Pattern of ARCD and ARCS in Grassland

Based on the stratified carbon content of the roots, the two-dimensional surface of
ARCD in the 0–30 cm soil layer was generated, and the spatial pattern was studied further.
The spatial pattern of ARCD in the different soil layers was similar in the study area
(Figure 2a–c). Horizontally, the ARCD was concentrated in the north and sparse in the
south. With regard to the vertical spatial pattern, the ARCD was higher at mountainous
sites than that of plains. Specifically, the high-value areas of ARCD were principally located
on the southern slopes of the Altai Mountains in northern Altay Prefecture. In addition,
high ARCD values were distributed on the northern slopes of the Sawuer Mountains in
western Altay Prefecture. The low-value areas were situated in the Gurbantunggut Desert
and central Altay Prefecture. In the 0–30 cm soil layer, the mean ARCD of grassland in
Altay Prefecture was 499.24 g C m−2 and the ARCS was 48.52 Tg C. In the topsoil (0–10 cm),
the ARCD was 305.07 g C m−2 and the ARCS was 29.42 Tg C, comprising approximately
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61% of the total ARCS. In the 10–20 cm and 20–30 cm soil layers, the ARCS was 12.85 and
6.86 Tg C, respectively, comprising 26% and 13% of the total ARCS.
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Figure 2. Spatial patterns of grassland actual root carbon density (ARCD) and potential root carbon
density (PRCD) in Altay Prefecture. (a–c) Spatial pattern of ARCD in the 0–10 cm, 10–20 cm, and
20–30 cm soil layers, respectively; (d–f) spatial pattern of PRCD in the 0–10 cm, 10–20 cm, and
20–30 cm soil layers, respectively.

The ARCD and ARCS of the different types of grasslands were estimated (Figure 3a,b).
In the 0–30 cm soil layer, temperate desert retained the largest ARCS of 19.15 Tg C, com-
prising 39.49% of the total ARCS, although it contained the lowest ARCD in each soil layer.
Lowland meadow retained the smallest ARCS of 1.25 Tg C, which comprised 2.58% of the
total. Alpine meadow had the highest ARCD with 1264.73 g C m−2, whereas its ARCS was
5.98 Tg C (12.32% of the total).

3.3. Spatial and Statistical Patterns of PRCD and PRCS in Grassland

The spatial pattern of PRCD in the different soil layers was similar in Altay Prefecture
(Figure 2d–f). The high-value areas of PRCD were located in the border topography at
mid to high elevations. They were principally situated on the middle of the southern
slopes of the Altai Mountains at elevations ranging from 1000 to 2200 m. In addition, areas
of high PRCD were sporadically distributed near water at low elevations. Overall, the
area of high PRCD was significantly less than that of low PRCD in Altay Prefecture. In
the 0–30 cm soil layer, the mean PRCD of grassland in Altay was 247.12 g C m−2 and
the mean PRCS was 22.69 Tg C. In the topsoil (0–10 cm), the PRCD was 152.31 g C m−2
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and the PRCS was 13.58 Tg C, comprising 60% of the total PRCS. In the 10–20 cm and
20–30 cm soil layers, the PRCS capacities were 4.95 and 4.15 Tg C, comprising 22% and 18%
of the total PRCS, respectively. The PRCD and PRCS in the different grassland types was
analyzed (Figure 3c,d). In the 0–30 cm soil layer, mountain meadow (453.31 g C m−2) and
temperate steppe (419.95 g C m−2) had distinctly higher PRCDs than the other grassland
types. Mountain meadow and temperate steppe contributed approximately 30% of the total
PRCS with capacities of 2.77 and 3.81 Tg C, respectively. Controlled by the area, temperate
desert showed the largest capacity for PRCS at 12.72 Tg C (56% of the total).
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Figure 3. Statistical characteristics of root carbon in different grassland types in Altay Prefecture.
(a,b) Actual root carbon density (ARCD) and actual root carbon storage (ARCS) of each grassland
type; (c,d) potential root carbon density (PRCD) and potential root carbon storage (PRCS) of each
grassland type. Different letters means statistically significant difference in the same same gene
region. LM, lowland meadow; TD, temperate desert; TDS, temperate desert steppe; TS, temperate
steppe; TM, temperate meadow; MM, mountain meadow; AM, alpine meadow.

The vertical changes in PRCS in the different grassland types was investigated
(Figure 3c,d). The highest PRCS capacity was in the topsoil (0–10 cm) of different grassland
types and ranged from 56–74%. Specifically, alpine meadow PRCS in the topsoil had the
largest capacity and proportion of 0.30 Tg C and 74%, whereas temperate desert PRCS in
the topsoil had the smallest capacity and proportion of 7.16 Tg C and of 56%. However,
the opposite pattern was observed in the deeper soil layers. These results indicated that
cold-season grasslands contained a higher proportion of PRCS in the topsoil than that of
warm-season grasslands. Objectively, this phenomenon was affected by the formation
mechanism and the vertical distribution of root biomass.

3.4. Spatial Drivers of Grassland ARCD and PRCD

Temperature and precipitation were the two dominant interaction factors for the
spatial pattern of ARCD (q = 0.77; Figure 4a). The ARCD was significantly correlated with
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both factors (|r| > 0.7). In addition, the ARCD decreased with increase in temperature
and increased with increase in precipitation (Figure 4b,c). Single-factor correlation analysis
revealed that ≥10 ◦C accumulated temperature was the key single driver of ARCD. These
findings indicated that the hydrothermal environment determined the ARCD capacity
and was consistent with relevant previous research. With regard to PRCD, temperature
and slope were the dominant interaction factors (q = 0.76; Figure 4d). The q-values for
temperature and slope were 0.63 and 0.45, respectively, indicating that their interaction
played a stronger role than the individual factors. The influence of temperature and slope
was analyzed further. Temperature was the dominant factor for PRCD of grassland in Altay
(q = 0.63). A similar result was observed from the single-factor correlation test. Temperature
showed the strongest significant negative correlation with PRCD (r = −0.68). The fitted
curves revealed that PRCD showed a roughly parabolic trend with increase in temperature
(Figure 4e). Slope was not a dominant factor for the PRCD of grassland. The PRCD also
showed a roughly parabolic trend with increase in slope (Figure 4f).
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Figure 4. Crucial drivers of actual root carbon density (ARCD) and potential root carbon density
(PRCD) in the 0–30 cm soil layer in grassland of Altay Prefecture. Based on major two-factor
interactions (a), the trend for ARCD with increase in temperature (b) and precipitation (c) was
determined. Based on the two-factor interactions (d), the trend for PRCD with increase in temperature
(e) and slope (f) was determined. Shaded bands indicate the 95% confidence interval; ≥10 ◦C AT,
≥10 ◦C accumulated temperature; q-value, factor detection and interaction factor detection results; r,
Pearson correlation coefficient.

4. Discussion
4.1. Estimation and Mapping of Grassland Root Biomass

Estimation of root biomass is the first and most crucial step of studying grassland
ARCS and PRCS. The main highlight of the present research was that a satisfactory estima-
tion based on a machine-learning model was obtained that is suitable for complex terrain.
In some previous studies, the root biomass estimated in similar grassland types has been
indicated to rely on temperature and precipitation. However, the methods used usually
are inapplicable to complex terrain because of the greater diversity and heterogeneity of
grassland types. Hence, a reliable method for accurate estimation of grassland root biomass
in complex terrain has remained unavailable [49]. However, it is widely acknowledged
that the data simulation ability of machine learning is superior to that of traditional linear
regression. Machine learning comprises many models and algorithms [36], which have
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shown remarkable performance in research fields such as the Internet, finance, agricul-
ture [34], and medicine. In the present study, with consideration of multiple ecological
factors, the grassland root biomass in complex terrain was successfully estimated using the
SVM machine-learning model.

Subsequently, a high-performance spatial interpolation method was used for digital
mapping in this research. Spatial interpolation is an effective approach for digital map-
ping [50]. However, it is often accompanied by a decrease in spatial accuracy [51]. Thus, it
is necessary to compare the performance of the spatial interpolation methods used. Typi-
cally, some traditional interpolation methods identify targets based on the spatial distance
or spatial autocorrelation (e.g., inverse-distance weighting and kriging) [52–54]. Other
methods rely on continuous functions for interpolation of spatial points (e.g., trend surface
method, RBF, and SPL). In the current study, the HASM spatial interpolation method was
employed. This method optimizes the given interpolation outputs and their residuals using
Lagrangian functions to improve the interpolation performance. Compared with RBF and
SPL, HASM in practice shows superior performance with higher accuracy and lower error.
In this study, a feasible combination of estimation model and spatial interpolation method
was developed, namely ‘SVM + HASM’. This approach was applied for large-scale spatial
study of grassland root biomass.

4.2. Spatial Pattern and Formation Mechanism of Grassland ARCD and ARCS

The grassland ARCD and ARCS in each soil layer in Altay Prefecture showed an
analogous spatial pattern. Both indicators were high in mountains and low on plains, which
is induced by rainfall in the Altai Mountains from precipitable water vapor originating
from the Atlantic and Arctic Oceans. This phenomenon is widespread in the spatial pattern
of plant carbon storage driven by topographic rainfall and temperature in the arid and semi-
arid regions of the world [55,56]. Owing to strong topographic uplift, the hydrothermal
environment and grassland types of mountains and plains show obvious heterogeneity with
elevation. In addition, the ARCD showed vertical zonation. Therefore, temperate desert
and temperate desert steppe, with low ARCD, were observed on plains limited by water
availability and elevated temperature. The steppes and meadows with high ARCD were
situated in mountains. Sufficient precipitation and cool temperatures extend the growth
cycle of roots and delay carbon turnover [50,57]. An acceptable result is still obtained,
although the stratified root carbon content rate is applied instead of the international one.
The greatest capacity for root carbon storage is concentrated in the topsoil. This reflects the
greater accumulation of organic matter in the surface soil [58]. Plant litter, animal carcasses,
and animal excreta are decomposed by microorganisms, which increases the content of
organic matter in the surface soil [59]. As a result, roots are attracted to access nutrients for
plant growth and metabolism. The ARCD in the topsoil (0–10 cm) of different grassland
types comprised 58–63% of the total capacity in the 0–30 cm soil layer, which was similar to
previous results reported in other research fields [60–62].

4.3. Spatial Pattern and Dominated Drivers of Grassland PRCD and PRCS

We observed that in the 0–10 cm, 10–20 cm, and 20–30 cm soil layers, areas of high
PRCD were located on the middle of southern slopes of the Altai Mountains. In addition,
the PRCD declined with increase or decrease in elevation. Previous research has shown that
water is the decisive driver of grassland PRCD [63,64]. The PRCD increases with enhanced
precipitation and alpine meadow retains the highest PRCD. However, different results were
obtained in the present study. Temperature was a controlling factor of the spatial pattern
of PRCD in Altay Prefecture. Temperature is harmful to root growth when it exceeds the
normal physiological tolerance [65]. The highest PRCD was located in mountain meadows
rather than in alpine meadows. Generally, a mountain mid-slope with a suitable temper-
ature is the optimal location for growth when the precipitation is sufficient to support
prolonged growth in PRCD. This finding indicates that the interaction of hydrothermal
factors is the most obvious exogenic force in the theory of their spatial pattern. Surprisingly,
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the dominant interaction factors for this spatial pattern were temperature and slope, rather
than temperature and precipitation, in the present study. Thus, slope contributes more to
the spatial pattern of PRCD than does precipitation at a regional scale. Generally, compared
with the plain pastures, mountain pastures showed a more obvious dependence on slope.
In the present research, we presumed that grazing played an important role, although no
empirical data are currently available to support this assumption. In Altay Prefecture, 1 mil-
lion ha of summer pastures are dominated by mountain meadows [66]. These meadows are
located at high elevations and on gentle slopes and are grazed by approximately 1.6 million
livestock per year. We presumed that more carbonaceous organic material is transported to
the aboveground organs in mountain meadows from belowground organs, which increases
carbon investment in leaves, in response to grazing pressure [67–70]. This adaptive growth
accordingly reduced the ARCD and considerably enhanced the PRCD capacity. In contrast,
alpine meadow maintained a high ARCD as a result of the lower external disturbance and
the PRCD remained limited.

5. Conclusions

In this study, a reliable approach for estimation of grassland root biomass in complex
terrain was developed by combining the SVM model and HASM interpolation. The
approach was applied to estimate the ARCS and PRCS of grassland in Altay Prefecture.
Under the limitation of the hydrothermal environment, ARCD increased with elevation,
and high ARCD was distributed mainly in the mountains and in the topsoil layer (0–10 cm).
Simultaneously, high PRCD was distributed mainly on the middle of the southern slopes
of the Altai Mountains. The dominant interaction factors were temperature and slope.
The ARCS of the grassland comprised approximately 68% of the total root carbon storage,
whereas PRCS comprised approximately 32% in the study area, suggesting that grassland
in Altay Prefecture shows considerable capacity for increase in ARCS.
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