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Abstract: Crop productivity and yield are adversely affected by the deficiency of P in agricultural soil.
Phosphate fertilizers are used at a large scale to improve crop yields globally. With the rapid increase
in human population, food demands are also increasing. To see that crop yields meet demands,
farmers have continuously added phosphate fertilizers to their arable fields. As the primary source of
inorganic phosphorous, rock phosphate is finite and the risk of its being jeopardized in the foreseeable
future is high. Therefore, there is a dire need to improve plant-available P in soil, using feasible,
environmentally friendly technologies developed on the basis of further understanding of P dynamics
between soil and plants. This study systemically reviews the mechanism of P uptake and P-use
efficiency by plants under starvation conditions. The recent advances in various strategies, especially
imaging techniques, over the period 2012–2021 for the measurement of plant-available P are identified.
The study then examines how plants fulfill P requirements from tissue-stored P during P starvation.
Following this understanding, various strategies for increasing plant-available P in agricultural soil
are evaluated. Finally, an update on novel carriers used to improve the P content of agricultural soil
is provided.

Keywords: phosphorus; soil mobilization; speciation; plant uptake; strategies

1. Introduction

Phosphorus (P) is a fundamental macronutrient required for optimum plant growth
and development in the agricultural sector [1]. Phosphorus was discovered in 1669 by
Hennig Brandt, a German merchant. It is one of the 12 most abundant elements in the
Earth’s crust. The only isotope that occurs naturally is phosphorus-31 (31P). Phosphorus
non-availability is a serious issue and is considered the main limiting factor for decreased
crop yields in the modern agricultural ecosystem [2]. In acidic soil, soil P is mostly immobi-
lized in two forms, i.e., inorganic phosphorus (Pi) and organic phosphorus (Po). It may be
trapped with mineral compounds of iron (Fe) or aluminum (Al) hydroxides, or it can be
incorporated into rocks rich in mineral oxides, such as hematite, goethite, and gibbsite [3].
In alkaline soil, P is trapped in less soluble mineral compounds (variscite, strengite, and
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apatite) of magnesium (Mg) and calcium (Ca) [4]. Po accounts for 30% to 50% of the total
phosphorus (Pt) present in soil, primarily in the form of inositol phosphates, phospholipids,
and sugar phosphates [5]. Soil mineralization reactions are generally activated by soil
microbes coupled with enzyme phosphatase in the plant rhizosphere to release Pi from
fixed P reservoirs. Environmental factors, such as soil pH, temperature, moisture content,
and physicochemical properties (texture, organic matter, and electric conductivity), affect
the mineralization process. Plants naturally uptake Pi from soil solutions in the form of
H2PO4

−, and HPO4
2−, which are available in a narrow pH range (6.0–6.5). Pi accounts for

35% to 70% of the Pt present in soil solutions [6]. However, if Pi is immobilized in soil solid
or transformed to Po, it will largely be unavailable to plants.

In modern agricultural practice, farmers apply chemical phosphate fertilizers to in-
crease crop growth and yield. Intensive use of P fertilizer causes excessive P accumulation
in soil [7]. Only 10–20% of the total P applied to soil is taken up by plants as Pi [8]. Part
of the accumulated P in fertilizers applied to soil leaches into surrounding water bod-
ies, thus affecting water quality. This is the reason artificially applied P fertilizers are
not recommended for soil fertility, due to the risks of underground water contamination.
Chemical fertilizers boost soil P levels temporarily. Furthermore, rock phosphate reserves
(non-renewable P sources) are continuously declining. In the coming 50–100 years, it is
estimated that natural sources of P reservoirs will be exhausted [9]. Therefore, it is essential
to understand P dynamics in the soil environment, specifically the way plants uptake P,
so as to identify possible alternatives to enhance P uptake from soil. This review first
updated knowledge about P immobilization in the soil environment and the mechanism
of plant P uptake and then discussed the inspired strategies applied for the improvement
of available P in low-P soil in the agricultural sector. The recommendation of a suitable
approach (strategy) was then summarized for sustainable soil P management.

2. Phosphorus Mobilization in the Plant Rhizosphere

The rhizosphere is the central and critical zone in the plant–soil environment, where
maximum adsorption of nutrients, especially P, takes place from soil to plants [10]. Various
biochemical and physiological processes, particularly the excretion of hormones, organic
acids, and phosphatases, change the plant rhizosphere zone [11]. These processes are the
main drivers of many changes occurring in the plant rhizosphere. Nutrient-use efficiency
and crop yields are controlled not only by the physiological and biological processes that
take place in the plant rhizosphere but also by microbial dynamics and their abundance
in the rhizosphere zone [12]. Phosphorus is gradually being depleted in the plant-root
rhizospheric zone due to slow mobility and solubility coupled with root uptake, resulting
in P dynamics away from the root rhizosphere to upper plant parts. The decreased mobility
of available P results in that plant requirements cannot be met. To maintain the constant
requirements of plants, rhizospheric soluble P should be replaced 20 to 50 times per day
by P supplements from bulk soil [13]. Soil is a medium for the storage and transformation
of nutrients, including P. Many soil biochemical processes occur at various spatial and
temporal scales, influencing the bioavailability and cycling of P. Diffusive gradients in thin
films (DGT) is an in situ technique that has been used to study P bioavailability in soils and
P dynamics in the plant rhizosphere at two-dimensional high resolution [14]. The DGT
method employs a passive sampler composed mainly of a binding layer and a diffusive
layer. For P imaging using DGT, available P firstly flows through the diffusive layer and
is immediately-bound onto the binding layer. Afterwards, post-deployment assessment
of P in the binding layer by 1D/2D slicing-colorimetry, computer/colorimetric imaging
densitometry (CID), or laser ablation inductively coupled plasma mass spectrometry (LA–
ICP–MS) acquires available P distributions at sub-mm spatial resolution. Table 1 represents
DGT imaging technique data for different plant rhizospheres. The introduction of DGT as
an imaging tool for measuring in-situ high-resolution P distribution in the rhizosphere is a
large step toward a comprehensive understanding of P dynamics in soil-plant system.
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Table 1. Publications on the diffusive gradients in thin films technique (DGT) over
the period 2012–2021.

Soil Plant Species References

Low-P soil Brassica napus L. [15]
Soils and sediments Zea mays L., Zostera marina L. [16]
High- and low-P soils Orayza sativa L. [17]
Flooded paddy soils Orayza sativa L. [18]
Soils and sediments Zea mays L. [19]

Calcareous and non-calcareous soil Triticum aestivum L., Lupinus albus L.,
Fagopyrum esculentum L. [10]

High- and low-P soil Brassica napus L. [13]
Paddy soil Zea mays L. [20]
Halosols and Cambosols Orayza sativa L. (grain) [21]

3. Mechanism of P Uptake and Consumption by Plants

Soil contains a high amount of total phosphorus (Pt), composed of inorganic phospho-
rus (Pi) and organic phosphorus (Po), but only a small amount of P is available for plant
uptake [22]. From soil solutions, plants obtain Pi in the form of orthophosphate anions
(H2PO4

− and HPO4
2−) (Figure 1). A study [23] reported that, in most agricultural soil, the

concentration of orthophosphate is very low. In P-deficient conditions, P might be supplied
from other P pools to meet plant nutritional requirements. A large P concentration differ-
ence occurs between plant roots and bulk soil when P is rapidly depleted [24]. The rate of P
diffusion in plant roots in most soils is not high enough to overcome the localized P differ-
ence (created due to P uptake in soil); therefore, P deficiency occurs in most cases. Previous
studies have shown that, for plant growth and developmental processes, P uptake capacity
is insufficient and has become a limiting factor in many regions globally [25]. Therefore, for
sufficient P uptake, the importance of root architecture cannot be ignored. In many cases,
roots show active responses towards P deficiency in soil [17]. The root characteristics for
high P uptake include sharp, long, and deep root systems, as well as high root-to-shoot
biomass ratios [26]. The common characteristics of plants include extensive root branch-
ing [27], the occurrence of a large number of root hairs, and long specific roots developed
to reach P-nutrient-rich regions (sub-layers) in the soil [28]. Brassica napus L., Zea mays L.,
and Triticum aestivum L. have fibrous roots and exhibit high P uptake as compared to the
plant species Vicia faba L., Glycine max L., and Lupinus albus L. [29].

Nutrient P is the main component of membrane lipids and nucleic acids (DNA) in
plant cells and is essential for many biochemical and physiological processes. In the absence
of sufficient P, plants sharply develop adaptive mechanisms not only to gain sufficient
P by facilitating P uptake but also to utilize internal tissue-stored P by maintaining the
P life cycle in the plant–soil environment, thus decreasing P utilization and readjusting
old tissue-stored P for better performance of plant functions (Figure 1). In the cellular
vacuole, about 85% to 95% of Pi is present. In P-deficient conditions, the vacuolar Pi flux
is insufficient to fill the rapid gap due to cytosolic Pi reduction [15]. Therefore, in the
Golgi membrane, a phosphate transporter, PHT4;6, is present, which might transport Pi
from the Golgi complex [30] to fulfill the shortage of P. In plant-cell chloroplasts, another
phosphate transporter, PHT2; 1, is also available, which might maintain concentrations of Pi
in plant cells in P-deficient circumstances. A previous study revealed that, under P-deficient
conditions, dual-targeted purple acid phosphatase isozyme (At PAP26) was necessary for
Pi accumulation and that phosphatase enzymes were needed for the secretion of Pi from
phosphate monoesters in Arabidopsis thaliana [31]. For the mobilization of P from RNA,
two genes (At RNS1 and RNS2) and ribonucleases are essential during P deficiency. Leaf
senescence also stimulates these two ribonuclease genes and phosphatase enzymes during
P-remobilization processes, further supporting this phenomenon [32]. Under P-scarcity
conditions, membrane lipid composition can be changed through increased non-P lipid
and decreased phospholipid formation [33]. At the cellular level, the decomposition of
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diacylglycerol by phospholipases C and D and degradation of phospholipids into Pi is
mediated under P deficiency [34]. In addition, by the action of two enzymes, SQD1 and
SQD2, cellular diacylglycerol is further converted into sulfolipids and galactolipids [35].

Figure 1. Mechanism of P uptake from soil to plant and associated biochemical process in the
plant–soil environment.

Furthermore, plant cells in P-scarcity and starvation conditions could also utilize
respiratory cellular routes, bypassing Pi reactions and adenylate [36]. Shortly, for effi-
cient uptake and utilization of available P, plants effectively adopt several biochemical,
physiological, and morphological changes [37]. Efficient P utilization and nutrition for
the complex network in plants are necessary. Phosphate signaling pathways and their
molecular mechanisms respecting P have been reported previously [38]. Transcriptional
factors (PHR1), ubiquitin E2 conjugate (PHO2), and microRNA (miRNA) are important
players in this network for the regulation of PHO1, PHT, RNS, and ATPase genes at various
levels during P deficiency. The hormonal network and sugar-signaling pathways might
also be involved during P deficiency [39].

4. Inspired Strategies for Managing Phosphorus in Agricultural Soil

Several inspired strategies have been used for the improvement of plant-available
P and its fractions, as shown in Figure 2. The progress of these strategies is a focus of
this subsection.

4.1. Phosphate Fertilizer Application

Chemical P fertilizer application in arable fields is the most widely and long-used
strategy to increase as well as precipitate the fixed P in agricultural soil for efficient uti-
lization by crop plants [40]. This strategy is helpful for the initial depletion of fixed P
and enhances crop yields to some extent. However, due to the massive applicaton of
inorganic phosphate fertilizers by the agricultural sector, the P use efficiency (PUE) in crop
farming continue dropping in the developing countries. This makes the P concentration in
soil cannot catch up with that required to reach the optimum level for crop growth and
development. Anthropogenic activities, such as fertilization, have significantly affected
the terrestrial P cycle [41]. In soil, the level of P is much lower (10 µM) than levels of plant
tissue-stored P (5–10 mM) [42]. Applications of chemical P fertilizers are required because



Agronomy 2022, 12, 2539 5 of 17

of low P availability and fixed P in the soil to enhance crop growth and yield [43]. In
addition, phosphate fertilizers are applied to low-P soil in the form of monocalcium phos-
phate (MCP) and monopotassium phosphate (MPP). Monophosphate fertilizer application
prominently affects soil biochemical and physiological processes and, through the wetting
process, creates huge amounts of protons and phosphate and finally establishes a P-rich
zone in the soil to which it is applied [44]. Further processes create precipitation reactions,
direct reactions, and adsorption reaction zones.

Figure 2. Inspired strategies for managing phosphorus and its fractionation. Abbrevia-
tions: PGPR: plant growth-promoting bacteria, PSM: phosphate-solubilizing microorganism,
AFM: arbuscular mycorrhizal fungi, Pi: inorganic phosphorus, Po: organic phosphorus, P: phospho-
rus, Ca-P: calcium phosphate, Fe-P: iron phosphate, Al-P, aluminum phosphate, NaHCO3: sodium
bicarbonate, NaOH: sodium hydroxide, HCl: hydrochloric acid.

The P-saturated region (direct reaction zone) is acidic, ranging from pH 1.0 to 1.6 [45].
Due to its acidic nature, rapid movement of metal ions occurs. These released metal
ions react with Pi in the direct reaction zone, thus enhancing further precipitation of Pi.
Metal ions and P chemically interact and form complex molecules of Fe-P, Al-P, and Mg-P
compounds [46]. Phosphorus is tightly bound in such compounds and is scarcely accessible
to various plant species. Thus, new aggregates of monocalcium and dicalcium phosphate
are produced in calcareous soil gradually. With the passage of time, these aggregates are
converted into apatite (a stable form of calcium phosphate). The addition of balanced
fertilizer matching the treated soil’s physical and chemical characteristics might be an
efficient and suitable approach for enhancing plant growth and development in P-deficient
agricultural soil.

4.2. Manure Application

Manure application is also a promising strategy to enhance P-use efficiency in agricul-
tural soil. To increase soil fertility and P concentration, manure is frequently used as an
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amendment in agricultural soil on a routine basis. In manure, the concentration of total
P is variable [47]. Manure contains approximately 70% of total P in the labile form, while
Pi constitutes 50% to 90% [48]. In addition, organic phosphorus (Po) is also present in the
form of nucleic acids and phospholipids [49]. The mineralization process increases the
soil Po content in manure-amended soil. Furthermore, mineralization reactions dissolve
molecules of organic acids into calcium phosphate [50]. With soil amendment of manure, P
adsorption on soil particles greatly decreased. Manure soil application also changes the P
availability and pH level. Large molecules of hydroxyls and carboxyls of humic acid, as
well as negatively charged sites in manure, strongly compete with Pi in amended soil for
adsorption [51]. However, the transformation mechanism of P between Pi and Po pools
needs further research in manure-amended soil.

4.3. Mycorrhizal Application

Mycorrhizal fungal application to P-deficient soil is an alternative strategy to the use of
phosphate fertilizers for enhancing plant growth and available P. Mycorrhiza, particularly
arbuscular mycorrhizal fungi (AMF), establish symbiotic associations (70%) with the roots
of higher plants called angiosperms and contribute to P nutrition significantly [52]. Mycor-
rhiza associated with complex root systems have the same P reservoirs in soil as available
to other plant species [53]. A previous study [54] investigated alternative reservoirs of
P that are used both by ectomycorrhiza and AMF. In such symbiotic associations, AMF
receive carbon (C) sources from host plants while constantly supplying P nutrition through
an extensive hyphal system to their host plants. In stress conditions, for sustainable agri-
cultural productivity, the nutritional effect of AMF is very beneficial in the formation of
soil aggregates and the establishment of plants. Through a symbiotic relationship, the chief
advantage of AMF is increased P uptake. Mycorrhizal plants showed better growth than
non-mycorrhizal plants, having AMF pathways as well as increased P uptake, in a previous
report [55]. However, in some reported cases, even mycorrhizal plants with AMF pathways
did not show sufficient P uptake, and plant growth was stopped. A previous study [56]
revealed that, via the solubilization process, AMF hyphal exudates alone solubilized more
P from soil reservoirs than plant-root exudates, suggesting that, through the solubilization
process, mycorrhiza can enhance P uptaek of the plants. The secretion of phosphatase
enzymes from the fungal hyphal mycelia of AMF fungi has been investigated and it was
found that it could significantly increase the utilization and mineralization of organic P [57].
Mycorrhizal plant P acquisition increases through extraradical mycelia that penetrate deep
into P reservoir sources in the soil and transform it into roots and subsequently into other
plant parts. Large surface areas, as well as high mycorrhizal hyphal densities, could also
contribute to enhanced orthophosphate uptake by plants. In mycorrhizal-associated plants,
elevated uptake can usually be explained in terms of enhanced P utilization through the
hyphal system from indigenous soil P reservoirs [58]. Mycorrhizal plants use two pathways
(direct and mycelial) for sufficient P uptake. The first one occurs at the soil–plant interface
via root hairs called direct pathways. The second pathway occurs through fungal mycelia
and is called the mycorrhizal pathway [59].

4.4. Plant Growth-Promoting Bacteria Application

The inoculation of plant growth-promoting bacteria (PGPB), applied as an alterna-
tive to chemical fertilizers, is based on P solubilization, N2 fixation, phytohormone se-
cretion, vitamin synthesis, and organic P mineralization [60]. Plant growth-promoting
bacteria application to soil is a natural method for increasing soil P concentrations by the
P-solubilization mechanism [61]. Numerous PGPB have been isolated from different soil
environments, and their effects on plant growth and development have been reported [62].
Most of the studies have concentrated on PGPR, which perform functions associated with
P solubilization to increase P availability to the host plant [63]. A diverse array of PGPR,
such as species of Bacillus, Enterobacter, Pseudomonas, and Serratia, have been found to be
involved in P mobilization, e.g., dissolving Ca-P by lowering pH, unlocking P bound to Al
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and Fe oxides through the exudation of organic acids, as well as mineralization of organic
P through enzyme phosphatase. The mentioned PGPR have been considered as potentially
effective inoculants for improved crop growth and yield. However, some researchers have
reported that the direct inoculation of PGPR into soil did not enhance plant biomass and P
uptake capacity, due to variations in P-related soil properties as well as enzyme activities
that were limited by certain environmental factors [64]. Previous findings [65] revealed a
low survival rate for PGPR due to low nutrient concentrations as well as competition with
indigenous soil microbial, fungal, protozoan, and nematode populations.

Phosphate-solubilizing microorganisms (PSMs) solubilize orthophosphate from dif-
ferent inorganic and organic sources [66]. Phosphate-solubilizing microorganisms include
Rhizobium, Bacillus, and Pseudomonas species, as well as different species of fungi, such
as Penicillium and Aspergillus species [67]. In laboratory experiments, rock phosphates
(Ca5 (PO4)3OH, Ca10(PO4)6F2) and calcium compounds, such as tricalcium phosphate
(Ca3(PO4)2), are mainly used for the identification of PSMs. The quantity of released
soluble P is particularly dependent on the P source; therefore, various microorganisms
solubilize different sources of P [68]. Fungal species were previously extensively studied
with respect to their abilities to effectively solubilize Al and Fe phosphate sources [69].
Variation in the pH of culture media plays an important role in the solubilization of calcium
phosphate. The secretion of organic anions, such as lactate, oxalate, citrate, and gluconate,
by PSMs is linked to the acidification of solution media [70]. PSMs improve the solubiliza-
tion and, ultimately, mobilization of poorly soluble P-binding Ca-P and Al-P compounds
by chelating organic anions (Table 2). Many studies have reported increased P uptake and
solubilization by various crops inoculated with PSMs in controlled conditions [71,72].

Table 2. Different amendment/inoculation methods used and concentrations of available and total
P (mg kg−1) in agricultural soil.

Amendment Soil
pH Available P Total P Amendment/

Inoculation Plant Species References

Pig manure 6.54 28.07 810 15,000 kg ha−1 Oryza sativa L. [28]
Poultry manure 5.20 45.03 975 42 Mg ha−1 Lolium perenne L. [73]
Compost 7.79 12.20 98 20 t ha−1 Phaseolus vulgaris L. [74]
Biosolids 7.40 25.21 7600 100 kg ha−1 Saccharum officinarum [75]
Willow and pine
biochar 6.20 33.31 1981 10 t ha−1 Lotus pedunculatus L. [76]

Cow-dung biochar 5.61 10.61 265 10 t ha−1 Cyperus esculentus L. [77]
PSM 7.20 17.41 145 3 × 10−4 per seed Triticum aestivum L. [78]
PSM 7.80 39.15 9500 4 × 10−5 per seed Lolium perenne L. [79]
AMF and PSM 8.50 8.00 183 20 g kg−1 Solanum lycopersicum L. [80]
Nano-rock
phosphate and
PSB

8.39 ND 296.23 250 kg ha−1,
250 mL seeds kg−1 Zea mays L. [81]

PSB ND 7.00 ND 1 × 107 C.F.U.mL−1 Zea mays L. [82]

PSB and P2 O5 4.70 8.11 ND 180 kg ha,−1 2 ×
10−8 C.F.U.mL−1 Saccharum officinarum [83]

Abbreviations: AMF: Arbuscular mycorrhizal fungi, PSM: Phosphate-solubilizing microorganism, PSB: Phosphate-
solubilizing bacteria, ND: Not detected.

In field experiments, the functional mechanism of PSM is more complicated and has
proved very difficult to explain clearly in the presence of many indigenous soil microbes
and varying environmental conditions [84]. This may be due to a lack of suitable and
precise methods for the introduction of PSMs into soil environments, gaps in knowledge
about the interactions of PSMs with indigenous organisms, and poor understanding of P
dynamics in soil [85]. Penicillium significantly solubilized P and enhanced wheat growth in
laboratory experiments [86]. Microbes play a key role in unlocking soil-bound organic P
through a process called mineralization. PSM inoculation enhanced organic P availability
as well as plant biomass in greenhouse experiments. In addition, microbial biomass is
essential for maintaining an optimum level of Po and Pi in soil solutions. Upon the death
and decay of microbial biomass, P is available to plants in soil [87].

The PSM inoculation technique has proved effective, helpful, and efficient respecting
plant rhizospheres, where there are large quantities of microbial biomass that are quickly
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metabolized into carbon [88]. However, P mobilization in the plant rhizosphere associ-
ated with PSMs requires additional confirmation and investigation. The mineralization
of organic and inorganic P and microbial-activated phosphate solubilization are essential
processes through which microbes obtain P from soil. However, in some cases, PSMs are
unable to mobilize enough P above their demands to meet plant requirements. The P cycle
in soil and microbial biomass indeed demonstrate an essential pathway for P mobilization
in different, available, including soil, P pools. Different physiological processes disturb
organic P pools and thus render them unavailable to the plant–soil ecosystem [89]. The
importance of this mechanism in plant rhizospheres needs further research in detail in
complex environments. The inoculation of crops with PSMs is a method frequently used,
and some PSMs are already commercialized [90]. However, in long-term field applications,
these inoculants have to compete for their survival with native soil nematodes and mi-
crobes. This technology is still in its infancy and suitable approaches for the solubilization
of mineral-fixed P are being explored. The issues with the application of this technology
include (1) inoculum survival and colonization, (2) host plant inoculum specificity, and
the (3) limited commercialization value and insufficient effects on plant growth and de-
velopmental processes [91]. PSM inoculants are applied to the soil and fixed P becomes
solubilized; however, plant P uptake and biomass production are negatively affected by
phosphorus fixation in the microbial biomass [92]. A previous study [93] reported that the
application of phosphate-solubilizing bacteria along with nematodes efficiently enhanced
plant P uptake and available P. Phosphorus solubilization is also influenced by soil texture.
Aluminum (Al) and iron (Fe) chemical reactions with P in acidic or low-pH soil result in
P reduction. However, tricalcium phosphate (Ca3PO4)3 is formed in alkaline or high-pH
soil, reducing plant-available P in soil [94]. Thus, soil alkalinity causes P unavailability—a
process known as P fixation. Sorghum yield increased significantly after PSM inocula-
tion [95]. To increase P availability, bacterial species, such as Bacillus spp., Pseudomonas
spp., and Agrobacterium spp., are used as soil inoculants [96]. Phosphorus solubilization,
which involves local acidification or alkalization, has been observed in some Pseudomonas,
Cyanobacteria, and Bacillus species isolated from plant rhizospheres [97]. Organic phosphate
is the most abundant source of soil phosphate, but its compounds are complex (nucleic
acids, phospholipids, etc.) and must be transformed by microorganisms before they can be
absorbed by plants [98].

4.5. Biosolid Application

In the 1990s, the term “biosolid” was first introduced for the selection of liquid, solid,
and semi-solid materials produced from the treatment of domestic sewage sludge [99].
A satisfactory production process is needed for sludge to be applied to land [100]. For
decades, biosolids have been recommended economically, are socially acceptable, and are
part of traditional practices of land applications globally [101]. In addition, land application
of biosolids is a viable technology for industrial-waste management, generally proposed by
environmentalists. Biosolids contain large amounts of micro- and macroelements, such as
copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), potassium (K), nitrogen (N), calcium
(Ca), sulphur (S), organic carbon (C), and phosphorus (P) [102,103]. These are essential
elements for plant growth processes and faunal survival in soil. Usually, in biosolids, most
P is in the form of aluminum phosphate, commonly adsorbed on the surfaces of calcium
phosphate and iron phosphate [104]. The total inorganic P present in biosolids ranges
from 70% to 90% [105]. Furthermore, biosolids contain smaller amounts of water-soluble
P [80] as well as organic P in the form of phospholipids, orthophosphate monoesters, and
orthophosphate diesters [106]. Wastewater-treatment-plant operations strongly affect the P
concentrations in biosolids [107].

Phosphate fertilizer application affects the dynamics of P in biosolids; however, not
all of the P in biosolids is available to plants [108]. Precipitation, dissolution, microbial
decomposition, desorption, and sorption of P occurs when biosolids are land-applied [109].
The above-mentioned processes may be slow or fast, depending on the biological and
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physicochemical processes that occur in the applied soil. P availability in biosolid-treated
soil increases with the rate of biosolid application [110]. Thus, elevated contents of inorganic
P in biosolids may be linked to enhanced concentrations of P in the soils to which they are
applied. However, in soils that have the highest capacities to retain P, or in P-concentrated
soils, such variations were found to be less obvious [111]. The conversion of lower labile
P to higher labile P species may also be linked to enhanced contents of bioavailable P in
amended soils [112]. Another study revealed that calcium (Ca)-concentrated biosolids also
contributed to enhanced levels of water-soluble P in amended soil [113]. Mineralization
also increases with amendments of biosolids, which could unlock biosolid-borne organic P,
thus contributing to enhanced contents of extractable P [114].

The relationship between plant-available P and the degradation of biosolids is more
complicated. A previous study revealed that biosolid amendment not only changes soil
physicochemical properties, such as pH, EC, dissolved organic matter, and biological
properties, but also the adsorption capacity of amended soil [115]. The enzymes phos-
phodiesterase and phosphomonoesterase mainly hydrolyze organic phosphate esters into
orthophosphate anions biochemically and secrete most of the assimilated P through soil mi-
crobes. Plant roots and soil microbes both passively and actively participate in the secretion
of extracellular enzymes to make them available for plants through the mineralization of S,
C, P, and N from complicated forms [116]. In the plant rhizosphere, phosphomonoesterase
enzyme activity was identified as the major mechanism for the acquisition of P by plants,
catalyzing a large number of anhydrides and orthophosphate minerals and thus releasing
bound P [117]. In agricultural soils, enzyme phosphatase activity mainly contributes to
agricultural activities, and, in forest soils, it responds to seasonal variations in moisture as
well as temperature [118].

According to economic theory, in biosolid-applied soils, P is amended together with
other nutrients, such as S, N, and S, thus stimulating the activity of phosphatase enzymes,
and is utilized by soil microbes as an energy source, while, in soil amended with chemical
fertilizers, phosphatase enzyme activity is suppressed [119], thereby revealing the clear
difference between inorganic P amendment and fertilizer application [18]. Previously, in the
agricultural sector, biosolid applications to soil enhanced acid phosphatase activity, nutrient
concentrations, and microbial biomass [120]. In different soils, various persistence and
production rates of enzyme activities have been studied. Soil pH-buffering capacity also
varies with biosolid application, resulting in changes in phosphatase enzyme activities [121].
In biosolid-applied soil, the enzymes phosphomonoesterase and diesterase might be used
as signals of P secretion from biosolids because, usually, sewage sludge includes different P
forms [122]. The higher the microbial or plant origin of the enzyme, the greater the demand
for mineral P [123]. Thus, competition or cooperation between plant roots and rhizosphere
microbes is primarily determined by soil P status.

4.6. Carrier Application

China and India, as the largest consumers of P fertilizers [124], are facing the great
challenge of gradually decreasing P resources [125]. Excessive and unbalanced P fertiliza-
tion applications in most regions have been extensively reported [126]. To maintain high
crop productivity, high rates of chemical P fertilizers (120 kg P2O5 ha−1) have been applied
by farmers, resulting in dramatic increases in P accumulation in agricultural soil [127], as
well as P loss via runoff and leaching to the aquatic environment. Therefore, to achieve
environmental, ecological, and economic goals, it is necessary to minimize the input of P
fertilizers and improve the P status of agricultural soils through the feasible application of
new materials in the modern agricultural sector. The application of biochar (a carbon-rich
material) is an environmentally friendly and cost-effective approach to improve nutrient-
deficient agricultural soil [128]. Biochar is produced from waste residues and is frequently
recommended for the fertility of agricultural soil and carbon sequestration [129]. Using
biochar as a carrier material for plant growth-promoting bacteria (PGPB) offers unique
opportunities and benefits in the agricultural sector. Plant growth-promoting bacteria
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inoculation with biochar increases the value of biochar and enhances its commercializa-
tion as a biofertilizer [130]. Applications of biochar as a carrier have many benefits, as
they ensure the survival of introduced PGPB in the treated soil and provide hot spots
for microbial movements. Furthermore, biochar carrier amendment of soils alters many
physicochemical properties, which enhances the survival efficiency of the introduced PGPB
in treated soils. The positive results of biochar amendment of agricultural soil include
increased soil pH, bulk density, fertility, water-holding capacity, nutrient retention, and
aeration capacity [131].

In agricultural soils, the total concentration of P (Pt) ranges from 400 to 1200 mg kg−1.
However, in available forms, such as the orthophosphate ions H2PO4

− and HPO4
−2, only

1 mg kg−1 of Pt is present [132]. The non-soluble form of P is present in inorganic (Pi)
and organic forms (Po). In soil, non-soluble Pi ranges from 20 to 50% in the form of
PO4

− ions [133]. These ions are adsorbed to various compounds of Ca, Fe, and Al—Ca-
P, Fe-P, and Al-P—producing stable complexes. Due to the short and poor survival of
PGPR in soil, post-soil inoculation is usually not recommended [134]. Furthermore, direct
inoculation of liquid PGPR in soil becomes complex due to the adhesion of soil particles,
which reduces their ability to colonize host root surfaces, as well as vertical transport [135].
Ordinary carriers, such as peat and vermiculate, have some drawbacks which limit their
application at large scales [136]. However, compared to peat and vermiculate, biochar
carriers seem to be environmentally friendly and cost-effective. Furthermore, biochar
sterilization offers a reliable and premium-quality preparation for alternative carriers
(PSMs loaded on biochar). Due to these benefits, biochar is considered an alternative,
cost-effective carrier. The attachment of PSMs on biochar surfaces might provide defensive
colonization as well as a safe zone [137]. One study [138] reported that when loaded on a
biochar surface, Azospirillum had a 6-month long shelf life at room temperature. However,
it is not clear whether PSMs loaded on biochar surfaces ensure survival; the matter needs
further investigation. We applied different biochar carriers (PSMs loaded on biochar), such
as rice-straw biochar (RSB), soybean-straw biochar (SSB), rice-husk biochar (RHB), peanut-
shell biochar (PNB), wood biochar (WB), and corn-cob biochar (CCB), to agricultural soil
collected from an agricultural field in Hailun City, Heilongjiang Province, China (Figure 3).
The tested soil had a pH of 6.52 units and a total P concentration of 5.59 mg kg−1 [139] The
incubation experiment was conducted at lab scale in a complete randomized block design
(CRBD) in four replicates. Each carrier was amended separately at a rate of 3% to the tested
soil. After one month of incubation experiment, the RSB and SSB amended-soil showed
significantly higher concentrations of NaHCO3 extractable Pi and Po, NaOH extractable Pi
and Po, HCl Pi, residual P, and total P in the treated soils than RHB, PNB, WB, CCB, and
CK-amended soil (Table 3). This increase in total P and P fractions in carrier-amended soils
may have been due to the increased solubilization and mineralization of mineral-bound P.

Table 3. Sequentially extracted P fractionation (mg kg−1) after application of different carrier materi-
als into agricultural soil. Mean values are shown ±1 standard deviation (n = 4) (unpublished data).

Parameters
0.5 M NaHCO3 Extractable 0.1 M NaOH Extractable 1 M HCl P Residual P Total Extraction

Pi Po Pi Po Pi Efficiency (%)

CK 0.58 ± 0.03 a 0.32 ± 0.08 a 0.63 ± 0.09 a 1.72 ± 0.20 a 1.46 ± 0.14 a 0.88 ± 0.15 a 5.59 ± 0.51 a 99
RSB 0.69 ± 0.08 b 0.77 ± 0.15 b 0.67 ± 0.04 a 1.20 ± 0.15 b 2.49 ± 0.27 b 1.21 ± 0.23 b 6.98 ± 0.96 c 100
SSB 0.94 ± 0.09 c 0.64 ± 0.16 b 0.71 ± 0.12 a 0.96 ± 0.15 b 2.99 ± 0.36 c 1.41 ± 0.34 c 7.61 ± 1.06 c 100
RHB 0.66 ± 0.12 b 0.27 ± 0.08 a 0.64 ± 0.08 a 1.46 ± 0.23 a 2.08 ± 0.23 b 1.62 ± 0.35 c 6.83 ± 0.19 b 98
PNB 0.70 ± 0.06 b 1.03 ± 0.27 c 0.69 ± 0.14 a 0.73 ± 0.15 b 2.00 ± 0.29 b 1.53 ± 0.26 b 7.01 ± 0.98 bc 95
WB 0.65 ± 0.02 b 0.48 ± 0.29 b 0.62 ± 0.05 a 1.29 ± 0.23 a 2.20 ± 0.26 b 1.43 ± 0.28 b 7.11 ± 0.18 b 93
CCB 0.73 ± 0.05 b 0.35 ± 0.08 a 0.61 ± 0.09 a 0.96 ± 0.18 b 2.43 ± 0.34 b 1.42 ± 0.24 b 6.65 ± 0.19 b 97

Abbreviations: CK: Control, RSB: Rice-straw biochar carrier, SSB: Soybean-straw biochar carrier, RHB: Rice-husk
biochar carrier, PNB: Peanut-shell biochar carrier, WB: Wood biochar carrier, CCB: Corn-cob biochar carrier.
Extraction efficiency for each of the P fractions was calculated from the sum of P fractions divided by total P and
multiplied by 100. Pi (inorganic P) and Po (organic P), P residual, and P total. Different letters in columns indicate
significant differences (p ≤ 0.05) between treatments, while similar letters indicate non-significant differences.
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Figure 3. SEM images of carrier materials: (A) RHB, (B) SSB, (C) WB, (D) RSB, (E) PNB, and (F) CCB
(unpublished data).

5. Conclusions

The current review has brief understanding of phosphorus mobilization and P dynam-
ics between Pi and Po pools in agricultural soil. It has been discussed how, in P-deficient
conditions, plants maintain P concentrations and utilize internal tissue-stored P. Progress in
the development of the diffusive gradients in thin films technique to study P bioavailability
was systematically reviewed. In addition, different inspired strategies for the improvement
of plant-available P in soil were also reviewed. Finally, an update about the application of
novel carriers was provided.
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