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Abstract: Insect-vectored plant viruses pose a serious threat to sustainable production of economi-
cally important crops worldwide. This demands a continuous search for environmentally-friendly,
sustainable and efficient approaches based on biological agents to address the mounting challenges of
viral disease management. To date, the efficacy of actinomycetes bacteria against DNA plant viruses
remains unknown. Here, through comparative analyses, we demonstrate that the RFS-23 strain of
Streptomyces cellulase possesses protective activity as it positively regulated the plant growth and
development. and diminished the severity, of disease symptoms, together with reduced accumulation
of Tomato yellow leaf curl virus (TYLCV) DNA. The RFS-23 strain maintained relative chlorophyll
contents by promoting the expression of genes (CLH1, HEMA1 and PORA) associated with chloro-
phyll biogenesis. As compared to another strain, CTF-20, the RSF-23 induced a significantly higher
expression of plant defense-related genes (NbCIS and NbNCED) associated with biogenesis and
accumulation of salicylic acid and abscisic acid. Additionally, the activity of antioxidant enzymes
(SOD, CAT, POD and MDA) was significantly enhanced by RSF-23 treatment, despite the presence of
viral infection. These findings suggest that RSF-23 is a novel biocontrol agent with protective activity,
and it could be a potential candidate for the management of plant viral infections.

Keywords: Begomovirus; biocontrol agent; disease resistance; molecular plant-virus interaction;
phytohormones; chlorophyll contents; disease management

1. Introduction

Plant diseases pose a continuous threat to sustainable crop production and raise
concerns regarding global food security. Among others, phytoviruses represent the most
important group of plant pathogens, causing devastating crop losses in different regions
of the world [1–3]. The Tomato yellow leaf curl virus (TYLCV), from the Begomovirus genus
of the Geminiviridae family, is a plant virus transmitted by a whitefly (Bemisia tabaci), that
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is mainly known to infect tomatoes (Solanum lycopersicum) [4,5]. The virions of TYLCV
consist of a single-stranded DNA (ssDNA) genome of ~2.8 kb in size. The viral nucleic acid
is encapsulated in a twinned, icosahedral shaped structure [6]. Upon TYLCV infection, the
host plants display typical symptoms of viral infection, including yellowing, leaf curling
and stunting, which leads to substantial crop losses in tomatoes [7]. In addition to tomatoes,
several species of cultivated plants, including cucurbits (Cucumis species), pepper (Capsicum
species), eustoma (Eustoma grandiflora) and common bean (Phaseolus vulgaris), have been
documented to be infected by TYLCV [6,8–11]. The first record of TYLCV was reported
from the Middle East in 1931 and, since then, the virus has continuously spread across
tropical and sub-tropical regions of the world [4].

The application of biocontrol agents/microbes is considered a sustainable technique
to control plant pathogens. These microorganisms can confer long-term disease protec-
tion to plants in addition to their known roles in plant growth, development and overall
health [12,13]. The control of plant viral diseases by using biocontrol agents has gained
much attention as it is considered to be environmentally-friendly and safe disease man-
agement approach [14]. The majority of these biocontrol microbes aew bacterial, such as
Bacillus and Pseudomonas spp., and fungi, such as Trichoderma spp. [15–17]. In addition to
these, Streptomyces spp. represents the largest group (containing 780 species, 30 sub-species)
associated with actinobacteria [18]. The actinomycetes are known to produce a wide variety
of secondary metabolites, including extracellular enzymes and antibiotic compounds [19].
These secondary metabolites are capable of inhibiting the growth of several bacterial and
fungal plant pathogens [20]. Importantly, Streptomyces spp. play vital roles in pathogen
inhibition during plant–pathogen interactions, as well as during biocontrol of bacterial
and fungal plant diseases [21]. Nevertheless, the implications of Streptomyces spp. for the
bio-management of plant viral pathogens are still limited and the potential underlying
mechanisms mostly remain in the shadows.

Several bioactive substances derived from different strains of Streptomyces spp. have
been effectively used against RNA plant virus (for example Tobacco mosaic virus, TMV)
to reduce the severity of local lesions on the leaves of the host plant, Datura metel [22].
Another bioactive compound known as
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-poly L-lysine, derived from S. ahygroscopicus
species, was shown to display protective, as well as curative, activities against the same
(TMV) pathogen [23]. In a different study, it was demonstrated that a foliar spray with
S. sparsogenes and S. albovinaceus species reduced the severity of mosaic symptoms induced
by Zucchini yellow mosaic virus (ZYMV) by 95–100% [24].

Viral infection can induce resistance among host plants via two mechanisms; induced
systemic resistance (ISR) or systemic acquired resistance (SAR). Researchers have docu-
mented that in response to viral infection, induced plant resistance might be associated with
both pathways [25]. Ethylene and jasmonic acid (JA) are known to regulate ISR which is in-
duced by microbes. The ISR promotes plant growth and activates rapid defense responses,
coupled with higher capabilities of the plants to defend against/resist the diseases [26–28].

In the present study, we evaluated and compared the protective activities of two
strains (RSF-23 and CTF-20) of Streptomyces spp. by using N. benthamiana and the TYLCV
host–virus system. We investigated the effects of 24 h early spray, using RSF-23 and CTF-20
pellets, prior to TYLCV inoculation and analyzed the leaf area, fresh weight, and relative
chlorophyll content data. Additionally, we also measured the transcriptional changes
associated with genes responsible for biosynthesis and accumulation of chlorophyll and
those related to the mediated defense signaling of salicylic acid (SA) and abscisic acid
(ABA). To gain a better understanding of the actinomycetes-induced defenses, we also
measured the relative concentrations of key enzymes involved in the antioxidant pathways
post-viral infection.
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2. Materials and Methods
2.1. Maintenance of Plants, Viruses and Bacterial Isolates

The wild-type Nicotiana benthamiana seeds were grown in a substrate mixture con-
taining black soil, perlite, vermiculite and artificial soil (2:1:2:2 ratio) for one week at a
temperature of 25 ± 1 ◦C. Subsequently, seedlings with uniform size were transplanted
into plastic pots (8 cm diameter, 10 cm height) using the aforementioned growth substrate.
The growth and development of N. benthamiana plants was maintained in a controlled
growth chamber at 25–27 ◦C temperature and 60–64% relative humidity. The Agrobacterium
strain EHA105, containing full-length TYLCV, was inoculated to N. benthamiana plants
at the 5–7 fully-expanded leaf stage, following a previously described protocol [29]. The
S. chromofuscus strain RFS-23 (GenBank Accession: EU301837) and CTF-20 strain (GenBank
Accession: EU294136) of S. rochei were maintained by streaking on the starch nitrate agar
(SNA) medium supplemented with ingredients (g/L): CaCO3 (3), starch (20), KNO3 (1),
NaCL (2), MgSO4.7H2O (0.5) and FeSO4.7H2O (0.01). The colonies were sub-cultured on an
ISP-2 medium supplemented with malt extract (10 g/L, yeast extract (4 g/L) and dextrose
(4 g/L; pH = 7) [30]. The bacterial culture was incubated at 30 ◦C and 200 rpm for one
week until it reached a concentration of 2 × 107 cfu/mL. Then the bacteria were pelleted
by centrifugation at 5590× g for 20 min followed by collection, washing and centrifugation
of the cell pellet. Finally, the cell pellets of both strains were suspended in double distilled
water and applied as foliar spray.

2.2. Bacterial Treatment of N. benthamiana Plants and Viral Inoculation

The cell pellets of RFS-23 and CTF-20 strains (2 × 107 cfu/mL) were dissolved in
double distilled water and foliar sprayed on to the N. benthamiana leaves at 24 h before
virus inoculation. Following bacterial suspension spray, the TYLCV was introduced into
plants by agrobacterium-mediated inoculation, following the aforementioned described
method. For this experiment, a total of four treatments were included, with each containing
3 replications. Each replication contained 12 N. benthamiana plants. The first treatment
consisted of control (untreated) plants that we sprayed with distilled water only. The second
treatment was inoculated with virus (TYLCV) only. The third treatment was exposed to the
TYLCV and RFS-23 strain, while the fourth treatment included a combination of TYLCV and
CTF-20 strain. All plants were maintained in an insect-free environment under controlled
growth conditions, as mentioned earlier.

2.3. Monitoring of Disease Symptoms and Samples Collection

The plants among all treatments were regularly monitored, irrigated and fertilized to
ensure proper growth and development. The confirmation of viral infection was done by
appearance of typical viral symptoms (yellowing, wrinkling, leaf curling, mosaic, stunting)
at ~5 days post-inoculation (dpi). The data (viral symptoms, infection percentage and
relative chlorophyll contents) were recorded on a daily basis and a few measurements
were taken at 9, 18 and 28 dpi. For this purpose, either intact leaves or fresh leaf tissues
were used and, additionally, the tissue samples were snap-frozen in liquid nitrogen and
preserved at −80 ◦C for subsequent analyses.

2.4. Quantification of Relative Chlorophyll Contents

The in-situ measurement of relative chlorophyll contents (Chla + Chlb) was performed
by using a soil plant analysis development (SPAD) and a 502-Plus chlorophyll meter
(Konica Minolta, Inc., Osaka, Japan). This hand-held device determines the leaf greenness
level together with the interaction of thylakoid chlorophyll and the incident light 7. For
each leaf, three points were selected (about 15–35 mm distance from the midrib) to take
the SPAD readings at a transmittance ratio of 650/940 nm wavelength. For each treatment,
24 leaves were used to record SPAD values to estimate the net chlorophyll contents in the
foliar tissues.
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2.5. Nucleic acid Extractions cDNA Synthesis and RT-qPCR

The extraction of total RNA was performed for control, TYLCV-infected, TYLCV + RSF-23,
and TYLCV + CTF-20-treated N. benthamiana leaves at 9, 18 and 28 dpi using TRIzol Reagent
(Life Technologies, Inc., Gaithersburg, MD, USA), according to the manufacturer’s protocol.
The quantitative and qualitative assessment of RNA was done by measurement of the
A260/A280 ratio using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific,
Carlsbad, CA, USA). Additionally, the RNA integrity was also analyzed by visualizing
it in 0.8% agarose gel electrophoresis. The synthesis of cDNA from extracted total RNA
was done by using the PrimeScript RT Master Mix reagent kit (Takara Bio. Tech. Co.,
Ltd., Beijing, China), according to the given instructions. The cDNA was either used
immediately or preserved at −80 ◦C for downstream experiments. For the RT-qPCR
assay, a real-time PCR system (LightCycler 96, Roche, Basel, Switzerland) was used. The
reaction mixture was prepared by adding SYBR Premix Ex Taq II (1×), forward and reverse
primers (0.4 µM each), cDNA (2 µL) and ddH2O (8.5 µL). The glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) gene of N. benthamiana was used as a reference/internal control
to calculate the relative mRNA expression of the target genes. In RT-qPCR experiments,
three biological and nine technical repeats were used, followed by statistical analysis of
data. The PrimerQuest tool (Integrated DNA Technologies, Coralville, IW, USA) was used
to design the gene-specific primer pairs for RT-qPCR analysis.

Transcriptional changes in chlorophyll biosynthesis-related genes were measured by
analyzing the transcriptional profiles of CLH1, HEMA1 and PORA, while the expression
of plant defense-related genes was measured by targeting NbCIS and NbNCED, that are
known for biosynthesis of salicylic acid (SA) and abscisic acid (ABA), respectively. The
information of all primers used in this study is provided in Table 1.

Table 1. Description of the nucleotide sequences, target genes and experimental purposes associated
with primers used in this study.

Primer Name Direction Nucleotide Sequence (5′-3′) Target Gene Amplicon Size Purpose Reference

TYLCV-CP-F Forward ATCATGGACGTACAGGCC
CP 200 bp qPCR this study

TYLCV-CP-R Reverse ACCTCTTACCAACTCTGTGA qPCR
qGPDH-F Forward TCGACAGAGAAGGTGCCGGA

NbGAPDH 190 bp qPCR this study
qGPDH-R Reverse TCAAGAACCTTGACAAAAGG qPCR
qSA-F Forward GGCTCTGCTGTCTTCTTTACT

NbCIS 200 bp qPCR
[31]qSA-R Reverse AGCTCATCGAACTCAACCTG qPCR

qABA-F Forward CGTGGACTCTTTGGACTTGTT
NbNCED 200 bp qPCR

[31]qABA-R Reverse GGGTGAGCTATCATTGTGGATT qPCR
qChbio1-F Forward GTTCCAATTGGGGTTGGAA

CHL1 195 bp qPCR this study
qChbio1-R Reverse GAGATGTTGATTCTTATCT qPCR
qChbio2-F Forward GGTGCGGTTTCGGTTAGCTCA

HEMA1 206 bp qPCR this study
qChbio2-R Reverse GGCATCTCCTCACGGATAGC qPCR
qChbio3-F Forward GACTTGAAGAACTCCGAT

PORA 200 bp qPCR this study
qChbio3-R Reverse TCTTTATACGCCTTTGCGCCA qPCR

2.6. Relative Accumulation of TYLCV Coat Protein

For estimation of the relative viral DNA accumulation in plants, the total DNA was
extracted from apical leaf tissues using a cetyltrimethyl ammonium bromide (CTAB)-based
protocol. The qualitative and quantitative assessment of the extracted DNA was performed
by gel electrophoresis and by using a NanoDrop 2000 Spectrophotometer, as described
above. An approximately 50 ng/sample DNA was used to perform qPCR. The relative
quantification of the viral DNA was done by comparing the coat protein (CP) expression
levels to that of GAPDH. The information of all primers used in this experiment is provided
in Table 2.
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Table 2. Comparative analysis of statistical significance between different treatments at 9, 18 and
28 days post-viral infection.

Analyzed Combination
of Treatments

Time
Post-Inoculation

(days)

Morphological Parameter
Leaf Area Fresh Weight

Significant? p-Value * Significant? p-Value *

CK vs. TYLCV
9 Yes 0.009094 Yes 0.041102

18 Yes 0.000150 Yes 0.003412
28 Yes 0.000141 Yes 0.003676

CK vs. RSF-23 + TYLCV
9 No 0.297866 No 0.142864

18 No 0.039482 No 0.709585
28 Yes 0.011114 yes 0.043202

CK vs. CTF-20 + TYLCV
9 Yes 0.028906 No 0.241886

18 Yes 0.001175 No 0.025486
28 Yes 0.001723 Yes 0.006770

TYLCV vs. RSF-23 + TYLCV
9 Yes 0.020122 No 0.308886

18 Yes 0.002545 Yes 0.002980
28 Yes 0.043614 Yes 0.007267

TYLCV vs. CTF-20 + TYLCV
9 No 0.309201 No 0.110748

18 No 0.180613 No 0.083647
28 No 0.121887 No 0.278941

* Statistical significance for pairwise comparisons was determined using the Holm-Sidak method, with
alpha = 0.05.

2.7. Biochemical Analysis of Antioxidant Enzymes

The biochemical analysis of key antioxidant enzymes was performed using fresh
N. benthamiana leaf tissues collected from all treatments. To analyze the concentrations
of key antioxidant enzymes, including superoxide dismutase (SOD), malondialdehyde
(MDA), catalase (CAT) and peroxidase (POD), leaf samples from all treatments were col-
lected at 28 dpi and ground into fine powder using liquid nitrogen. The commercially
purchased kits of SOD (SOD-1-W), POD(BC0090), MDA (A003-1) and CAT (CAT-1-W)
(Comin Biotechnology Co., Ltd. Jiangsu, China) were then used to quantify the concentra-
tions of these key enzymes. Approximately 0.1 g of tissue sample was used for this purpose
and three biological replicates were considered for each measurement. The activities of
SOD, MDA, POD and CAT were checked by measuring the sample absorbance at 405,
532, 40 and 550 nm, respectively, using a spectrophotometer (UV-1780, Kyoto, Japan). The
relative concentrations of each target enzyme were expressed as unit (U)/mg protein.

2.8. Statistical Analysis

The statistical significance associated with leaf area and fresh weight among pairwise
comparisons was determined using the Holm-Sidak method, with alpha = 0.05. The qPCR
data included three biological and nine technical repeats and was subjected to one-way
analysis of variance (ANOVA) using Tukey’s hones significant differences (HSD) method
at the probabilities of * p ≤ 0.05 and ** p ≤ 0.01. The relative expression levels of the
target genes were normalized against GAPDH and the values higher or lower than 1 were
regarded as higher or lower expressions, respectively. The vertical bar at each column
represented standard deviation (±SD).

3. Results
3.1. Comparative Effect of Streptomyces Strains on Development of Viral Disease

The pattern of TYLCV symptom development was continuously observed up to 28 dpi
to compare the protective role of RSF-23 and CTF-20. The results showed that control plants
(untreated) continued normal growth and development without exhibiting any disease
symptoms (Figure 1A) while TYLCV-inoculated N. benthamiana plants displayed a range of
viral symptoms, including leaf yellowing, crinkling, downward curling, mosaic and stunt-
ing (Figure 1B). Interestingly, the TYLCV-infected plants treated with RSF-23 developed
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mild disease symptoms (Figure 1C). Likewise, effects of CTF-20 were observed among
TYLCV-infected plants at 28 dpi (Figure 1D), though the intensity of disease symptoms
was higher than that of RSF-23-treated group. The time-based observation of disease
development indicated that RSF-23 had a clear effect on the appearance and progression
of viral symptoms, as compared to CTF-20-treated or TYLCV-infected plants (Figure 1E).
Overall, the infection percentage among RSF-23-treated plants was lower than that of the
plants treated with CTF-20, indicating the ability of the RSF-23 strain to lessen the intensity
and development of viral symptoms (Figure 1F).

Agronomy 2022, 12, x FOR PEER REVIEW 6 of 17 

 

 

To further expand the understanding of the plant’s morphological responses towards 
bacterial treatment, we measured and compared the leaf area and fresh weight among all 
treatments. We observed that at 9, 18 and 28 dpi, the leaf area of TYLCV-infected plants 
was significantly lower than untreated (control) plants (Figure 2A and Table 2). The 
treatment with RSF-23 strain appeared to improve the leaf area among TYLCV-infected 
plants and the impact was significant at 9 dpi (p = 0.020122), 18 dpi (p = 0.002545) and 28 
dpi (p = 0.043614), as compared to TYLCV-infected plants without bacterial treatment 
(Figure 2A and Table 2). On the contrary, although CTF-20 treatment apparently 
maintained the leaf area among virus-infected plants, the difference was slightly higher 
as compared to the TYLCV-infected plants (Figure 2A and Table 2).  

 
Figure 1. Comparison of viral disease symptoms in response to different treatments. (A) untreated 
(control) Nicotiana benthamiana; (B) TYLCV-infected plants; (C) TYLCV-infected and RSF-23-treated 
plants; (D) TYLCV-infected and CTF-20-treated plants at 28 dpi; (E) number of TYLCV-infected N. 
benthamiana with disease symptoms and (F) percentage of TYLCV-infected plants from 0–28 dpi. 

Furthermore, the RSF-23 treatment was observed to maintain the fresh weight among 
TYLCV-infected plants, as compared to those infected with TYLCV only (Figure 2B and 
Table 2). Notably, this observed difference was slightly higher at 9 dpi. However, the fresh 
weight of RSF-23-treated plants was significantly higher at 18 dpi (p = 0.002980) and 28 
dpi (p = 0.007267), as compared to the virus-infected plants without receiving bacterial 
treatment (Figure 2B and Table 2). On the other hand, despite the observed higher fresh 
weight among CTF-20-treated plants, the values were statistically not significant, as 
compared to those of TYLCV-treated plants (Table 2). Overall, these results indicated that, 
as compared to CTF-20, pre-treatment of plants with the RSF-23 strain maintained normal 
morphological development among virus-infected plants by improving leaf area and 
fresh weight. 

Figure 1. Comparison of viral disease symptoms in response to different treatments. (A) untreated
(control) Nicotiana benthamiana; (B) TYLCV-infected plants; (C) TYLCV-infected and RSF-23-treated
plants; (D) TYLCV-infected and CTF-20-treated plants at 28 dpi; (E) number of TYLCV-infected
N. benthamiana with disease symptoms and (F) percentage of TYLCV-infected plants from 0–28 dpi.

3.2. Estimation of Plant Growth Parameters

To further expand the understanding of the plant’s morphological responses towards
bacterial treatment, we measured and compared the leaf area and fresh weight among all
treatments. We observed that at 9, 18 and 28 dpi, the leaf area of TYLCV-infected plants was
significantly lower than untreated (control) plants (Figure 2A and Table 2). The treatment
with RSF-23 strain appeared to improve the leaf area among TYLCV-infected plants and the
impact was significant at 9 dpi (p = 0.020122), 18 dpi (p = 0.002545) and 28 dpi (p = 0.043614),
as compared to TYLCV-infected plants without bacterial treatment (Figure 2A and Table 2).
On the contrary, although CTF-20 treatment apparently maintained the leaf area among
virus-infected plants, the difference was slightly higher as compared to the TYLCV-infected
plants (Figure 2A and Table 2).

Furthermore, the RSF-23 treatment was observed to maintain the fresh weight among
TYLCV-infected plants, as compared to those infected with TYLCV only (Figure 2B and
Table 2). Notably, this observed difference was slightly higher at 9 dpi. However, the
fresh weight of RSF-23-treated plants was significantly higher at 18 dpi (p = 0.002980)
and 28 dpi (p = 0.007267), as compared to the virus-infected plants without receiving
bacterial treatment (Figure 2B and Table 2). On the other hand, despite the observed higher
fresh weight among CTF-20-treated plants, the values were statistically not significant,
as compared to those of TYLCV-treated plants (Table 2). Overall, these results indicated
that, as compared to CTF-20, pre-treatment of plants with the RSF-23 strain maintained
normal morphological development among virus-infected plants by improving leaf area
and fresh weight.
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Figure 2. Measurement of N. benthamiana morphological parameters in response to different treat-
ments. (A) leaf area and (B) fresh weight of N. benthamiana plants among control (CK), TYLCV-
infected, RSF-23 + TYLCV and CTF-20 + TYLCV-treatments at 9, 18 and 28 dpi.

3.3. The Relative Accumulation of TYLCV Coat Protein

In addition to the development of viral symptoms, changes in the leaf area and fresh
weight, the success of viral infection was also analyzed by quantifying the accumulation of
viral nucleic acid. The results indicated that among virus-infected plants that did not receive
any bacterial treatment, the DNA of TYLCV tended to gradually increase at 9, 18 and 28 dpi,
denoting the establishment and progress of viral infection (Figure 3). However, the quantity
of TYLCV-DNA was significantly lower among plants treated with the RSF-23 strain prior
to virus inoculation (Figure 3). Furthermore, a similar trend was observed among CTF-20-
treated plants at 9, 18 and 28 dpi, where the accumulation of viral DNA gradually increased
but significantly remained lower than that of TYLCV-infected plants (Figure 3). These
results indicated that early treatment of plants with RSF-23 could significantly reduce the
accumulation of viral DNA with an efficacy higher than that of the CTF-20 strain.
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3.4. Determination of Relative Chlorophyll Contents

The symptoms of TYLCV infection include yellowing accompanied by lower levels of
chlorophyll contents. To evaluate the effect of RSF-23 and CTF-20 treatments on viral infec-
tion, we measured and compared the relative chlorophyll contents among all treatments
in a time-dependent manner. Our findings indicated that until 6 dpi, the total chlorophyll
contents did not show a visible difference among untreated (control), TYLCV-infected or
bacteria (RSF-23 and CTF-20)-treated plants (Figure 4). However, the impact of TYLCV
infection on the total chlorophyll contents became obvious at 8 dpi where untreated and
virus-infected groups of plants were clearly separated. Notably, the effect of bacterial treat-
ment was higher at 10 dpi, which remained distinct until 28 dpi (Figure 4). Remarkably, the
plants treated with RSF-23 clearly maintained chlorophyll contents, despite viral infection.
A similar accumulation pattern of chlorophyll contents was observed in response to CTF-20
treatment, as the relative chlorophyll contents were higher than that of TYLCV-infected
plants; however, the trend line remained lower than that of RSF-23 (Figure 4). These results
indicated that post-viral infection, the RSF-23 treatment exhibited better ability to maintain
the relative chlorophyll contents among virus-infected plants.
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3.5. Comparative Effect of Bacterial (RSF-23 and CTF-20) Treatment on the Chlorophyl
Biosynthesis Pathway

To further expand the mechanistic understanding behind the effect of bacterial strains
treatment on chlorophyll biogenesis, we estimated the relative transcription levels of
three structural genes (chlorophyllase 1, CLH1; glutamyl tRNA reductase, HEMA1 and
protochlorophyllide oxidoreductase A, PORA) associated with the chlorophyll biogenesis
pathway. The results revealed that the expression of CLH1, HEMA1 and PORA was
significantly reduced among TYLCV-infected plants at 28 dpi, as compared to that of
untreated (control) plants (Figure 5). However, the relative transcriptional levels of these
three genes were significantly higher among TYLCV-infected plants treated with RSF-23;
although their expression remained lower than that of untreated (control) plants (Figure 5).
Moreover, the transcriptional changes associated with CLH1, HEMA1 and PORA were
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either lower than, or remained non-significantly different among, the plants treated with
the CTF-20 strain (Figure 5). These findings implied that the treatment of RSF-23 exhibited
potential to improve/maintain the biosynthesis of chlorophyll, despite the onset of viral
infection, and this effect was higher, as compared to CTF-20 treatment.
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and ** p ≤ 0.01.

3.6. Activation of Defense-Related Genes in Response to Bacterial Treatment

Since the salicylic acid (SA) and abscisic acid (ABA) pathways are well-known to
be associated with defense-related signaling, we opted to quantify the transcriptional
changes of two genes (NbCIS and NbNCED) associated with the biogenesis of SA and
ABA, respectively. Our results indicated that at 9, 18 and 28 dpi, the expression of NbCIS
gradually increased among the plants infected with TYLCV, indicating the activation of
plant defense-related SA signaling. However, at 9 and 18 dpi, the expression of NbCIS was
significantly higher among virus-infected plants that were treated with the RSF-23 strain
(Figure 6A). At 28 dpi, although the expression of NbCIS was still higher as compared to
that of TYLCV-infected plants, the difference was statistically not significant. On the other
hand, the CTF-20-mediated effect on the mRNA expression of NbCIS was higher at 9 dpi
(non-significant) and 18 dpi (significant), while the NbCIS expression remained lower than
TYLCV-infected and RSF-23-treated plants at 28 dpi (Figure 6A).

Furthermore, the expression of NbNCED among TYLCV-infected plants increased
at 9 and 18 dpi, while it decreased at 28 dpi, as compared to that of untreated (control)
plants (Figure 6B). Interestingly, at all of the time points, the mRNA expression levels of
NbCIS were significantly higher among virus-infected plants treated with RSF-23. On the
contrary, the expression of NbCIS among TYLCV-infected plants treated with CTF-20 was
slightly higher at 18 dpi, as compared to the TYLCV-infected group (Figure 6B); although,
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this difference remained lower (at 9 dpi), or slightly higher (at 28 dpi), implying a mild or
non-significant effect of the CTF-20 strain in the induction of plant defense responses.
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3.7. Activation of Antioxidant Enzymes by RSF-23 Strain in Response to TYLCV Infection

The combinatory effect of TYLCV infection and bacterial treatment on the induc-
tion of antioxidant enzymes is poorly understood. We, therefore, analyzed the enzymes
associated with reactive oxygen species (ROS), including superoxide dismutase (SOD),
malondialdehyde (MDA), catalase (CAT) and peroxidase (POD), at 28 dpi. The results
indicated that at 28 dpi, the activity of SOD increased by 26.31%, due to TYLCV infection, as
compared to that of untreated (control) plants. While the SOD activity in response to RSF-23
treatment was significantly higher (34%), as compared to that of TYLCV, followed by a
(non-significantly) higher (11%) activity of SOD among CTF-20-treated plants (Figure 7A).
A similar pattern of changes in the activity of MDA enzyme was observed, where the
MDA activity was significantly higher (p < 0.01 and p < 0.05) among RSF-23 (33.63%) and
CTF-20 (27.27%)-treated plants as compared to that of the TYLCV-infected group of plants
(Figure 7B). Further, a contrasting pattern in the change of CAT activity was observed
where RSF-23 and CTF-20 successfully induced enzymatic activity by 47.3 and 17.36% as
compared to the control group, but it was not significantly higher than that induced by the
viral infection (Figure 7C). Finally, the POD enzyme was significantly (p < 0.01) induced
both by RSF-23 (35.71%) and CTF-20 (128.57%) strains, as compared to the changes induced
by TYLCV infection (Figure 7D). Overall, these results indicated that RSF-23 treatment
prior to TYLCV infection could successfully induce antioxidant responses, mediated by
POD, MDA and SOD, followed by a non-significantly higher activity of CAT.
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(SOD); (B) malondialdehyde (MDA); (C) catalase (CAT) and (D) peroxidase (POD). The enzyme
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4. Discussion

Plant pathogenic bacteria, viruses, nematodes and fungi cause several devastating
diseases of wheat, rice, potato, soybean, maize and other economically important crops
worldwide [32]. These diseases are capable of causing crop losses up to 40%, which,
on average, could cause annual losses of ~220 billion USD [32]. To date, several inte-
grated, environmentally safe and efficient management strategies (based on the use of
biological and/or non-biological disease controlling agents) have been proposed and im-
plicated in tackling these plant pathogens. These agents not only function to control the
diseases but also improve the overall plant growth and development and resistance to
plant pathogens [33–37]. TYLCV is a whitefly (Bemisia tabaci)-vectored, DNA plant virus
that induces severe disease symptoms accompanied by physiological abnormalities in the
infected plants. and which has the capability to cause up to 100% yield losses in tomato/
It, thus, poses an increasing challenge to crop management strategies worldwide [38–41].
It is currently unknown how actinomycetes bacterial strains can be employed as disease
protective agents, especially against DNA plant viruses. In the current study, we employed



Agronomy 2022, 12, 2419 12 of 16

two strains (RSF-23 and CTF-20) of actinobacterial streptomyces spp. and compared their
effects on the morphology, physiology, gene expression and enzymatic activity of TYLCV-
infected plants. We demonstrated that both strains (RSF-23 and CTF-20) could successfully
hinder the development of viral symptoms, maintain the leaf area, fresh weight and relative
chlorophyll content. Moreover, these actinobacterial strains were able to induce plant
defense responses and antioxidant systems resulting in reduced virus accumulation in
the TYLCV-infected plants. Importantly, the intensity of protective effects was signifi-
cantly higher among RSF-23-treated plants, as compared to those treated with the CTF-20
strain. To our knowledge, this is the first study that has evaluated the protective role of
actinobacterial strains against DNA plant viruses.

In this study, we observed that the RSF-23 strain significantly promoted plant growth
and development and reduced the accumulation of TYLCV DNA in the infected plants,
resulting in the mild disease symptoms, as compared to the plants that were untreated.
This observation was supported by the fact that actinobacterial strains are well-known
to produce metabolites that can not only promote plant growth [42], but also exhibit
many other properties, including antiviral [43] and antitumor activities [44], stimulation
of immunity [45] and antibiotic activities [46]. These actinobacterial strains can directly
or indirectly increase plant growth and yield [42]. The antiviral activity demonstrated
by RSF-23 is presumably due to the production of biologically active substances by these
strains that could block the replication/proliferation of the viruses. For instance, the
antiviral/inhibitory activities associated with biologically active molecules produced by
the actinobacterial strains have been documented by researchers [47]. We also found that
actinomycetes strains (RSF-23 and CTF-20) maintained the relative chlorophyll contents,
despite the status of the plants having been infected with virus. These results are supported
by a recent study which evaluated 14 actinomycetes strains of plant growth-promoting
bacteria (PGPB) for their antibiotic activities. Reportedly, these strains were able to maintain
normal plant growth and development, morphological and biochemical changes, and also
the chlorophyll contents remained less affected [48].

Our findings also demonstrated that the defense responses among TYLCV-infected
plants were significantly upregulated by RSF-23 strain. A recent study has reported that
despite the presence of fungal (Fusarium verticillioides) infection, the actinomycetes bacterial
strain ST03 was able to promote plant growth and induced the transcription of several
genes involved in the ABA, auxins, SA, jasmonic acid (JA) and gibberellic acid-mediated
signaling pathways [49]. Similarly, several studies have documented the ABA- and SA-
mediated activation of systemic acquired resistance against plant viruses resulting in the
establishment/development of resistance/antiviral signaling pathways and reduced virus
accumulation [50–53]. Likewise, findings of a recent study demonstrated that S. cellulosae
(isolate Actino-48) could efficiently induce the SAR among plants infected by an RNA virus
(Tobacco mosaic virus, TMV) [24]. The SAR-associated activity of Actino-48 isolate was
assessed by the activation of defense-related genes (CHS, PAL, PR-1, PR-2 and PR-3) in the
TMV-infected tomatoes [24].

In addition to the activation of defense-related genes, our findings revealed that the
RSF-23 strain successfully enhanced the activities of defense-related enzymes, including
MDA, DOD, CAT and POD. Notably, the incline in the measured enzymatic activities was
significantly higher among RSF-23-treated plants, as compared to those observed in the
plants treated with CTF-20 strain. These results are in accordance with findings that DH-16
strain of S. hydrogenans successfully activated several enzymes, including CAT, MDA, SOD,
POD and GPOX, in response to pathogenic infection of tomato seedlings [54]. Similarly,
another study, involving the SPS-33 strain of S. lavendulae, investigated the role of volatile
organic compounds (VOCs) inducing changes in antioxidant enzymes, and concluded
that VOCs from SPS-33 enhanced the activities of SOD, CAT, and POD, while decreasing
the activity of MDA in Ipomoea batatas (L.) Lam. infected with Ceratocystis fimbriata [55].
We hypothesize that the disease protective activity demonstrated by RSF-23 might be
associated with VOCs induced by this strain; however, this requires further extensive
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studies for validation. To date, numerous studies have documented that VOCs from
actinomycetes exhibit a variety of functions, including antiviral, antifungal, antibacterial,
antitumor, cytotoxic and antioxidant activities [44,54,56–60]. The results of our studies
enrich the current knowledge of novel biocontrol agents that exhibit potential protective
activities and pave the way to plan and establish sustainable disease management strategies
against plant viral pathogens.

5. Conclusions

Our findings demonstrate that the RSF-23 strain of Streptomyces spp. efficiently limited
viral infection among TYLCV-infected plants and limited disease development, by damp-
ening the disease symptoms and virus accumulation. The RSF-23 strain also maintained
the relative chlorophyll content and promoted the mRNA expression of the genes (CLH1,
HEMA1 and PORA) associated with chlorophyll biogenesis. This was accompanied by
higher expression of plant defense-related genes (NbCIS and NbNCED) and activation
of significantly high defense responses, representing elevated SR via higher expression
of antioxidant enzymes (SOD, CAT, POD and MDA), among virus-infected plants. A
mechanistic explanation of the protective activity displayed by RSF-23 is shown in Figure 8.
Taken together, this is the first study that provides clues on the protective activity of the
RSF-23 strain against a DNA plant virus.
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