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Abstract: Crop evapotranspiration (ETa) is the main source of water loss in farms and watersheds, and
with its effects felt at a regional scale, it calls for irrigation professionals and water resource managers
to accurately assess water requirements to meet crop water use. On a multi-crop commercial farm,
different factors affect cropland allocation, among which crop evapotranspiration is one of the most
important factors regarding the seasonally or annually available water resources for irrigation in
combination with the in-season effective precipitation. The objective of the present study was to
estimate crop evapotranspiration for four major crops grown on the Navajo Agricultural Products
Industry (NAPI) farm for the 2016–2010 period to help crop management in crop plant allocation
based on the different objectives of the NAPI. The monthly and seasonal satellite-based ETa of maize,
potatoes, dry beans, and alfalfa were retrieved and compared using the analysis of variance and the
least significant difference (LSD) at 5% of significance. Our results showed the highly significant
effects of year, months, and crops. The year 2020 obtained the highest crop ETa, and July had the
most evapotranspiration demand, followed by August, June, September, and May, and the pool of
April, March, February, January, December, and November registered the lowest crop ETa. Maize
monthly ETa varied from 17.5 to 201.7 mm with an average seasonal ETa of 703.8 mm. The monthly
ETa of potatoes varied from 9.8 to 207.5 mm, and their seasonal ETa averaged 600.9 mm. The dry
bean monthly ETa varied from 10.4 to 178.4 mm, and the seasonal ETa averaged 506.2 mm. The alfalfa
annual ETa was the highest at 1015.4 mm, as it is a perennial crop. The alfalfa monthly ETa varied
from 8.2 to 202.1 mm. The highest monthly crop ETa was obtained in July for all four crops. The
results of this study are very critical for cropland allocation and irrigation management under limited
available water across a large commercial farm with multiple crops and objectives.

Keywords: evapotranspiration; commercial farm; crops; satellites

1. Introduction

Agricultural water is the most limiting factor for crop production in arid and semiarid
environments, where actual crop evapotranspiration is not met by the received in-season
precipitation. Under such conditions, supplementary irrigation is necessary for crops to
meet their water requirements for optimum food and fiber production [1]. Crop evapotran-
spiration (ETa) is one of the most important parameters in hydrological, environmental, and
agricultural studies and plays a key role in designing and managing irrigation projects and
water management under irrigated and rainfed agriculture. Water resources are limited
under semiarid climates such as that of the southwestern United States, the hottest and
driest region in the United States with diminishing winter and spring precipitation and
shifts in precipitation and reference evapotranspiration [2–6]. Cozzetto et al. [7] reported
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that the Southwest is prone to drought, and its paleoclimate showed severe mega-droughts
lasting at least 50 years. This projection is mostly challenging regarding water resource man-
agement and planning when the human population is increasing, along with the demand
for food and increasing competition among water users such as agricultural producers,
industries, mines, communities, environmentalists, and others. Across the southwestern
region, 92% of the cropland is irrigated [4]. Prein et al. [8] indicated that the southwestern
US climate might be transitioning to a drier climate state, leading to higher drought risk.
The USDA [9] reported that irrigation water withdrawals for crop production account for
79% of the total water withdrawal in the southwestern region. Conservation efforts should
target limited irrigation strategies when maintaining or improving crop water productivity
across the region under the increasing trend in reference to evapotranspiration [6]. Evap-
otranspiration is one of the largest components of the hydrological cycle and is expected
to increase with the warming climate across the southwestern United States. Irrigation
management is dependent on farm cropping systems and seems complex in the case of
multi-crop farms. In a multi-crop farm, different crops are used, and they differ in terms of
planting date, crop evapotranspiration, seasonal water requirement, and growing season
length, all of which dictate the mechanisms for cropland allocation to different crops [10].
However, for system sustainability, the combination of the allocated croplands should
consider the available fresh water to meet crop water requirements.

The Navajo Agricultural Products Industry (NAPI) was developed by the Navajo
Nation Council as an enterprise to operate the Navajo Indian Irrigation Project (NIIP), one
of the largest agricultural businesses owned and operated by Native Americans in the
United States. The objective of the NIIP is to irrigate 44,770 hectares of farmland with about
36,421 hectares fully developed and equipped with irrigation systems. Navajo Lake is the
storage reservoir for approximately 626.61 million cubic meters of annual allocated water to
irrigate the NAPI farm. The NAPI grows a variety of quality forage, feed, and food products
under the Navajo Pride brand as retail and wholesale. The grown crops include maize,
potatoes, dry beans, wheat, alfalfa, sorghum-sudan, chile, pumpkins, watermelon, and
others. Of these crops, potatoes, maize, alfalfa, and dry beans represent the most important
crops in terms of annually harvested areas. Cropland allocation and water management
should be closely considered for system sustainability under a changing climate, with the
decreasing trend in the annual precipitation in the southwestern United States [11].

Some studies have reported different seasonal crop evapotranspiration values for
different crops such as maize, potatoes, alfalfa, and dry beans across the western United
States. Djaman et al. [12] used different estimation methods, reported maize seasonal
evapotranspiration, and found maize ETa that varied from 634.2 to 697.7 mm, averaging
665.3 mm in northern New Mexico. Maize seasonal ETa was estimated at 684 mm in Farm-
ington, NM [13], while it was 685 mm under subsurface drip irrigation in Farmington [14].
Nielsen and Heinkle [15] found a good correlation between the maize ETa estimated using
the combination of crop coefficients and reference evapotranspiration and the measured
maize ETa in northeastern Colorado. Locally developed crop coefficients provided accurate
estimates of ETa compared with the measured ETa [1,16], and crop managers should use the
actual crop ETa, rather than the reference crop evapotranspiration, for the determination
of crop water requirements and irrigation management [17]. Under furrow irrigation,
maize ETa varied from 667 to 984 mm [18], while it varied from 750 to 973 under sprinkler
irrigation [19–21]. Subsurface drip-irrigated maize ETa varied from 711 to 818 mm at Bush-
land, TX [22]. Djaman et al. [12] estimated maize water requirements varying from 758.4
to 848.3 mm in northern New Mexico, with large variations between planting dates [23].
Maize water requirements varied from 671 to 945 mm from the Diamond Valley to Lovelock
Valley in the State of Nevada [24].

The potato (Solanum tuberosum L.) is very sensitive to water stress and grows better
on deep and well-drained soils [25,26]. Potatoes are also one of the most water-efficient
crops [27–30]. Water management in potatoes is, therefore, crucial due to their shallow
rooting system [23,31,32]. Potato ETa has been investigated, and it varies with irrigation
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methods, irrigation regimes, fertilizer management options, and other management factors.
Potato water requirements varied from 500 to 700 mm [33]. Well-irrigated potato evapo-
transpiration averaged 630 mm at Davis, California [34]. Katerji et al. [35] reported a potato
seasonal ETa value of 413.2 mm under drip irrigation in loam soil and 362.1 mm in clay
soil in Valenzano, Italy. The potato seasonal ETa varied from 580 to 645 mm in Farmington,
New Mexico [23].

Alfalfa is a perennial forage crop with a high yield and high nutritive value. Alfalfa
has a high protein content and is highly appreciated by livestock compared with other
forage crop species [36,37]. Alfalfa is the second most important crop grown in New
Mexico in terms of the total harvested area [9]. Water stress is the most limiting production
factor for alfalfa [38]. Irrigation water requirements for alfalfa vary with climate and local
precipitation pattern and amount. In most of the western US, alfalfa production depends
on irrigation, while elsewhere in the US, alfalfa can be grown under rainfed conditions [39].
Irrigated alfalfa represents more than 90% of the alfalfa acreage across the western states,
while rainfed alfalfa is produced in some western regions such as Montana [40]. Alfalfa
has a relatively high water requirement, and irrigated alfalfa represents 12% of the alfalfa-
produced area in the US [41]. Alfalfa water use varied from 615 to 1448 mm across the US
Great Plains. Under semiarid and arid conditions, alfalfa is mostly adapted to drought due
to its deep rooting system [42]. The maximum amounts of applied water to alfalfa were
350, 300, 208, and 312 mm, respectively, during the first, second, third, and fourth regrowth
cycles in 2013, and 373, 282, 198, and 246 mm in 2014 for the respective regrowth cycles in
2014; the seasonal applied irrigation amount varied from 711 to 1171 mm in 2013 and from
328 to 1100 mm in 2014 in Farmington, NM [43].

Moore et al. [44] demonstrated that water price plays a unique role in decision making
in irrigated multi-crop production systems regarding crop choice, supply, land allocation,
and water demand functions for field crops in the western United States. They considered
the farm-scale water demand to be the sum of crop-level water demands. Crop ETa is,
therefore, a key factor in land allocation to different crops within the multi-cop farms
for optimizing irrigation water and cropland resources [45–48]. It is, therefore, critical to
have accurate knowledge of the crop water requirement of different crops and mostly the
locally measured or estimated crop evapotranspiration of the different crops grown across
multi-crop farms and the region. The objective of the present study was to estimate and
compare the monthly and seasonal evapotranspiration rates of maize, potatoes, dry beans,
and alfalfa grown by the NAPI for the 2016–2020 period to be able to properly allocate space
for these crops for conservative and sustainable irrigation management in the northwestern
New Mexico.

2. Materials and Methods
2.1. Study Area

This study was conducted at the Navajo Agricultural Products Industry (NAPI) lo-
cated in San Juan County in northwestern New Mexico (Long. 36.676943, Lat. 108.260844,
Elev. 1830 m) during the 2016 and 2020 crop growing seasons (Figure 1). Minimum tem-
perature (Tmin), maximum temperature (Tmax), average temperature (Tmean), minimum
relative humidity (RHmin), maximum relative humidity (RHmax), average relative hu-
midity (RHmean), wind speed (u2), and solar radiation (Rs) were collected daily from
an automated weather station installed at the New Mexico State University Agricultural
Experiments Station (latitude 36.69′ north, longitude 108.31′ west), which is located within
the NAPI exploitation domain. The weather station was about 0.5 to 6 km from the potato
fields, depending on the field under consideration, and the year. Different soil types are
present across the study area, and the most dominant soil types are Avalon sandy loam,
Avalon loam, Doak loam, Sheppard–Mayqueen–Shiprock complex, Shiprock loamy fine
sand, Shiprock fine sandy loam, and Turley clay loam according to the Official Soil Series
Description (OSDs). Soil pH averaged 8, and the soil organic matter content was below 1%.



Agronomy 2022, 12, 2629 4 of 17

                   

                    
 Figure 1. Presentation of the study site in San Juan County, northwestern New Mexico (white

dot on the US map) and the Navajo Agricultural Products Industry farm projected as shown by
yellow arrows. The green circles are center-pivot-irrigated fields, and the large red circle represents
approximately the NAPI farm (downloaded from Google earth on 19 December 2021).

2.2. Crop Evapotranspiration Retrieved from OpenET

The monthly evapotranspiration values of alfalfa, maize, potatoes, and dry beans
were retrieved from the OpenET (https://openetdata.org/ accessed on 15 January 2022),
which is a community-driven effort that is building upon the advances in the develop-
ment of an operational system for generating and distributing ET data at a field scale
using an ensemble of six well-established, satellite-based approaches for mapping crop
evapotranspiration [49]. OpenET has an operational system for field-scale ET mapping
across the western US, and it provides access to both spatially continuous gridded datasets
and choropleth maps that summarize the data to individual field boundaries. Twenty-
two fields of each of the four crops were located and selected each year from 2016 to
2020 from the Navajo Agricultural Products Industry’s domain using the OpenET web-
site (Figure 2). The current ensemble of ET models included in OpenET is composed of
Atmosphere-Land Exchange Inverse/Disaggregation of the Atmosphere-Land Exchange
Inverse (version 0.0.27) [50,51]; Mapping Evapotranspiration at High Resolution with In-
ternalized Calibration (version 0.20.15) [16,52,53]; Surface Energy Balance Algorithm for
Land using Google Earth Engine (version 0.2.1) [54,55]; Priestley–Taylor Jet Propulsion Lab-
oratory (version 0.2.1) [56]; Satellite Irrigation Management Support (version 0.0.20) [57,58];

https://openetdata.org/
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and Operational Simplified Surface Energy Balance (version 0.1.5) [59,60]. For operational
purposes, for a selected year, twenty-two fields of potatoes, maize, alfalfa, and dry beans
were located, and the monthly evapotranspiration data were retrieved. This process was
repeated for each year from 2016 to 2020. At the NAPI, field preparation usually starts
by mid-March, with soil preparation, pre-irrigation, and fumigation for potato plots un-
der conventional production, and planting starts in early April with potatoes and ends
mostly in late June with dry beans. Planting and harvesting mostly depend on resource
availability, and their occurrence may vary from year to year. The monthly crop ET of
the selected fields was retrieved, and the monthly average ET, seasonal ET, and average
seasonal ET of the selected crops were estimated regardless of the potato, maize, alfalfa,
and dry bean varieties, effective planting date, and effective harvest date. Fall planting is
the best management practice for alfalfa to better control weeds, compared with spring
planting with huge weed infestation.
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2.3. Data Processing and Statistical Analysis

The monthly evapotranspiration values of each crop were averaged across the years
under study, and the seasonal crop evapotranspiration was estimated as the sum of the
monthly evapotranspiration. The standard deviations were estimated, and the data were
plotted to show the variations in the monthly evapotranspiration for the 2016–2010 period.
All the data were combined and checked for normality, and the analysis of variance was
performed to determine the significance of the main effects such as years, months, and
crops, and the interactions using the CoStat statistical software [61] The data were checked
for variance homogeneity before the ANOVA processing. The means were cross-paired
and compared using LSD at a 5% significance level.

3. Results and Discussion
3.1. Weather Conditions during the Study Period

The daily weather conditions of the 2017–2020 period are presented in Figure 3. The
2016 data had many gaps and were removed from the analysis. The maximum, minimum,
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and average temperatures increased from January to the maximum values in mid-July and
decreased thereafter to the minimum values at the end of December of each year. Tmax
varied from −9.0 to 36.6 ◦C; Tmin varied from −21.8 to 20.8 ◦C, and Tmean varied from
−14.9 ◦C to 27.6 ◦C (Figure 3a). The minima of Tmax, Tmin, and Tmean were obtained in
late December, and the maxima were obtained in July of each year. The air RHmax varied
from 22.4% to 100%, the RHmin varied from 0% to 81%, and the RHmean varied from 10.5%
to 95.5% (Figure 3b). The RHmax, RHmin, and RHmean averaged 70.9, 20.3, and 42.7% for
the 2017–2020 period. The daily average wind speed fluctuated considerably and varied
from 0.5 to 22 m/s and averaged 2.2 m/s. The highest wind speed values were obtained
in the spring of each year, as shown in Figure 3c. The daily solar radiation varied from
2.1 to 31.3 MJ/m2 and averaged 19.2 MJ/m2 (Figure 3c). The daily precipitation varied
from 0 to 19.1 mm, and the annual precipitation averaged 133.2 mm (Figure 3d), which was
lower than the long-term average annual precipitation of 230 mm [11]. As crop planting is
dictated by the soil and air temperatures, there was a strong relationship between the soil
and air Tmean, with a coefficient of determination of 0.82 (Figure 4); thus, crop managers
can use the air Tmean to derive soil mean temperature to determine the planting dates of
potatoes, maize, and dry beans.

3.2. Actual Monthly and Annual Evapotranspiration of the Major Crops

The analysis of variance revealed highly significant differences in years (Fstat. = 35.06),
months (Fstat. = 4566.7), crops (Fstat. = 585.7), and the interactions Year*Month, Year*Crop,
Month*Crop, and Year*Month*Crop (p < 0.001) (Table 1). Besides alfalfa, which is a peren-
nial crop, maize, potatoes, and dry beans are annual crops mostly sown in spring, starting
with potatoes once the air temperature is at least equal to the potato base temperature. The
climate variables interchange with years, and the monthly ETa varies drastically with crop
species, crop growth stages, and planting dates [62]. Climate parameters interact and di-
rectly influence crop growth and development, showing the significance of the interactions
among the main effects. The significantly higher crop ETa was registered in 2020, followed
by 2017, 2018, 2019, and 2016. July was found to be the month with significantly the highest
crop evapotranspiration, with an average of 150.7 mm, followed by August with 141.7 mm,
June with 101.9 mm, September with 96.9 mm, and May with 53.7 mm, and all the rest of
the months showed the lowest crop ETa. All four crops had significantly different seasonal
ETa. Alfalfa showed the highest ETa, followed by maize, potatoes, and dry beans.

The maize monthly ETa varied with months, increasing from a minimum in April
to the peak value in July and decreasing thereafter toward the crop physiological stage
and harvest in November. The monthly ETa averaged 14.8, 74.5, 125.6, 177.7, 159.1, 108.6,
58.3, and 31.1 mm in April, May, June, July, August, September, October, and November,
respectively, for the 2016–2020 period (Figure 5). Few maize fields are planted in April, and
most of April ETa values basically reflect soil water evaporation from the pre-irrigation
practiced to alleviate soil preparation. Across the farm, maize usually reaches full growth
and development with the tasseling–silking stage in July. In addition, the peak air tem-
perature occurred in July at the site with high evaporative water demand [12,63]. June,
July, and August are the most critical months for maize production in northwestern New
Mexico when irrigation practices not meeting crop water requirements may jeopardize
maize yield and quality [12]. Therefore, maize crop managers have to work very closely
with irrigation technicians to fulfill optimum irrigation management. Maize evapotran-
spiration in November is basically soil water evaporation, as the fall freeze usually occurs
in October [64] but can occur as early as mid to late September [12] or as late as early
November [64]. The seasonal potato ETa averaged 742.7 ± 21, 732.4 ± 35, 783.7 ± 19,
766.5 ± 28, and 773.3 ± 42 mm for 2016, 2017, 2018, 2019, and 2020, respectively.
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Figure 3. Weather conditions during the 2017–2020 period at the experiment station: (a) air tempera-
tures, (b) air relative humidity, (c) wing speed and solar radiation, and (d) precipitation.
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Figure 4. Relationship between mean daily air temperature and the soil temperature (average upper
10 cm soil layer) during the 2018–2021 period at the experiment station.

Table 1. Summary of the analysis of variance of crop monthly and seasonal ETa.

Source df Type III SS MS F P Significance

Main Effects

Year 4 32,705.3 8176.33 35.06 0.0000 Highly significant

Month 5 5,325,143.8 1,065,028.8 4566.7 0.0000 Highly significant

Crop 3 409,794.9 136,598.3 585.7 0.0000 Highly significant

Interaction

Year*Month 20 97,802.3 4890.1 20.9 0.0000 Highly significant

Year*Crop 12 46,315.8 3859.6 16.5 0.0000 Highly significant

Month*Crop 15 1,392,370.9 92,824.7 398.0 0.0000 Highly significant

Year*Month*Crop 60 182,261.1 3037.7 13.0 0.0000 Highly significant

Error 2485 579,541.9 233.2

Total 2604 8,145,994.9

Model 119 7,566,452.9 63,583.6 272.6 0.0000 Highly significant

Potato planting starts in early April and finishes in early May, while soil preparation,
soil treatment for soilborne diseases, and nematode control and seedbed preparation start
in March. Planting and harvesting mostly depend on resource availability, and their
occurrence may vary from year to year with harvesting in late September–early October
before the first fall frost. After the planting of potatoes, irrigation is very limited because
the moisture in the potato seed is enough for potato sprouting and emergence. Soil water
evaporation is, therefore, limited, and transpiration is almost null in April. Potato ETa
increased with crop emergence and growth and development and averaged 21.5, 61.4, 151.3,
176.4, 126.8, and 63.5 mm in April, May, June, July, August, and September, respectively, for
the 2016–2020 period (Figure 6). Like maize, the potato’s monthly peak ETa occurred in July.
Depending on the planting date and or variety, tuber initiation may start as early as May
and continue to the bulk stage, and most tubers mature by mid-August, with senescence
occurring by the end of August for the early maturing potato varieties. Starch accumulation
continues with the mid- to late-maturing varieties, and the potato vine is usually killed at
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the end of August–early September. However, light irrigation continues for at least two
weeks to reinforce the buildup of the potato tuber skin before harvest with an increase in
soil water evaporation before tuber harvest. The seasonal potato ETa averaged 571.3 ± 55,
574.9 ± 5.5, 572.9 ± 53, 591.0 ± 43, and 694.4 ± 48 mm for the 2016, 2017, 2018, 2019, and
2020, respectively.
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Figure 5. Monthly actual maize crop evapotranspiration with standard deviation among twenty-two
maize fields for the 2016–2020 period under center-pivot irrigation.
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Figure 6. Monthly actual potato crop evapotranspiration with standard deviation among twenty-two
potato fields for the 2016–2020 period under center-pivot irrigation.
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Dry beans’ monthly ETa followed similar patterns as those of maize and potatoes and
averaged 21.4, 55.9, 78.3, 135.4, 124.2, 66.4, 45.0, and 25.8 mm for April, May, June, July,
August, September, October, and November, respectively (Figure 7). Very few fields are
planted with dry beans in April, as the last spring killing frost, which usually occurs in May,
could damage the young plants of the dry beans, which may not recover, as their growing
point may be destroyed by the frost in contrast to the monocotyledons (maize), which may
still have their growing point situated below the soil surface of similar growth stage [23].
Therefore, the crop ETa of April is soil water evaporation and the evapotranspiration
of weeds before field preparation and could be ignored in the management planning
objectives. Dry beans are short-duration crops, and the harvest usually starts in September
and continues to October–November depending on the planting date, which is echeloned in
late April to late June and early July, and sometimes at the NAPI, based on the availability
of equipment or personnel, drying equipment such as a silo is used with a drying system.
Thus, the dry beans’ ETa estimates vary across fields and planting dates. For planning
purposes, dry bean crop season could be considered for the May–October period. The
estimated dry bean seasonal ETa averaged 512.8 ± 46, 484.9 ± 39, 505.6 ± 67, 507.4 ± 59,
and 520.0 ± 60 mm for the growing seasons of 2016, 2017, 2018, 2019, and 2020, respectively.
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Figure 7. Monthly actual dry bean crop evapotranspiration with standard deviation among twenty-
two dry bean fields for the 2016–2020 period under center-pivot irrigation.

Alfalfa is a perennial high-value forage crop usually planted in fall or spring; however,
fall planting yields higher than the spring planting during the first production year [65–67].
For this research, the planting year data were removed from the dataset to better help plan
water management throughout the year of well-established alfalfa fields regardless of the
second, third, fourth, or fifth year after planting. The monthly alfalfa ETa varied with years
and rapidly increased from January to May and slightly decreased in June, July, August,
and September, corresponding to the first, second, third, and fourth cut, respectively, in
the study area [12,43,67] (Figure 8). Alfalfa ETa decreased from September to December
when air temperature drastically decreases in winter, and reduced alfalfa growth plants
go into the dormancy stage from November to February, with intrinsic variation due to
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the fall dormancy rating for the planted alfalfa varieties. However, Djaman et al. [67]
reported that dormant and moderately dormant alfalfa cultivars should be the first choice
in northwestern New Mexico. The alfalfa monthly ETa averaged 18.7, 27.0, 49.8, 111.8, 155.3,
148.8, 142.6, 131.4, 107.6, 68.8, 36.4, and 17.3 mm for the consecutive months from January
to December, respectively, for the 2016–2020 period. The alfalfa annual ETa averaged 986.2,
1051.0, 992.1, 968.3, and 1079.4 mm for 2016, 2017, 2018, 2019, and 2020, respectively. The
alfalfa annual ETa was the highest, followed by maize, potatoes, and dry beans (Figure 9).
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Figure 8. Monthly actual alfalfa evapotranspiration with standard deviation among twenty-two
alfalfa fields for the 2016–2020 period under center-pivot irrigation.
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3.3. Important of Crop Evapotranspiration in Decision Making for Future Farm Management

The on-farm retrieved monthly and seasonal crop evapotranspiration values for maize,
potatoes, dry beans, and alfalfa for the 2016–2020 period across the NAPI farm constitute
the basis for the estimation of crop water requirements for the studied crops in northern
New Mexico. Climate change is expected to intensify the hydrological cycle and alter one
of its important components, evapotranspiration [68], and crop ETa is expected to increase
under a dominant warming phenomenon at the regional scale of the southwestern United
States [43]. Easterling et al. [69] reported that the annual precipitation decreased in much
of the western and southwestern United States during the 1901–2015 period. In addition,
Kunkel et al. [70] indicated that the southern portions of the southwestern United States
would experience the largest decrease in the annual precipitation, while a slight increase is
predicted for the northern portions. Consequently, supplementary irrigation water amounts
may show an increasing trend to meet crop water requirements. However, variation in
the annual total and seasonal precipitation could partly have been affected by El Niño–
Southern Oscillation (ENSO) and La Niña, which are associated with floods and drought
in the southwestern United States [71–73]. Using the California Irrigation Management
Information System data, Szilagyi and Jozsa [74] showed a statistically significant plot-scale
irrigation ET rate increase of 31 to 41 ± 17 mm per decade for the 1983–2007 period across
the Central Valley of California. Efficient irrigation technologies, crop-ETa-based irrigation
scheduling, and the adoption of adaptation strategies to climate change are necessary for
the production system’s sustainability. The San Juan River basin, the main source of water
for the NIIP project, may be affected if the Navajo reservoir is overexploited, with higher
water allocation to irrigation as the major source of water supply for the southwestern
region, while the Colorado River watershed is affected by the overallocation of surface
waters and 20 year-long droughts [75].

In addition, the data could be used in cropland allocation planning concerning the
available irrigation water and the precipitation forecast. However, in a commercial multi-
crop farm, cropland allocation is subjected to other several factors such as crop price, the
demand for crops, system profitability, crop rotation in different cropping systems, soil
health, cover cropping, weed, pest control, etc. Cervantes-Gaxiola et al. [76] successfully
simulated maize, wheat, alfalfa, and bean land allocation and their optimal scheduling for
the years 2020, 2021, and 2022 while maximizing the total annual profit. Other parameters
such as the operating costs, including the costs of fresh water, fertilizer, and pumping, and
the capital costs, including the costs of storage tanks, treatment units, pipelines, and pumps,
are considered in determining the profit. The best combination of land and crop that opti-
mizes the use of farm resources is determined through the modeling approaches of the crop
plan decision [77,78]. To address optimum planning issues in a commercial farm such as
the NAPI, a multi-objective optimizer including planting areas, crop production, and profit
should be considered [79,80]. Other optimization models of annual crop allocation have
been developed based on economic factors [81,82], the uncertainly of the available water,
the net benefit considering wastewater recovery [83], limited water availability [84,85],
the benefit subject to a given set of ecological, financial, and food crop production self-
sufficiency constraints [86], optimum production [87], crop rotation [88], intra-seasonal
water allocation [89], etc. As each environment and each farm has its specificities, the
model choice may be directed by the model development environment, the number of
crops grown on the farm, management practices for system sustainability, water conser-
vation at the farm level while reducing the environmental impact and improve ng soil
health characteristics.

4. Conclusions

Northwestern New Mexico is dominated by a semiarid to arid climate with very
limited annual precipitation not able to allow rainfed production. In the context of chang-
ing climate, agricultural water resources are decreasing in many regions and sometimes
with contracting trends with unpredictable extremes, and these phenomena are more em-
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phasized in the semiarid and arid areas. It is, therefore, important to access crop water
use mostly in the large agricultural industry similar to the Navajo Agricultural Products
Industry where rigorous, sustainable, and conservation practices are adopted. Accurate
crop evapotranspiration is indispensable to increasing irrigation water productivity. The
results of the present study report the dynamics of the monthly and seasonal actual crop
evapotranspiration of maize, potatoes, dry beans, and alfalfa in a commercial farm in the
Navajo Agricultural Products Industry. Crop evapotranspiration significantly varied with
crops, months, and years. The highest monthly crop evapotranspiration was observed
in July, and it averaged 201.7 mm for maize, 207.5 mm for potatoes, 178.4 mm for dry
beans, and 202.1 mm for alfalfa. The seasonal crop evapotranspiration averaged 703.8,
600.9, 506.2, and 1015.4 mm for maize, potatoes, dry beans, and alfalfa, respectively. These
results could be used by crop managers to estimate accurate crop irrigation requirements
to avoid putting those crops under water stress or water lodging, which may drastically
reduce crop yield and crop water use efficiency. Future research should target the use of a
complex nonlinear programming model to determine the optimum crop allocation based
not only on the irrigation water availability and in-season precipitation forecast but also on
production cost and profitability and the existence of proper value chains of different crops.
However, crop rotation for improving soil health may be at risk due to crop prices and the
profitability of production systems. Effective water-saving irrigation strategies could be
implemented to increase crop water productivity and expand the cultivated area. For future
work, the crop evapotranspiration rates of the major crops should be estimated for a longer
period and the long-term dynamics of crop evapotranspiration and the future projection of
crop evapotranspiration would help have a long-term plan for irrigated production under
different scenarios considering the actual and future trends in the climate variables in
northern New Mexico. Thus, the use of different resource allocation models with multiple
objectives would help optimize cropland allocation, irrigation scheduling, farm profit, and
the environmental impact of the production systems for water conservation and sustainable
management conditions.
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