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Abstract: Remote sensing has been used as an important means of monitoring crop growth, espe-
cially for the monitoring of the formation of crop yield in the middle and late growth period. The
information acquisition on the yield formation period of winter wheat is of great significance for
winter wheat growth monitoring, yield estimation and scientific management. Hence, the main goal
of this study was to verify the possibility of monitoring the grain-filling process of winter wheat and
its in-field variability using an alternative non-destructive method based on orbital remote sensing.
High-resolution satellite imageries (3 m) were obtained from the PlanetScope platform for three
commercial winter wheat fields in Jiangsu Province, China during the reproductive stage of the winter
wheat (185–215/193–223/194–224 days after sowing (DAS)). Based on the quantitative analysis of
vegetation indices (VIs) obtained from high-resolution satellite imageries and three indicators of
the winter wheat grain-filling process, linear, polynomial and logistic growth models were used to
establish the relationship between VIs and the three indicators. The research showed a high Pearson
correlation (p < 0.001) between winter wheat maturity and most VIs. In the overall model, the remote
sensing inversion of the dry thousand-grain weight has the highest accuracy and its R2 reaches more
than 0.8, which is followed by fresh thousand-grain weight and water content, the accuracies of which
are also considerable. The results indicated a great potential to use high-resolution satellite imageries
to monitor winter wheat maturity variability in fields and subfields. In addition, the proposed
method contributes to monitoring the dynamic spatio-temporality of the grain-filling progression,
allowing for more accurate management strategies in regard to winter wheat.

Keywords: time-series planet imageries; winter wheat; grain filling; remote sensing; vegetation indices

1. Introduction

Wheat (Triticum aestivum L.) is one of the major staple crops globally and a major
source of calories and proteins in Northern China [1,2]. As the largest food consumer in
the world, China is currently facing multiple pressures, such as the reduction in cultivated
land and environmental degradation. Therefore, only by selecting improved varieties and
high-yield cultivation techniques can we break through the yield limit and achieve the
goal of increasing production. The current high-efficiency and high-quality production of
wheat is of great significance to solving the problem of food safety and stabilizing social
and economic development [3–5]. The grain-filling period of wheat is a critical period
for the formation of wheat yield and quality. Scientific, accurate and rapid acquisition
of relevant indicators during the wheat grain-filling period and timely monitoring of the
wheat grain-filling process can provide a reliable reference for field management [6–8].

The current research on the wheat grain-filling process mainly focuses on the simula-
tion of the growth process of dry grain weight under different varieties or environments, as
well as the further estimation of parameters such as the grain-filling rate and grain-filling
duration, and conducting correlation analyses with varieties or environmental factors to
explore the wheat grain-filling characteristics under different varieties or different envi-
ronmental factors [9–13]. Usually, during the whole period from the start of grain filling
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to maturity, it is necessary to continuously and repeatedly select representative wheat ear
samples in the field for destructive sampling, then carry out further manual threshing to
measure the fresh weight and drying to measure the dry weight of the grain, and finally,
perform further statistical analysis. This process is not only time consuming and labor
intensive, but also requires destructive sampling during multiple observations, resulting in
limited sample data. In addition, the data obtained are often in the form of points, which
are different from the actual situation in the field; thus, it is impossible to monitor the wheat
grain-filling process in a visual, accurate and dynamic way.

To improve the accuracy of monitoring the grain-filling progress, several researchers
have been looking for alternative methods, mainly by using digital image analysis [14,15].
This technique reduces human errors due to an individual’s subjectivity in judging wheat
maturity, but still presents other challenges. Digital image evaluation is limited by its
monitoring range and spectral band information. The standardized acquisition of photos
is also very important as, for instance, the amount of light when the photos are taken
can seriously affect the results [16,17]. Classifying the wheat maturity using an image
method solves the subjectivity of human viewing, but can add other sources of error in the
classification process and does not represent the variability within a field.

An alternative method consists of using remote sensing to map wheat maturity in a
field and creating zonal management strategies that can account for maturity variability.
Due to the macroscopic, objective, timely and economical characteristics of remote sensing
technology, along with the development of information technology and the modernization
requirements of precision agriculture and smart agriculture, spatial information technology
represented by remote sensing technology has been widely used in the field of agricul-
ture [18–22]. Remote sensing technology has been widely studied in the monitoring of crop
maturity [23–25], and most of the studies were based on the following two methods: one
of them is to use time-series remote sensing data to monitor the whole growth period of
crops and to analyze the changes of characteristic parameters at the end of crop growth
to determine the maturity period of crops; another way is to use remote sensing data to
quantify physiological and biochemical parameters related to crop maturity characteristics,
such as the leaf area index (LAI), leaf chlorophyll content (LCC), etc., and then achieve a
crop maturity assessment [26–28].

At present, there are a lot of studies using remote sensing technology to monitor the
growth of winter wheat and predict its yield and quality, but there are only a few studies
using remote sensing technology, especially satellite imageries, to monitor the whole grain-
filling process of winter wheat [29–31]. Remote sensing has been reported as a potential
tool to monitor winter wheat maturity, but because of the lack of additional studies, results
reported thus far do not agree on the most appropriate vegetation indices to use, justifying
the need for new studies, especially under different varieties [32]. Therefore, based on the
fact that winter wheat maturity monitoring methods are still highly subjective and do not
consider the variability of plants in the field, utilizing satellite imageries can help to solve
this issue.

In view of the demand characteristics of large-scale monitoring in agriculture, the
current remote sensing imageries used in crop monitoring were mainly originated via
MODIS, NOAA/AVHRR, etc. [33–35]. In recent years, with the in-depth exploration of the
potential of Sentinel series data and Landsat series data, the application of medium- and
high-resolution multispectral satellite remote sensing imageries in precision agriculture has
been brilliant [31,36,37]. However, these imageries have a relatively low spatial resolution
and are difficult to apply to the high-precision remote sensing monitoring of winter wheat at
the small field level. On the other hand, considering the characteristics of satellite imageries
and the influence of weather factors, the revisit cycle of these medium- and high-resolution
imageries is several days, which is relatively long, and it is difficult to obtain high-quality
data in time. This limits the continuous monitoring of crops, making it difficult for crops
to be monitored for specific indicators during critical growing periods. PlanetScope is
the only remote sensing satellite system with global high-resolution, high-frequency, full
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coverage in the world. Currently, more than 100 satellites have been launched. They form a
satellite constellation to ensure that imageries with a resolution of 3–5 m are obtained every
day in any area. Since 2021, the newly launched SuperDoves have a fifth spectral band
(red-edge), which is valuable for plant health assessments including NDRE. Time-series
satellite imageries with high-spatial and -temporal resolution can better monitor the growth
and health of crops and improve farming efficiency and monitoring accuracy in fields and
subfields [38–40].

The main objectives of this research using high-temporal/spatial-resolution imageries
were: (I) to provide evidence of the potential use of satellite imageries in monitoring
the variability of the winter wheat grain-filling process and identify potential vegetation
indices to monitor the maturity variability in fields and subfields; and (II) to propose a new
methodology to monitor winter wheat maturity using vegetation indices to assist winter
wheat growers in improving management strategies for their fields. It is hypothesized that
vegetation indices derived from the satellite imageries can be used to monitor variability in
the winter wheat grain-filling process, thus improving the precision of field management.

2. Materials and Methods
2.1. Study Region Experimental Design

The experiments were conducted in a modern agricultural demonstration base in
Xuzhou City, Jiangsu Province, China. As a large-scale, high-standard experimental field
integrating scientific research and production, the base is rich in plant types to meet the
needs of modern agricultural production (Figure 1). Rice–wheat rotation is a common
farming method in Jiangsu Province, China, in which the crop rotation of the Xumai 44 and
Xumai 43 fields was rice. Additionally, the crop rotation of the Xumai 33 field was sweet
potato. The three winter wheat varieties are widely grown in northern Jiangsu. After the
mechanized harvest of autumn grain crops, rice, sweet potato and soybeans are removed
and winter wheat is planted, usually from October 15th until the start of November, at the
demonstration base. The coldest months in this region are December and January (winter).
These months offer favorable climatic conditions to winter wheat development, since
winter wheat plants need vernalization, i.e., they need a period of low temperature before
they can enter the reproductive growth phase from the vegetative growth phase (Figure 2).
Xumai 44, Xumai 43 and Xumai 33 were sown on 21 October 2021, 20 October 2021 and
29 October 2021, respectively. The irrigation and fertilization management practices were
the same for all studied fields. These cultivars reach the grain-filling period approximately
180 days after sowing (DAS).

2.2. Field Data Acquisition

The field data were built from information obtained in each of the georeferenced
sampling plots, which were distributed in a regular grid for each study field. There were
16 long-term observation points for each cultivar field, totaling 48 in 3 fields (Figure 3).
During the grain-filling period, the five-point sampling method was used for data acqui-
sition at each sampling plot. As shown in Figure 3, the size of each sampling plot was
controlled within 2 m under the measurement of tape. Then, a rectangular frame with a
fixed size of 0.1 m2 was used, and 5 small points were fixed at the 4 corners and in the
middle of the sampling plot. In each 0.1m2 small point, 5 representative winter wheat ears
were randomly selected and put in the sampling bag. The winter wheat ears of the five
plots were brought back to the laboratory, and then were shelled manually. After weighing
the fresh weight of the winter wheat grains, the grains were put into an oven and were
dried at a constant temperature of 80 ◦C for 48 h to obtain the dry weight. After obtaining
the fresh grain weight and dry grain weight, the water content data of the grain could be
obtained through the ratio relationship. After averaging the field data of these 5 points, the
average value was the value of the sampling site, which comprised the dry thousand-grain
weight, fresh thousand-grain weight and water content.
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2.3. Remote Sensing Imagery Data

The imageries used were taken from the PlanetScope CubeSat platform, which has
satellites characterized as 3U CubeSats (10 × 10 × 30 cm) with a mass of approximately
4 kg. PlanetScope CubeSats consist of an optical sensor satellite constellation with high
resolution. Currently, there are approximately 170 satellites in solar orbit, which can collect
imageries daily from anywhere on the globe with a resolution of 3–5 m. With the official
launch of a new generation of PlanetScope eight-band products, on the one hand, Planet
has further optimized and improved the key processing of imageries, which is reflected in
reducing the number of pixels with poor quality, and improving the registration accuracy
between bands. On the other hand, in addition to the existing red (650–680 nm), green
(513–549 nm), blue (465–515 nm) and near-infrared (845–885 nm) bands, the coastal blue
(431–452 nm), red-edge (697–713 nm), yellow (600–620 nm) and second green (513–549 nm)
bands have been added, which are widely used in coastal zones, surface type identification,
crop growth assessment, yield estimation, environmental monitoring and so on [41,42].
Five cloud-free satellite imageries were obtained of the modern agricultural demonstration
base throughout the grain-filling stage from the Planet Labs platform. All satellite imageries
were downloaded as Surface Reflectance (SR) products from www.planet.com accessed on
17 September 2022. The characteristics of the imageries are shown in Table 1.

Table 1. Characteristics of PlanetScope satellite imageries (3 m resolution) on different dates of the
grain-filling stage.

Date
DAS

Time (UTC) Sun Elevation Sun Azimuth
Period Xumai 44 Xumai 43 Xumai 33

1 May 2022 A 193 194 185 13:57 55.4◦ 115.6◦

6 May 2022 B 198 199 190 14:44 64.2◦ 129.1◦

15 May 2022 C 207 208 199 14:31 63.7◦ 119.9◦

23 May 2022 D 215 216 207 14:33 64.7◦ 116.8◦

15 June 2022 E 223 224 215 13:58 58.9 104.1◦

2.4. Vegetation Indices (VIs)

The vegetation indices are an important indicator to measure the growth of crops,
monitor the crop development process, and estimate the crop yield potential. In combina-
tion with the physical significance of spectral indices, the selection of VIs was based on
the spectral characteristics of crops and the available literature from China and abroad.

www.planet.com
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In the research of the monitoring of the crop growth process and yield formation, the
normalized differential vegetation index (NDVI), green normalized differential vegetation
index (GNDVI), plant senescence reflectance index (PSRI), normalized difference red-edge
index (NDRE), normalized difference vegetation index of red-edge/red (NDVI-rededge)
and nonlinear vegetation index (NLI), which are six VIs based on visible light, red-edge and
near-infrared wavebands, were widely used. ArcMap 10.7 software (ESRI Co., Redlands,
CA, USA) was used to extract reflectance data from all bands, and SPSS 25 (IBM Co., Foster
City, CA, USA) software was used to calculate the six VIs.

All VI values were used to correlate with the dry thousand-grain weight, fresh
thousand-grain weight and water content at each sampling point, and the linear model,
polynomial model and logistic growth model were created to validate the potential of these
VIs in predicting winter wheat maturity variability. These indices were selected due to
their wide application in monitoring different physiological and agronomical parameters
in various crops (Table 2).

Table 2. Vegetation indices used to monitor the grain-filling process of winter wheat.

VI Formula References

NDVI (NIR-Red)/(NIR+Red) [33]
GNDVI (NIR-Green)/(NIR+Green) [43]

PSRI (Red-Blue)/NIR [44]
NDRE (NIR-Rededge)/(NIR+Rededge) [45]

NDVI-rededge (Rededge-Red)/(Rededge+Red) [46]
NLI (NIR2-Red)/(NIR2+Red) [47]

2.5. Data Analysis

The Pearson correlation (p < 0.001) was used to verify the correlation between the
VIs and winter wheat maturity during the 5 consecutive periods and to verify the overall
correlation for each field. The development speed of crop yield formation in different stages
is generally different, and usually, a growth curve model can be used to achieve better
fitting and prediction effects. In order to enhance the stability of the monitoring model,
the numerical samples of the wheat grain-filling process indicators in five periods were
randomly divided into model development and model validation according to a ratio of
3:1. On the basis of the correlation analysis, the logistic model was selected to adjust the
VI value to the grain-filling process according to the winter wheat growth development
(Equation (1)), and linear and polynomial relationships were also established for each
significantly correlated vegetation index for comparison.

W = W f /[1 + exp−k(g−M)] (1)

where W represents the response surface (wheat grain-filling process indicators), W f is the
maximum value (upper asymptote), k is the relative growth rate in M, g is the variable
(VIs), and M is the VIs at which the growth rate is maximized.

Using the samples of the model development and model validation, the model was
evaluated by plotting the 1:1 relationship graph between the predicted and measured
values of the indicators of the wheat grain-filling process. The root-mean-square error
(RMSE) and R2 were used to measure the accuracy and precision of each monitoring model.
Monitoring models with a low RMSE and high R2 indicate that a vegetation index has high
accuracy and precision in estimating the wheat grain-filling process. The R2 and RMSE
were calculated using Equations (2) and (3):

R2 = 1 − Σn
i=1(yi − ŷi)

2/Σn
i=1(yi − y)2 (2)

RMSE =
√

Σn
i=1

(
yj − ŷi

)2/n (3)
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where yi and ŷi represent measured values and predicted values of indicators of the wheat
grain-filling process, respectively, y is the average value of indicators of the wheat grain-
filling process, and n is the number of samples.

Vegetation indices with the highest performance (RMSE and R2) in the overall analysis
were selected to represent the variability in indicators of the wheat grain-filling process. The
best performing model equations were used to estimate indicators of the wheat grain-filling
process from VIs to create wheat maturity maps. For that, VI values for each pixel in the
downloaded imageries were inputted into the model equation and the wheat grain-filling
process was estimated for each pixel at each sample date.

3. Results
3.1. Quantitative Analysis between VIs and Grain Character of Winter Wheat

The quantitative analysis of samples and VIs of three varieties in different time periods
and overall time illustrated that there were significant or extremely significant relationships
between the indicators of the wheat grain-filling process and most VIs in some periods, and
the significant relationship was stronger for the overall time (Figure 4). In terms of wheat
dry thousand-grain weight and fresh thousand-grain weight, there were many negative
correlations between VIs and their indicators in each period. In the relationship between
VIs and dry thousand-grain weight, the correlation gradually strengthened from DAS A
to DAS D, and decreased in DAS E. The overall analysis of the data indicated that there
were VIs that had the most significant correlation with the dry thousand-grain weight in
three varieties (NDRE, r = −0.83; PSRI, r = 0.82). In the relationship between VIs and fresh
thousand-grain weight, the correlation showed, in general, a progressively stronger trend
from DAS A to DAS E. The overall analysis of the data indicated that there were VIs that
had the most significant correlation with the fresh thousand-grain weight in three varieties
(NDRE, r = −0.76). In terms of wheat grain water content, there were many positive
correlations between VIs and their indicators in each period, except the PSRI. In DAS E,
the correlation between VIs and water content reached the maximum (PSRI, r = −0.81). In
the overall analysis of the data, the correlation between the PSRI, NDRE and VIs reached
the largest absolute value of 0.76, followed by the NDVI and NLI, both of which were 0.75.
These results indicated that the VIs could reflect the grain-filling process of winter wheat
well in the time span.

3.2. Model Construction for Monitoring the Grain-Filling Process of Winter Wheat

Based on the principle of the strong correlation and the above analysis results, the VIs
with a better performance were selected to construct linear, polynomial and logistic growth
models. Additionally, for three different winter wheat varieties, the VI-based monitoring
modeling of the grain-filling process was carried out, i.e., the prediction models were built
using data from three varieties, individually and combined (overall). The VI independent
variables corresponding to different function models were screened out via the best R2

performance of the model development and the model validation (Table 3).
In the monitoring model of the overall data, the best performing VIs were mainly

the NDRE and PSRI. When modeling different varieties, it could be found that the best
VI for the three indicators of Xumai 44 and Xumai 43 was the NDRE, and the best VIs of
Xumai 33 were the NDRE, NLI, NDVI and PSRI. In addition, during the screening process
of functional models, it was found that the logistic growth model did not perform the best
on all varieties and all indicators. The model of the overall data showed that the prediction
accuracy of the logistic growth model was better than that of the linear and polynomial
models in both dry and fresh thousand-grain weights, and was slightly worse than the
polynomial model in terms of water content. In the separate modeling of the three varieties,
it could be found that in terms of the monitoring of dry and fresh thousand-grain weight,
all varieties performed the best on the logistic growth model. In the monitoring model of
water content, except for Xumai 33, which performed slightly better on the logistic growth
model, all other varieties performed the best on the polynomial model.
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Figure 4. Pearson correlation (r) between vegetation indices (VIs) and three indicators ((a–c) represent
dry thousand-grain weight, fresh thousand-grain weight and water content, respectively) of wheat
grain-filling process by days after sowing and overall. A–E represent five sampling periods.

Overall correlations were strong despite the decrease in accuracy of the monitoring
models (R2, RMSE) when compared to the individual variety models (Figure 5). The VIs
in the model showed a positive correlation trend with the indicators of the winter wheat
grain-filling process on the whole, and the fitting effect performed well, indicating the
potential to use a single model to estimate wheat maturity independently of the varieties.
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Figure 5. Overall models to monitor dry thousand-grain weight, fresh thousand-grain weight and
water content using PSRI (a,b) and NDRE (c). A–E represent five sampling periods.
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Table 3. Comparison of monitoring models for the grain-filling process of winter wheat under different indicators and functions.

Variety Indicators Model VI

Number of Samples R2 RMSE

Model
Development Model Validation Model

Development Model Validation Model Validation Model
Development Unit

Overall

Dry thousand-seed
weight

Linear NDRE
180 60

0.69 0.72 9.1717 9.0301

g

Polynomial PSRI 0.76 0.75 8.0978 8.5644
Logistic PSRI 0.82 0.83 7.0945 7.0808

Fresh thousand-seed
weight

Linear NDRE
180 60

0.57 0.64 16.6318 15.8382
Polynomial PSRI 0.69 0.70 14.5136 14.1478

Logistic PSRI 0.73 0.77 13.1672 12.7791

Water content
Linear

NDRE 180 60
0.58 0.56 5.25 5.37

%Polynomial 0.60 0.59 5.18 5.23
Logistic 0.59 0.58 5.21 5.31

Xumai 44

Dry thousand-seed
weight

Linear
NDRE 60 20

0.75 0.71 8.1252 8.5266

g

Polynomial 0.90 0.90 5.0345 4.9375
Logistic 0.91 0.92 4.8674 4.5659

Fresh thousand-seed
weight

Linear
NDRE 60 20

0.66 0.62 14.7975 14.9758
Polynomial 0.85 0.83 9.9418 9.9574

Logistic 0.86 0.86 9.6176 9.9292

Water content
Linear

NDRE 60 20
0.57 0.55 5.48 5.88

%Polynomial 0.65 0.71 4.90 3.91
Logistic 0.59 0.57 5.36 5.73

Xumai 43

Dry thousand-seed
weight

Linear
NDRE 60 20

0.66 0.69 9.5365 9.4525

g

Polynomial 0.86 0.86 6.0708 6.3522
Logistic 0.87 0.88 5.9170 5.7755

Fresh thousand-seed
weight

Linear
NDRE 60 20

0.56 0.65 16.9642 15.7713
Polynomial 0.77 0.76 12.8213 12.9819

Logistic 0.80 0.79 11.4768 12.3410

Water content
Linear

NDRE 60 20
0.50 0.38 6.05 6.39

%Polynomial 0.66 0.76 5.00 3.99
Logistic 0.52 0.41 5.93 6.25

Xumai 33

Dry thousand-seed
weight

Linear
NDRE 60 20

0.92 0.88 4.6962 6.3441

g

Polynomial 0.93 0.88 4.4737 6.2272
Logistic 0.93 0.90 4.5068 6.0222

Fresh thousand-seed
weight

Linear NDRE
60 20

0.81 0.76 11.7217 13.3073
Polynomial NDVI 0.86 0.80 9.4637 12.7224

Logistic PSRI 0.85 0.83 9.8304 11.1284

Water content
Linear NLI

60 20
0.79 0.77 4.28 4.60

%Polynomial NDVI 0.80 0.72 4.15 5.81
Logistic NLI 0.80 0.73 4.12 5.67
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In the single-cultivar model, the VIs of Xumai 44 and Xumai 43 remained relatively
consistent in terms of dry and fresh thousand-grain weight and water content, and were
significantly different from Xumai 33 (Figure 6). Under the same thousand-grain weight
monitoring and the same VIs, although the three varieties generally showed the same
negative correlation trend, the relative growth rate of Xumai 33 was significantly different
from that of Xumai 44 and Xumai 43. Moreover, in the monitoring model construction
of fresh thousand-grain weight, the best VIs of Xumai 33 were different from that of
Xumai 44 and Xumai 43, which was the PSRI. The construction of monitoring models with
different VIs also created growth rates in different directions. The monitoring models of
the three varieties all maintained a roughly positive correlation in terms of water content.
Nevertheless, the model of Xumai 33 exhibited general convex function behavior, and
the models of Xumai 44 and Xumai 43 exhibited strong concave function behavior. The
results showed that the fitting effect of the single-cultivar model was better, but the model
differences were large.

1 
 

 

Figure 6. Monitoring models between three indicators of wheat grain-filling process and VIs during
the growing season’s last five periods in Xumai 44 (a), Xumai 43 (b) and Xumai 33 (c).

All samples were randomly divided into model development and model validation
according to the ratio of 3:1. The number of validation samples for the overall model
and the single-cultivar model was 60 and 20, respectively (Table 3). The 1:1 relationship
diagrams between predicted values of established models and measured values were drawn
to evaluate the accuracy of the monitoring models of grain-filling indicators (Figure 7).
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Regardless of the overall model or the single-cultivar model, the monitoring effects of the
three indicators of the wheat grain-filling process showed that the dry thousand-grain
weight was the best, the second best was the fresh thousand-grain weight and the last was
the water content.
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Figure 7. Reliability testing of the remote sensing monitoring model of three indicators of winter
wheat in the grain-filling stage. (a) is the overall model, and (b–d) are the single-cultivar models of
Xumai 44, Xumai 43 and Xumai 33, respectively.

In the continuous monitoring of the dry thousand-grain weight, the R2 of all models
on both the model development and the model validation reached more than 0.8. In the
continuous monitoring of the fresh thousand-grain weight, only the R2 performance of the
single-cultivar model on the model development and model validation remained at around
0.8, and the effect of the overall model also remained at a good result with an R2 greater
than 0.7. The monitoring effect of water content basically remained at a good level of R2

between 0.6 and 0.8. In conclusion, in terms of model validation of the three indicators,
the effect of the overall model was slightly worse than that of the single-cultivar model,
but the result of the overall model could basically satisfy the accurate description of the
grain-filling process of winter wheat.

3.3. Thematic Maps of Winter Wheat Grain-Filling Process

Considering that the models of the three varieties are quite different, and the per-
formance of the overall model can also satisfy the accurate simulation of the grain-filling
process of the three varieties of winter wheat, this study used the overall model to visualize
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the grain-filling process of winter wheat. The VIs have the potential to predict winter
wheat maturity variability in commercial fields due to the strong correlation, high R2,
and low RMSE values observed. Figure 8 shows the different time inversions of dry and
fresh thousand-grain weight inputted into the logistic growth model with the PSRI as the
independent variable, and shows water content inputted into the polynomial model with
the NDRE as the independent variable. 

2 

 

Figure 8. Spatial and temporal variability maps for three indicators of wheat grain-filling process
using VIs for three fields.

Through time-series satellite imageries, there is a very intuitive visualization effect on
the uniformity of the maturity of different wheat cultivars in the field environment. During
the period from DAS A to DAS B, the wheat grain-filling process changed steadily; starting
from DAS C, the grain-filling process accelerated and, finally, stabilized. Although the
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sowing date of Xumai 33 is earlier than that of Xumai 44 and Xumai 43, it can be intuitively
found from the remote sensing thematic map that the grain-filling process of Xumai 33
is earlier than that of Xumai 44 and Xumai 43, and its grain-filling rate is also faster than
that of the others. The inversion of the grain-filling process of winter wheat in the time
span based on VIs effectively achieves a breakthrough in the acquisition of point-to-plane
information between and within cultivars.

4. Discussion

At present, the ability to rapidly monitor crop growth and yield over large scales
based on remote sensing data is an area of active research. There are wide research studies
and applications for field crop monitoring by remote sensing technology being conducted,
such as on wheat, rice, soybean, maize and potato [18,43,48,49]. However, there are few
reports describing the wheat grain-filling progress using time-series remote sensing data.
The results of this study demonstrate the great potential of using time-series multispectral
satellite imageries to accurately monitor the grain-filling process of multiple wheat cultivars.

Remote sensing has been widely exploited to predict yield and explain senescence in
many crops, with senescence being the key point for identifying crop maturity. The changes
in VIs also tend to be obvious when senescence increases [26,50]. In this study, the time-
series Planet imageries covering the whole grain-filling process of winter wheat were used
to explore its influence on the simulation of the grain-filling process by constructing VIs.
As the best variable, the PSRI can accurately simulate the changing trend of dry and fresh
thousand-grain weight in the overall model, and the NDRE has the best performance in
multiple single-cultivar models (Table 3). The PSRI can be used to maximize the sensitivity
of the ratio of carotenoids (such as α-carotene and β-carotene) to chlorophyll, and its
increase predicts increased canopy stress, the onset of vegetation senescence and the
maturation of plant grains [51]. However, this change in VI values may occur for a variety
of reasons, affecting the final winter wheat yield. The uncertain grain-filling habit of wheat
makes the determination of plant senescence points challenging. Despite that, the positive
correlation between maturity and the PSRI found in this research showed that the VI values
increased when winter wheat maturity increased (Figure 5). This presents a potential for the
use of remote sensing to assist in the decisions made regarding harvest winter wheat fields.

It is obvious that the NDRE based on the red-edge band as an independent variable
has a significant role in the wheat grain-filling process model. Similar to the NDVI, the
NDRE is a vegetation index constructed based on the normalized ratio of NIR and red-edge
bands to measure and analyze vegetation health in multispectral imageries. The red-edge
band is the region between 680 and 750 nm and is considered the most significant sign
of green vegetation. Because it has the point where the reflectance rises the fastest, this
point is also known as the maximum value of the first derivative of the plant spectrum
in this wavelength range [52]. As a transition band between the red and NIR bands, the
red-edge band marks the boundary between chlorophyll absorption in the red region
and scattering in the NIR region due to leaf internal structures [53]. Compared with the
“saturation” phenomenon that the NDVI is prone to produce at the later stage of growth,
the NDRE can reflect more sensitively the chlorophyll content of vegetation, such as after
crop canopy closure [54,55]. In the early stage of crop grain formation, the demand for
sugar molecules produced by photosynthesis is usually high, and the demand for sugar
molecules is reduced near the harvest period. To a certain extent, chlorophyll reflects
the ability of crop photosynthesis activities; therefore, using NDRE information can help
us realize the acquisition of crop grain growth to optimize the harvest time based on
transformation in photosynthesis.

Among the three indicators of the grain-filling process of winter wheat in this study,
whether it is the overall model or the single-cultivar model, the simulation effect of the dry
thousand-grain weight is the best, followed by the fresh thousand-grain weight, and the
simulation effect of water content is the worst. With the continuous grain-filling process of
winter wheat, the dry matter content of grains increased, whereas the relative water content
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decreased. Through the comprehensive comparison of the monitoring models of the three
indicators, it was found that the dry thousand-weight is the most ideal indicator to reflect
the grain-filling process of winter wheat, with the reason being that the crop grain-filling
process is the accumulation process of dry matter. However, the measurement of the fresh
thousand-grain weight is greatly affected by the environment, such as temperature and
humidity. The reason why the simulation effect of the fresh thousand-grain weight is worse
than that of the dry thousand-grain weight in this study may be due to weather factors
(precipitation, temperature and humidity) in different sampling periods, differences in the
time period of sampling in a day, the duration of threshing at the laboratory and so on,
which can lead to an error in the acquisition process of the measured data. Therefore, under
the influence of these factors, the simulation effect of grain water content was worse than
that of the dry and fresh thousand-grain weight.

The use of non-destructive methods, such as remote sensing, to predict winter wheat
maturity could increase the management accuracy at harvest time, especially in countries
or regions with more than one crop per year. For instance, winter wheat is used in a crop
rotation with rice in most parts of Jiangsu Province, China, and this crop rotation system
causes a tight time between the harvest of winter wheat and the planting of rice. The
determination of the harvest point of winter wheat is very important in agriculture pro-
duction, but generally, early harvest means lower yields, whereas delaying the harvest can
imply more loss and damage, such as through the impact of the rainy season and lodging.
Thus, the grower must identify the moment close to the ideal maturity of grains to start
harvesting. It is known that, naturally, there is soil variability, among other environmental
components, which leads to the uneven development of plants [25,56]. Hence, plants in
more favorable locations will potentially be able to grow faster and mature earlier (Figure 8).
Because the winter wheat growing around the field has the advantage of a marginal benefit,
the overall growth and maturity are better than those in other locations, and the growers
have limitations in judging the overall maturity of winter wheat in the field without an
in-depth field investigation.

Overall, the results suggested that the application of time-series high-spatial/temporal-
resolution satellite imagery can directly and practically help growers to identify which
field is more developed and should be harvested first. The results provide directions and
applications to improve winter wheat cultivation and production through better manage-
ment and conduction of the crop. From a practical point of view, farmers, researchers and
government agencies could use high-resolution satellite imageries to monitor crop growth
and generate yield formation maps. This may be an interesting strategy to support decision-
making in harvest and postharvest operations, such as deciding the optimal moment to
start harvesting, when areas of the field should be harvested first, and product logistics
and storage. In addition, it is possible to obtain the surface information of the uniformity of
the maturity stage between varieties and within varieties based on an accurate description
of the grain-filling process of winter wheat by high-resolution satellite imageries. This
could be used to speed up plant breeding programs focused on increasing winter wheat
population uniformity.

The dynamic monitoring model of the wheat grain-filling process for the mature
period was constructed in this study and performed well in predicting the grain indicators.
Some potential applications and extensions can be considered based on this conclusion,
although more development in the following areas is still needed. Firstly, although the
planting structure is relatively complex in Xuhuai District, Jiangsu, i.e., the preceding
crops of winter wheat are diversified, the possibility of applying DAS-based dynamic
monitoring models and results to other scenarios under specific regional climate conditions
(Figure 2) is promising. Further research will focus on exploring the performance of models
incorporating short-term and long-term climate variables in different soil environments
and varieties.

Secondly, although there is great potential for PSRI and NDRE indices to predict winter
wheat maturity, the use of remote sensing in association with other tools is suggested,
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such as the cumulative growing degree-day (GDD). Several studies have shown that
GDD models could be used successfully to monitor wheat growth and productivity under
climate change [57,58]. For conditions in Jiangsu Province, China, all fields reached maturity
around 2000 GDDs based on the impact of crop rotation. It implies that more research is
needed to establish when the winter wheat cultivars reach maturity based on the GDD in
Jiangsu Province, especially in a winter wheat breeding program, where breeders have been
working to develop new short-cycle cultivars to be used with rice in crop rotation systems.

Thirdly, it is of great scientific significance that this approach, although developed in
Xuhuai District, Jiangsu, can potentially be used in different regions, not only for winter
wheat but also for other staple crops such as rice, soybeans and maize. The relatively simple
nature of the model input data (optical remote sensing and crop growth stage) should
make it convenient and easy to develop the application devices to generate these results.
Imageries from satellite platforms are valid for the modeling, while combining smartphone
applications and real-time imagery data acquisition could accelerate the application of such
tools in practice.

5. Conclusions

This study clearly demonstrates the feasibility of using VI-based remote sensing
information derived from Planet imageries to assess the grain-filling process of winter
wheat. Three indicators of the grain-filling stage, i.e., dry thousand-grain weight, fresh
thousand-grain weight and water content, had significant correlations with most VIs. The
dry thousand-grain weight obtained the best inversion results in the overall model, and
its R2 exceeded 0.8. Wheat growers may be able to utilize satellite remote sensing to
manage their areas remotely and invert the fields that entered the grain-filling period
first, making the most accurate management decisions using spatial variability maps.
However, future studies are needed to explore the efficiency of remote sensing in monitoring
winter wheat maturity across more different cultivars and geographic locations, especially
from an economic return perspective. In addition, the use of a thermal sum measure is
recommended, such as growing degree days (GDDs), in combination with remote sensing,
thus strengthening the potential to evaluate the monitoring of the grain-filling process
considering the local environmental conditions.
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