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Abstract: An innovative plant growth monitoring and environmental control platform is designed
and implemented in this study. In addition to using multi-band artificial light sources for plant growth
and development, an artificial intelligence of things (AIoT) approach is also utilised for environmental
parameter monitoring, control, and the recording of plant growth traits and diseases. The five LED
bands are white (5000 K), cool white (5500 K), blue (peak: 450 nm), red (660 nm), and light red
(630 nm). The tea plant (Camellia sinensis f. formosana) is irradiated using lighting-emitting diodes
(LED) composed of bands of different wavelengths. In addition, the number of leaves, contour area of
the leaves, and leaf colour during the growth period of two varieties of tea plants (Taicha No. 18 and
Taicha No. 8) under different irradiation intensities are analysed. Morphological image processing
and deep learning models are simultaneously used to obtain plant growth characterization traits and
diseases. The effect of the spectral distribution of the light source on the growth response of tea leaves
and the effect of disease suppression are not fully understood. This study depicts how light quality
affects the lighting formula changes in tea plants under controlled environments. The experimental
results show that in three wavelength ranges (360–500 nm, 500–600 nm, and 600–760 nm), the light
intensity ratio was 2.5:2.0:5.5 when the illuminance intensity was about 150 µmol·m−2·s−1 with a
photoperiod of 20:4 (dark); this enabled more leaves, a smaller contour area of the leaves, and a light
green colour of the leaves of the tea plant (Taicha No. 18). In addition, during the lighting treatment,
when the ratio of the band with an irradiation intensity of 360–500 nm to that with an irradiation
intensity of 500–600 nm was 2:1.5, it resulted in a better leaf disease inhibition effect. When the
light intensity was increased to more than 400 µmol·m−2·s−1, it had little effect on the growth and
development of the tea plants and the inhibition of diseases. The results of the study also found
that there was a significant difference between the colour of the leaves and the relative chlorophyll
content of the tea trees. Finally, the tea plant growth response data obtained from manual records and
automatic records are compared and discussed. The accuracy rates of leaf number and disease were
94% and 87%, respectively. Compared with the results of manual measurement and recording, the
errors were about 3–15%, which verified the effectiveness and practicability of the proposed solution.
The innovative platform provides a data-driven crop modeling application for plant factories.

Keywords: protected agriculture; LED; light spectrum; Internet of Things; artificial intelligence;
growth monitoring; agricultural production

1. Introduction

Extreme climate change leads to irregular crop harvest times and a cost risk of over-
or under-production [1–4]. The OECD-FAO (2020) committee has estimated that global
demand for agricultural products will increase by 15% in the next 10 years. However, in
the face of an ageing farmer population and limited farmland, crop production efficiency
has been reduced [5]. Fortunately, large-scale plant growth chambers can produce large
quantities of vegetable crops, flower plants, or microgreens without the use of pesticides,
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thus reducing soil and environmental pollution. This practice can overcome the limitations
of abnormal climates to realise the behaviour of agricultural production [6].

Its main concept is to simulate an ecological system indoors in which environmental
parameters, including temperature, humidity, carbon dioxide concentration, and light
intensity, are monitored and controlled [7–9]. Environmental parameters can be achieved
through some environmental control strategies and by some facilities to achieve an ideal
crop growth environment. Nevertheless, it is quite difficult to maintain consistent envi-
ronmental parameters over large-scale areas, which consume huge amounts of electricity
and increase production costs. Furthermore, when a large number of crop production
operations are implemented in larger-scale factories, cultivators must constantly check
the growth status of plants and environmental changes in the cultivation field, which also
brings some risks of bacterial invasion and increases the probability of plant infection.
Mishandling by personnel can also damage plants and cause diseases and even the spread
of pathogens in the plant factories, resulting in yield loss.

To address these constraints and ensure food security, effectively applying automatic
and intelligent technology to reduce labour costs and achieve the most efficient food
production under limited time and manpower has become one of the key factors for the
success of future agricultural upgrading. At present, the functions of crop production
platforms in a plant factory focus on monitoring and controlling environmental parameters
throughout the whole area of a plant factory. This production mode consumes a lot of
ineffective power in areas where crops are not planted, such as aisles, corners, or locations
near the ceiling. Therefore, reducing the number of workers entering and leaving the factory,
avoiding contact with crops, and reducing energy consumption using environmental
control technology is a challenging topic for plant production factory managers.

Relying on the improvement of wireless network technology, Internet of Things
(IoT) technology has gradually undergone civil and industrial use in the past five years,
such as in industry, hospitals, transportation, etc. [10]. Its technology connects sensing
devices, cameras, and other measuring instruments to each other through different types of
communication protocols to form a sensing and actuator network [11,12]. This technology is
also applied in agricultural fields, such as water-saving irrigation; crop growth environment
monitoring; agricultural product quality, safety, and traceability; and other fields to achieve
improvements in natural resources and reduce costs [13–15], especially in the development
and application of wireless sensor networks in crop watering [16]. The environmental
data acquired by the sensing equipment are transmitted to the computing system through
the IoT for data analysis; then, data mining is used to analyse these agricultural data to
predict suitable environmental information such as temperature and humidity, and further
optimise the management of crop growth.

The growth and development of the crop can be analysed by noting the contour area
of its leaves and the number of leaves. Chlorophyll content is an important physiological
parameter for plants to undergo photosynthesis and transpiration, and it is one of the
indicators used to evaluate plant health. In addition, leaf traits are indicators for quantifying
the severity of pests and diseases. Common methods of obtaining leaf parameters are
drawing, weighing, and instrumentation, which are time-consuming and interfere with the
crop growth environment. Meanwhile, a slight delay in notification causes the disease to
spread. Image processing technology has become common practice in recent years. Users
can use visual devices to extract plant phenotypic characteristics through non-destructive
morphological algorithms [17,18].

In addition, various intelligent imaging systems can be used to identify plant species [19].
The system used a convolutional neural network (CNN) to classify 22 early-stage crop
species with 86.2% accuracy. Barre et al. [20] proposed a CNN model named LeafNet, which
can identify leaves to determine plant species. The LeafNet model classifies different species
of plant within the three datasets with performance accuracies ranging from 86.3% to 97.9%.
Combining image processing technology, an orthophoto mosaic, and a convolutional neural
network (CNN) can also be used to quickly count plant numbers, and determine their
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geo-location, gaps (locations with dead or no plants), and heights in the field, and even
the number of dead plants. These functions are packaged into a convenient interactive
and user-friendly application that provides users with the automatic creation of plant
inventories and the evaluation of plant characteristics [21].

In addition, image processing techniques and CNNs have also been applied to identify
leaf diseases [22–25]. Since the colour of disease spots is different from that of plant leaves,
image processing techniques including colour transformation, median filtering, and object
segmentation algorithms can be used to detect the location of disease spots [22]. Singh
et al. [26] proposed a Genetic Algorithm (GA), which was used to segment the illness region
from the smooth filtered leaf disease image. This method is superior to threshold-based or
K-means cluster segmentation techniques, which are used to extract many features from
images, such as colour and texture. An accuracy of 97.6% was obtained via the use of
the SVM classifier. Chen et al. [27] used a LeafNet-based model to identify the types of
diseases in tea leaves with an average accuracy of 90.16%. A more compact model based on
AlexNet [28] identified nine plant diseases within the PlantVillage dataset, and achieved a
maximum accuracy of 99.75% [29]. A multiscale feature extraction module introduced into
an improved deep CNN of a CIFAR10-quick model has been proven to be effective for tea
leaf disease identification, with an average recognition accuracy of 92.5% [30]. Furthermore,
images of crop leaves are pre-binarised using adaptive Otsu’s thresholding algorithm,
which makes the architecture easier and speeds up the operation of convolutional neural
networks used as classifiers [31].

Redmon et al. [32] proposed a YoLo model for fast object detection. Various versions
have been released [32,33] and applied to object detection in agricultural fields [34]. Despite
the recent release of the latest YoLo model, fourth-generation YoLo (YoLov4) is still the most
popular due to the incompatibility of the latest model’s operating environment and the fact
that detection accuracy and processing speed have not been significantly improved. The
aforementioned practice of the automatic identification of plant diseases can help farmers
manage crops more efficiently, thereby increasing yields [24].

A non-toxic growing environment and food safety are the most important items for
agricultural producers and consumers. In recent years, there has been a growing trend
in health care, among which a variety of teas can boost the body’s immune system, fight
inflammation, and even ward off cancer, heart disease, and severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) [35,36]. The growth quality of tea trees depends on
the climatic environment of planting, including light, air, soil, and water quality. Cooler
temperatures can cause tea trees to go dormant or grow slowly; conversely, high tempera-
tures can lead to lower yields [37]. Tea trees are suitable for growing in humid and sunny
environments. Most tea trees grow on hilly terrain or hillsides that are foggy all year round,
and their abundant rainfall can maintain the water needed for tea tree growth. However,
prolonged solar radiation exposure and wet soil make tea trees grow poorly; during culti-
vation, suitable temperatures and sufficient light intensity can make tea trees grow well.
When there is sufficient rain but a lack of light, the growth rate of tea trees during the
day is higher than that at night; when the temperature is high and the daylight strength
is strong, the growth rate during the day is lower than that at night due to the increase in
respiration and transpiration [38]. Additionally, in the process of tea cultivation, an increase
in temperature and precipitation levels is conducive to the growth and distribution of most
pest species, and the production of tea is directly affected by various external disturbances,
such as air or water pollution [39,40]. Therefore, farmers often spray large amounts of
pesticides and use herbicides to maintain good growth quality of their tea trees. However,
this undoubtedly causes damage to the soil ecosystem and also causes environmental
pollution, which indirectly affects consumers’ willingness to drink tea. Providing a safe
growing environment is strictly the biggest challenge in the process of growing tea trees.

The use of light emitting diode (LED) artificial light sources for indoor plant lighting
has been proven to increase the yield of leafy crops in a short period of time, and many
studies have shown that different light formulations have different effects on the tissue of
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plant growth [41–45]. In general, broad-spectrum LEDs (such as white light) are preferred
in horticultural production because they allow better visual inspection of plants and are
comparable to or better than monochromatic LEDs [46]. Conversely, applying different
formulas for light irradiation at different growth stages of plants can also regulate the
amount of specific physiological tissues in plants [47,48]. Although LED lighting technology
has been widely used in the fields of plant tissue culture and vegetable production, and
in plant growth chamber nurseries, most of the research focuses on herbaceous plants,
and this technology is rarely used in woody plants. There are no relevant research results
on the use of LEDs to grow tea plants indoors. In addition, the cultivation environment
still needs to be considered during crop planting, including the interaction of temperature
with humidity, air speed, and carbon dioxide concentration [49]. Understanding these
effects and quantifying them to optimally control the indoor environment can significantly
improve plant yield and light use efficiency in plant factories [50].

This study presents the design and implementation of an artificial intelligence of things
system for plant trait appearance and environmental monitoring, which is integrated with
a commercial data analysis platform to manage plant cultivation in multiple zones through
the proposed platform. Two varieties of potted tea plants were subjected to LED irradiation
with different light formulations, and the lighting intensity of the three wavelength bands
was adjusted during the mid-cultivation period. A morphology-based image processing
technique and the YoLov4 model were used to detect the number, colour, and contour area
of the leaves, and the type of disease, during cultivation. The environmental parameters
of each cultivation zone were continuously maintained within a specific range by IoT-
based sensing and control technology. The data analysis platform allows users to remotely
observe the environmental data of each cultivation zone and send monitoring messages
to users. These environmental factors and crop growth data can be utilised to quantify
the growth processes of crops and their responses to the environment, which provides an
innovative concept and the application of data-driven crop modelling in a plant factory [51].
The growth responses of tea plants under the irradiation of different light formulations,
including leaf diseases, are also briefly discussed in this study.

2. Materials and Methods
2.1. Design Concept

Multiple cultivation zones are in the same closed space, and each cultivation zone is
equipped with an environmental sensing module that includes sensors for illuminance,
temperature, humidity, carbon dioxide, and soil moisture content. The environmental
measurement system collects the environmental data and transmits it to the server in the
data analysis platform via the Internet for storage. A micro-organic light-emitting diode
(OLED) display interface is installed in each cultivation zone, which can provide field
operators with the ability to observe the current environmental parameters. In addition, the
user can also observe the environmental data in the cultivation zone through the web page.
There are two web cameras (webcams) in the cultivation zone that can regularly capture
plant images. One is installed on the front partition of the cultivation area (the viewing
angle can be adjusted), and the other is installed on the side bracket of the cultivation shelf.
Tea plant image datasets can be obtained by executing the image measurement system. The
datasets are sent back to Google Cloud and the server on the data analysis platform to be
stored. In addition, the built-in logic rule-based programme of the environmental control
system sends a command to the actuator in each cultivation zone to drive the fan and
the atomiser, thereby stabilising the temperature and humidity levels of each cultivation
zone. Meanwhile, the controller’s built-in timer programme is executed at regular intervals
to turn on and off the power to the drip irrigation device and the solenoid valve on the
CO2 refill bottle. Finally, the built-in knowledge base of the data analysis platform is
used to evaluate whether the current environmental parameters exceed the pre-set range.
When an abnormal value occurs, the built-in notification programme on the platform is
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executed, and a warning message is sent to the app on the administrator’s mobile device.
The framework of indoor cultivation with the artificial IoT is shown in Figure 1.
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Figure 1. Indoor cultivation framework with artificial Internet-of-things (AIoT). Each cultivation
chamber is equipped with two webcams (one is installed and fixed on the side bracket of the
cultivation zone, and the other is installed and fixed on the front partition of the cultivation zone), six
LED light tubes, an environmental sensing module (including OLED display interface), and fans. The
environmental data and the tea plant image are, respectively, transmitted to the data analysis platform
by the environmental measurement system and the image measurement system via the Internet for
storage. The image datasets will also be transmitted to Google Cloud to be stored. The dashed frame
represents the cultivation facilities, including dripper, mist maker, and CO2 supplier. Environmental
control systems are used to drive these facilities, as well as fans in each cultivation zone, which are
utilised to maintain certain levels of environmental parameters in the cultivation zone.

2.2. Implementation of the AIoT Platform

The platform is comprised of five parts: a double-layer planting shelf with LEDs, mist
and CO2 generators, environmental measurement and control, image measurement, and a
data query and display.

2.2.1. Double-Layer Planting Shelf with LEDs

Two double-layer LED planting shelves, called A and B, provided plant cultivation
and lighting [52]. The dimensions were 120 cm × 75 cm × 200 cm (L × W × H), and the
upper and middle layers were used for growing crops, named A1, A2, B1, and B2. Ranging
from 360 to 760 nm, five LED lighting bands were selected as light treatments, namely white
(5000 K), cool white (5500 K), blue (peak: 450 nm), red (peak: 660 nm), and light red (peak:
630 nm), and their spectral distributions are shown in Figure 2. The lighting facilities in
each zone were composed of 12 LED light strips, which were evenly arranged and installed
on the light board. Each group of light strips underwent a 24-h lighting test to ensure that
its light intensity was stable. The beam angle, configuration spacing, and distance of each
LED tube from the plants can affect the uniformity of light intensity distribution across the
cultivation area. We set up multiple measurement points in the planting area. A quantum
light sensor (3668I, Spectrum Technologies, Inc., Aurora, IL, USA) was used to measure the
uniformity of light at plant cultivation. The sensing value was recorded using a data logger
(WatchDog 1650, Spectrum Technologies, Inc., Aurora, IL, USA). The total recording time
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was 24 h. The ambient temperature at the cultivation zone was maintained at 20 ± 2 ◦C.
The light intensity distributions at the four cultivation zones were tested. To randomly
adjust the light intensity in the five LED lighting bands, when the required light intensities
were all set to 300 µmol·m−2·s−1, the average light intensity 15 cm below the LED tubes
was between 266 and 325 µmol·m−2·s−1. The light intensity around the planting area was
the lowest, and was unsuitable for growing crops. The dimming controller could be used
to adjust different light recipes, and shading plates were installed around the cultivation
zone to reduce the interference of light irradiation from other shelves [52]. Temperature
uniformity was measured using a handheld thermal imager (Fluke TiS60+; Fluke Co.,
Everett, WA, USA). Figure 3 shows the temperature distribution 5 cm below the LED tubes
in cultivation zones A1 and B1. This was measured without any facilities operating in the
cultivation area. The temperature distributions of the A1 zone and the B1 zone ranged from
20.2 to 22.1 degrees (Figure 3a) and 20.6 to 22.7 degrees (Figure 3b), respectively.
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Figure 3. Temperature distribution around LED lamps at plant cultivation. (a) A1 cultivation zone,
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In addition, circulation fans placed on the right side and above the left side of each
planting area (Figure 4) were used for air circulation and to reduce the heat concentration
around the LED tubes.
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2.2.2. Mist and CO2 Generators

The ultrasonic atomiser (Model: OKS-WH150W, Beijing OKSUltrasonic Group Co.,
Ltd., Beijing, China) is placed in a reverse osmosis (RO) water tank that converts liquid
water into mist, pumped by a fan to each cultivation space through pipelines (Figure 5a).
In addition, the CO2 cylinder also injects carbon dioxide gas into the mist generation box
through the black water pipe (Figure 5b), and the gas is then transmitted to each cultivation
zone through the pipeline. A set of sensing modules are placed in the central positions
of the four cultivation zones, which are used to capture CO2 and humidity values. The
fans installed on both sides of the cultivation area are used to evenly distribute the air
and moisture in the cultivation area, so as to obtain more reliable CO2 concentration and
humidity sensing values. Figure 5c shows the appearance of the CO2-filled cylinder, which
includes a double-header pressure reducer (B570, ISTA company, Essen, Germany). The
output working pressure is about 2–3 kg/cm2.
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Figure 5. Mist generation system and CO2 generator. (a) The generation pipeline and mist generation
tank; (b) reverse osmosis (RO) water delivery hose (blue colour) and CO2 gas input hole (white
coloured frame); (c) CO2 cylinder and a double-header pressure reducer. Double-header pressure
reducer is located to the left of the cylinder on the image. The gauges on the right and left show the
pressure in the cylinder and the pressure at the outlet, respectively.

2.2.3. Environmental Measurement and Control

The environmental sensing module includes a microcontroller (NodeMCU V3, Espres-
sif Systems Co., Ltd., Shanghai, China), an illumination sensing element (BH1750FVI,
ROHM Co., Ltd., Tokyo, Japan), an environmental sensor (BME280, Bosch Sensortec GmbH,
Reutlingen, Germany), a carbon dioxide sensor (MH-Z19B, Winsen Electronics Technology
Co., Ltd., Zhengzhou, China), and capacitive soil moisture sensor. The circuit layout and
appearance of the module are shown in Figures 5b and 6a, respectively. Among them, the
OLED display interface is attached to the outer casing of the module (the lower right corner
of Figure 6b). The carbon dioxide sensor has a temperature compensation function, which
must be calibrated manually as follows: First, place the sensor in an open space, and then
confirm that the carbon dioxide concentration there is about 400 ppm. Then, connect the
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calibration pin of the sensor to 0 V for 7 s to start the calibration process. The calibration
procedure is completed after the sensor is powered on for 20 min. The carbon dioxide
sensor is calibrated every 3 months.
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Each cultivation pot has a drip irrigation pipe, and a soil moisture sensor is installed
in a randomly selected cultivation pot in each cultivation zone. The four zones share a set
of dropper controllers that are mainly used to turn the water supply valve on and off to
maintain the soil moisture level in the pots of each cultivation zone.

The mist generator and fan are used to increase air humidity and provide air circulation
in the cultivation zone. The turn-on and turn-off principles of these facilities depend on
a temperature- and humidity-control logic programme, as shown in Figure 7. First, the
maximum value Tmax and the minimum value Tmin of the indoor temperature and the
maximum value Hmax and the minimum value Hmin of the humidity are measured and set.
Second, three thresholds within the range are set, including two thresholds for humidity
(Ha and Hb) and one temperature threshold (Tth). The light sensor can be used to confirm
whether the light intensity and irradiation time of the cultivation zone are the original
settings, and can also ensure that the image of tea plant is captured under sufficient LED
white-light irradiation.
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Figure 7. Rules for turning on and off facilities. The thin horizontal lines indicate that the mist
generator and fan are turned on when the temperature is too high and the humidity is too low; the
dark grey area indicates that only the mist generator is turned on when the humidity is too low; and
in the grey area, the mist generator and fan are turned off. A thin vertical line indicates that the
humidity is too high and that the fan is turned on to avoid condensation on the blades.
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2.2.4. Image Measurement

Two sets of webcams are set up in each cultivation zone. One camera module (Model:
OV5647, Raspberry Pi Foundation, Cambridge, UK) captures the appearance of tea trees
in the cultivation zone from the oblique side. Another set of cameras (Model: BRIO Ultra
HD Pro, Logitech Inc., Lausanne, Switzerland) captures the appearance and growth of
tea plants from a frontal view. Captured images are uploaded to Google Drive via an
embedded controller (Raspberry Pi 3; Raspberry Pi Foundation, Cambridge, UK). The
positions of the two webcams are adjusted according to the size of the plants to obtain the
maximum angular field of view (AFOV).

The contour area of the leaves and the leaf colour of the tea plants are obtained via
morphological image processing. One advantage of its use is that images can be provided
in any desired format such as black and white, as well as different colour spaces, which
are used to quickly detect objects in the image. The digital red–green–blue (RGB) images
captured by the webcam are first converted to the hue–saturation–value (HSV) colour
space to reduce the impact of lighting on object recognition. Next, four green ranges
are defined in this layer: full green colour, light green, normal green, and dark green.
Finally, different kinds of green objects are segmented to obtain four binarised images.
Each image is subjected to morphological operations, including erosion, closure, thinning,
Canny edge detection, and eight-neighbour connectivity, to obtain the number of leaves
with different colours and the contour area of the leaves. The principles of morphological
image processing are available from reference books and literature [18,53].

Meanwhile, one YoLov4 model is used to detect the number of leaves in the cultivation
zone, and another YoLov4 model is used to detect the different types of diseased leaves
(such as brown blight, white spot, and algal spot) and to count the number of diseased
leaves. The measurement process of leaf traits is shown in Figure 8.
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Figure 8. Leaf trait identification process. Morphological operations are performed on contour
area of leaves measurement and leaf colour classification. The area of grey colour represents the
different colour levels of green. Two YoLov4 models were developed to count number of leaves and
leaf disease.

In principle, an object detection model usually consists of a convolutional neural
network (backbone), a feature fusion layer (neck) and a prediction output layer (head).
Among them, the convolutional neural network is used to extract the feature maps of the
input image; the feature fusion layer uses some fusion operations and combinations to
transmit the feature maps to the output layer, which predicts the types of output objects,
and defines the bounding boxes and object confidence index (OCI). The YoLov4 model is
currently the state-of-the-art object detector, outperforming all available methods on the
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COCO dataset in terms of detection speed and detection accuracy [54]. The structure of
the YoLov4 model is illustrated in Figure 9. YoLov4 uses CSPDarknet53 as the backbone
convolutional neural network [55]. Spatial pyramid pooling (SPPnet) [56] and the path
aggregation network (PANet) [57] are used as a feature fusion layer. They use the same
architecture of the prediction output layer as YoLov3, which is used to detect multiple
small objects [33].
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(backbone), feature fusion layer (neck), and YoLo head. SPPnet and PANet are included in neck.
Feature maps of different scales (R3–R5) are output to YoLo head 1, YoLo head 2, and YoLo head 3
after feature fusion processing (C1–C5).

The input image is passed through 5 residual block bodies (R1–R5) to extract deep
features. The network includes convolutional layers, a batch normalization layer, and
a mish activation layer. In R3–R5, a cross-stage local network (CSPNet) is introduced,
and the gradient information in the optimization process is propagated through different
network paths to generate large correlation differences and reduce the repetition of gradient
information, so that the network structure can reduce the computational cost [55]. Leaky-
ReLU is used as the activation function of YoLov4 to reduce the computational cost.

Using SPPnet expends the receptive field of the detection model through max-pooling
layers of different scales. PANet employs top-down and bottom-up methods to repeatedly
extract features. As shown in Figure 9, Ci (I = 1, 2, . . . , 5) represents the fusion procedure
of feature maps of different sizes in the neck layer. Ci performs convolution, batch normal-
ization, and leaky-ReLU feature extraction and classification procedures. Among them,
there are multiple max-pooling layers in C1, which integrate with the above operators to
obtain feature information. C2 and C3 perform top-down methods for feature fusion. C4
executes the feature fusion process using a bottom-up method. Output 1, output 2, and
output 3 represent the output of feature maps of different scales in the neck layer. The YoLo
head includes YoLo head 1 (76 × 76), YoLo head 2 (38 × 38), and YoLo head 3 (19 × 19),
which are utilised to fuse and interact with feature maps of different scales to detect objects
of different sizes.

The loss functions used in the YoLov4 model include object classification loss (LOC),
confidence loss (LOF), and object predicted location loss (LOCI). The sum of these losses is
presented as Equation (1).

Ltotal = αLOC + βLOF + γLOCI (1)
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where α, β, and γ represent the balance coefficient. LOC and LOF use the cross-entropy
method [58], which deals with the correlation difference between the two probability
distributions, which is the same as the loss measurement of YoLov3. The object predic-
tion position loss is determined based on the Complete Intersection Over Union (CIOU)
algorithm [59], as shown in Equation (2).

LOCI = 1 − IOU(u, v)+ε (2)

where u and v represent the predicted bounding box and the ground-truth bounding box,
respectively. IOU(◦, ∗) means that “*” and “+” are executed as an Intersection Over Union
operation. The symbol ε =

(
ρ2(uctr, vctr)/k2)+ δz represents the penalty item. ρ(uctr, vctr)

depicts the Euclidean distance of the centre point uctr (predicted bounding box) and vctr
(ground-truth bounding box). k is a constant coefficient. δ is a positive number, and z is
used to measure the consistency of the aspect ratio, as shown in Equations (3) and (4):

δ =
z

z + (1 − IOU(u, v))
(3)

z =
1

0.25π2

(
arctan

(
vw

vh

)
− arctan

(
uw

uh

))2
(4)

where vw and vh represent the width and height of the ground-truth bounding box, re-
spectively, and uw and uh represent the width and height of the predicted bounding box,
respectively. When z = 0, then δ = 0. The function of z is to control the width and height of
the predicted bounding box to match the width and height of the ground-truth bounding
box as quickly as possible.

2.2.5. Data Query and Display

The monitored data are stored in the structured query language (SQL) database on
the local server. At the same time, the data are also transmitted to a public server platform,
Thingspeak, which provides an intuitive user interface (UI) that can display historical
environmental data and facility status. In addition, the interface also has a real-time display
of environmental data and fan facility status. The user can set the data display range on
this interface and filter out abnormal sensor data. Meanwhile, the interface provides a
“notification robot” function option that can periodically send environmental data to the
user. If the system detects abnormal data, such as temperature, air humidity, and soil
humidity, that are too high or too low, or when the measured value exceeds the range
set by the user, the function programme can also be executed to send a notification to the
user [34].

2.3. Cultivation Environment

The experimental site is located in the Plant Cultivation Room of the Department
of Biomechanical Engineering, National Pingtung University of Science and Technology,
Pingtung County, Taiwan. Two 14-month-old potted tea plants were planted in A1/B1
(Taicha No. 18) and A2/B2 (Taicha No. 8). Cohesive laterite was used as the medium.
The light treatment was divided into two stages, each of which lasted 3 months for a total
of 6 months. The expected temperature and humidity of the four cultivation zones was
20 ± 2 ◦C and 80 ± 10%, respectively. The carbon dioxide concentration was maintained at
550 ± 50 ppm in the four cultivation zones. The soil moisture content was maintained at
80%. The indoor temperature and humidity were maintained at 18 ± 2 ◦C and 60 ± 10%,
respectively. The environmental control parameters were set as follows: Tmax = 25 ◦C,
Tmin = 15 ◦C, Hmax= 100%, Hmin= 40%, Ha = 60%, Hb = 90%, and Tth= 18 ◦C.

The numbers of tea trees planted in the first stage of the experiment were 18 (A1 zone),
16 (B1 zone), 15 (A2 zone), and 15 (B2 zone); in the second stage, the numbers of planted
trees were 6 (A1 zone), 12 (B1 zone), 15 (A2 zone), and 15 (B2 zone). The tea plants in
each cultivation zone were pre-selected by tea farmers, including the number of leaves,
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area of the leaves, and number of branches, to ensure that the traits of the tea plants were
consistent in the early stage of the cultivation experiments. The environmental and image
sensing modules and environmental control facilities were all pre-calibrated and tested to
ensure that the sensing data were reliable.

During the cultivation of tea trees, different light treatments were given at differ-
ent growth stages (as shown in Table 1), among which the spectrum of the A1 and A2
zones were light red (630 nm), blue (peak: 450 nm), and cool white (6500 K); the light
spectrum of B1 and B2 were a combination of red (peak: 660 nm), blue (peak: 450 nm),
and white (5500 K). The lighting period of the first stage was set to 20/4 (light/dark)
hours. The light intensities of the A1, B1, A2, and B2 zones were 449, 140, 340, and
373 µmol·m−2·s−1, respectively.

Table 1. Light quantum value of each light band of the LED.

Lighting Treatments

LED Light Intensity
(Unit: µmol·m−2·s−1; 15 cm Below the LED Tubes) Total

360–500 nm 500–600 nm 600–760 nm 360–760 nm

First stage

A1 170 71 208 449
B1 36 22 82 140
A2 73 75 192 340
B2 93 72 208 373

Second
stage

A1
31 23 101 155
38 36 135 209

B1
31 25 94 150
56 43 73 172

A2 29 22 94 145
B2 19 13 118 150

In the second stage of the light treatment, zones A1 and B1 were irradiated continu-
ously for 10 h each with two different light intensities. In addition, the lighting time of the
A2 and B2 zones was maintained for 20 h. The lighting intensity of the A2 and B2 zones was
regulated to 145 and 150 µmol·m−2·s−1, respectively, and their lighting intensity was less
than half that of the first stage. The LED light formula of the four zones was also adjusted.

3. Experiments and Results

This section presents the process and results of the cultivation experiments on tea
plants on the artificial IoT platform. The performance of environmental control and the
growth response to light treatments applied at different growth stages are also described in
this section.

3.1. Data Processing and Recording

Environmental data such as temperature, humidity, and carbon dioxide concentration
were sampled per second by the measurement system and recorded on the server. Two
cameras, located in each cultivation zone, captured images of the tea plants at 12 h intervals.
During shooting, only the LED white light was activated to illuminate the plants to obtain
the RGB digital images. An image feature extraction system was used to automatically
extract and estimate leaf number, leaf contour area, leaf colour, and disease in the image.
At the end of each stage of the lighting treatment, the data were analysed via analysis of
variance (ANOVA). The python computer vision (OpenCV) library, provided in commercial
and open-source image processing software, was used to perform morphological operations
for leaf trait extraction, including estimation of the contour area of the leaves and leaf colour
segmentation. The system was executed once a day, counting the average number of leaves
and diseased leaves of each plant, and then, recording the data in the database. The
Windows 10 operating system was used as the execution environment for the detection
model (YoLov4). The tools and software used were Python3.6, OpenCV library, and
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CUDA10.2 (NVIDIA Developer, NVIDIA Inc., Santa Clara, CA, USA). The brand of the
core processor was Intel Core i7-8750H@ 2.2 GHz with a GeForce graphics accelerator unit
(GPU) (model: GeForce GTX 3070Ti, NVIDIA Inc.), which was used for model training.

The images of tea diseases used to train the model were obtained from previous
planting experiments. Technicians trained on these disease images drew bounding boxes
on the parts of interest and exported them to YoLo format. These images were used
for model training and evaluation. Image data augmentation was utilised to expand
the training dataset, which could improve the performance and generalisation of the
model. For training and testing the leaf number detection model and the disease detection
model, 340 and 520 images, respectively, were used. Among the 520 images, there were
170, 170, and 180 images of white spot disease, algal spot, and brown blight, respectively.
Of these image samples, 90% were used for training, and 10% were used for testing.
During training, the training loss achieved at each iteration was drawn to visualise model
performance. Once the loss trend stabilised with no significant changes, the training process
was stopped, and the corresponding weights of the model were saved for further evaluation
and implementation. The training parameters (.cfg) of the two detection models were the
same: a batch size of 64, resized images of 416 × 416 pixels, subdivisions of 32, momentum
of 0.95, decay of 0.0005, a learning rate of 0.00013, max batches of 10,000, etc.

The number of leaves and the number of diseased leaves were also measured manually.
The total number of leaves was counted once a day, and the average number of leaves
per plant was recorded. Leaves that were too small were ignored. At the same time, the
SPAD-502Plus metre (Model: SPAD-502Plus, KonicaMinolta Co., Ltd., Toyoko Japan) was
used to obtain the relative chlorophyll content (Chl-a) of the leaves. Beginning with the
third leaf at the bottom of the tea plant, measurements were made at five points on the leaf,
and the average of these values was recorded. In this way, a total of 15 point measurements
were made on the third to fifth leaves of the tea plant. When an outlier was detected, the
measurement was repeated. In addition, at the end of each stage of the light treatments,
LI3000C (Model: LI3000C, LI-COR Co., Ltd., Lincoln, NE, USA) was used to measure the
contour area of the leaves of the tea plants, and the average value was recorded.

3.2. Results
3.2.1. Leaf Trait Extraction

The original digital RGB image (Figure 10a) was converted to an HSV colour space
(Figure 11b). In the HSV colour space, the colour range of full green for H was [26,77], for S
was [43,255], and for V was [30,255]. If S and V remained unchanged, the colour values of the
H layer were set to [26,35] (light green), [35,50] (normal green), and [50,77] (dark green). The
binarization operation was then performed, and the results are shown in Figure 11(c1−c3).
Subsequently, a morphological operation, including erosion (Figure 11(d1−d3)), closure
(Figure 11(e1−e3)), thinning (Figure 11(f1−f3)), and Canny edge detection was performed
to determine the veins of the leaves and remove small-area objects, and the results are
shown in Figure 11(g1−g3). Finally, the eight-neighbour connectivity method was used
to separate the objects (Figure 11(h1–h3)) and frame them (Figure 11(i1–i3)). Note that
the areas of objects that were too small were ignored. Figure 10a presents a snapshot of a
tea plant from another view, and the colour space of its RGB image is converted to HSV
(Figure 10b). Next, the full green area of the image was preserved, and the image was
subjected to a binarization operation (Figure 10c). Finally, the contour detection operation
was performed, and the results are shown in Figure 10d. The area inside the contour (in
pixels) was also counted. The performance results of the leaf and disease detection models
are shown in Table 2.
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Figure 11. An example of trait extraction of tea plant images in morphological operations: (a1) and
(b1) are the original and HSV samples, respectively. (c1−c3) are the binarization operation results
of different colour values of the H layer of (b1) sample. The upper, middle, and lower parts of the
figure are the segmentation results of light green, normal green, and dark green, respectively. All
three images were subjected to morphological operations to remove the stems and branch stems
of tea plants. (d1−d3) Erosion; (e1−e3) closure; (f1−f3) thinning; (g1−g3) Canny edge detection;
(h1−h3) eight-neighbour connectivity; (i1−i3) object labelling.

Table 2. Performance evaluation of detection of number of leaves for tea plants (Taicha No. 8 and
No. 18).

Classes AFOV
Accuracy Precision Recall F1-Score

No. 8 No. 18 No. 8 No. 18 No. 8 No. 18 No. 8 No. 18

Number of
Leaves

Narrow 0.96 0.97 0.95 0.90 0.86 0.88 0.90 0.89
Wide 0.92 0.91 0.91 0.88 0.81 0.82 0.86 0.85

Average 0.94 0.91 0.84 0.87

As shown in Table 2, the accuracy of the detection of the number of leaves was up to
97% in the zones with a narrow angular field of view (AFOV), and at least 91% in the areas
with a wide AFOV for Taicha No. 18. The average accuracy, precision, recall, and F1-score
of regional leaf number estimation were 94%, 91%, 84%, and 87%, respectively. Snapshots
of the tea leaf detection results of the two tea plants are presented in Figure 12a,b. The
result of the identification of the number of leaves on the tea plants with a wide AFOV is
demonstrated in Figure 12c.
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Figure 12. Detection of tea leaves in different cultivation zones with different types of angular field
of view (AFOV). (a) Tea leaf detection for a single plant (Taicha No. 18). (b) Tea leaf detection for
a tea plant (Taicha No. 8). (c) Results of detection of number of tea leaves in the zones with a wide
AFOV for tea plants (Taicha No. 18). The purple and green colors represent the detected leaves of
Taicha No. 18 and Taicha No. 8, respectively.

In terms of the performance metrics for leaf disease-type recognition, the average
accuracy, precision, recall, and F1-score of diseased leaf detection in the zones were 87%,
94%, 88%, and 91%, respectively (see Table 3). There were three types of tea tree symptoms:
white spot, brown blight, and algal spot. Snapshots of the leaf disease recognition results
are presented in Figure 13. White spots, multiple infections, and algal spots on leaves were
detected in Figure 13a, Figure 13b, and Figure 13c, respectively. Among them, the leaf
diseases in Figure 13b include brown blight and white spots. The leaf disease detection
results (a wide AFOV) are shown in Figure 13d,e. Most leaf diseases were brown blight
and were identified.

Table 3. Performance evaluation of each class for tea plants (Taicha No. 8 and No. 18).

Classes AFOV
Accuracy Precision Recall F1-Score

No. 8 No. 18 No. 8 No. 18 No. 8 No. 18 No. 8 No. 18

Brown
blight

Narrow 0.91 0.93 0.93 0.99 0.94 0.94 0.93 0.96
Wide 0.89 0.91 0.94 0.95 0.91 0.93 0.92 0.94

White spot Narrow 0.85 0.88 0.97 0.99 0.88 0.89 0.92 0.94
Wide 0.88 0.86 0.95 0.96 0.84 0.83 0.89 0.89

Algal spot Narrow 0.95 0.77 0.90 0.94 0.90 0.91 0.90 0.92
Wide 0.83 0.72 0.84 0.88 0.77 0.83 0.80 0.85

Average 0.87 0.94 0.88 0.91Agronomy 2022, 12, x FOR PEER REVIEW 16 of 26 
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3.2.2. LED Light Treatment

1. First stage

The differences in the average number of leaves per plant, contour area of the leaves,
and leaf colour between the two varieties of tea tree are shown in Figure 14. Among them,
in terms of Taicha No. 18 (A1 and B1 layers), there was no significant difference in the
number of leaves. However, the contour area of leaves of the A1 zone was greater than that
of the B1 zone, and the leaf colour of the tea plants in the B1 zone was darker than that of
the tea plants in the A1 zone. In terms of Taicha No. 8 (A2 and B2 zones), the number of
leaves of tea plants in the B2 zone was higher than that of tea plants in the A2 zone, but
there was no significant difference in contour area of the leaves. The number of light green
leaves in the B2 zone was greater than that in the B1 zone.
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Figure 14. Light treatment results for the first stage of the experiment: (a) number of leaves,
(b) contour area of leaves, (c) colour of leaves, and (d) relative chlorophyll-a.

2. Second stage

Similarly, at the end of the second stage of light treatment, the data on the leaf number,
contour area of the leaves, and leaf colour were analysed and compared, and the results are
shown in Figure 15. For Taicha No. 18, there was no significant difference in the number of
the leaves of plants grown in the A1 and B1 zones (see Figure 15a).

The contour area of the leaves of plants grown in the B1 zone was significantly higher
than in those grown in the A1 zone (Figure 15b); however, the leaves of the plants cultivated
in the A1 zone were mostly dark green in colour (Figure 15c). In contrast, plants grown in
the B1 zone had mostly normal green leaves (Figure 15d). For Taicha No. 8, the number
of leaves in the A2 zone was lower than that in the B2 zone. The contour area of leaves in
the B2 zone was significantly higher than for those in the A2 zone; there was no significant
difference in leaf colour between the A2 and B2 zones.

In addition, the results of the leaf trait identification were also compared with those
observed via manual methods, and are shown in Table 4. For Taicha No. 18, in the first stage
of light treatment, about two to four diseased leaves per plant were obtained via automatic
identification, and about four leaves per plant were recorded manually. In the second stage
of light treatment, the number of diseased leaves obtained via automatic identification was
about one to three per plant, while the number of diseased leaves obtained via the manual
method was about two leaves per plant.
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Table 4. Comparison of the results of estimating the number of diseased leaves using automatic and
manual measurement.

Variety Cultivation Zone
First Stage Second Stage

Automatic Manual Automatic Manual

Taicha No. 18
A1 2.2 ± 2.1 3.5 ± 0.9 1.1 ± 0.9 1.4 ± 1.1
B1 1.8 ± 1.7 2.7 ± 1.2 1.2 ± 0.8 1.1 ± 0.9

Taicha No. 8
A2 3.1 ± 2.4 4.1 ± 0.7 3.4 ± 2.0 4.8 ± 1.1
B2 3.7 ± 2.3 5.8 ± 0.8 3.8 ± 2.1 4.1 ± 1.7

In the second stage of light treatment, the number of diseased leaves obtained via
automatic identification was about one to three per plant, and the result of using the manual
method was about two per plant. For Taicha No. 8, in the first and second stages of light
treatment, the average number of diseased leaves obtained via automatic identification was
one to five per plant; the result of using the manual method was about four to six per plant.

3.2.3. Environmental Control

Examples of changes in environmental parameters, such as temperature and humid-
ity, within one month in each cultivation zone during the light treatment are shown in
Figures 16 and 17, and the grey area indicates the maximum and minimum range of pa-
rameter changes. The total length of the data records is up to 6 months. The black dotted
line in the graph represents the mean value. As shown in Figure 16a, the average temper-
ature in the A1 zone is between 17.6 and 21.5 degrees and the temperature fluctuation is
about 2.4 degrees. During the period from 12:00 to 18:00 in the A2 zone, the temperature
first drops from 19.3 degrees to the lowest point of 17.9 degrees, and then rise to about
19.1 degrees (see Figure 16b). From 12:00 to 18:00, the variation trend of the average tem-
perature in the B1 (Figure 16c) and B2 (Figure 16d) zones is also the same as that in the
A2 zone. The average temperature of B1 is slightly higher than that in the A1, A2, and B2
zones by 0.6, 1.2, and 0.7 degrees. In particular, the temperature fluctuations in the B1 zone
were higher than those in the others, and among them, abnormal data appeared at two
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time intervals (8:00 and 22:00) in the B1 zone. The range of average temperature fluctuation
in the B2 zone was about 2.2 degrees, which was the smallest among the four zones. The
average humidity of the A1 zones from 3:00 to 16:00 was lower than 80% (see Figure 17a).
It can be observed from Figure 17b that the average humidity of the A2 zone is about 91%,
and the average humidity value in the interval from 4:00 to 17:00 has obvious fluctuations.
The trends of average humidity in the B1 (Figure 17c) and B2 zones (Figure 17d) are similar
to those in the A1 and A2 zones, respectively. However, the variation in humidity of B1
and B2 is relatively higher than that of A1 and A2. Assuming that one sample is collected
at time point i every day, after N days, a total of N samples at time point i are collected. The
range of fluctuations (FR) is defined and used to assess the variability in environmental
parameters in the cultivation area, as represented by Equation (5)

FR =
1
I

I

∑
i=1

(M max
i − Mmin

i

)
(5)

Among them, Mmax
i and Mmin

i represent the maximum and minimum values in N
samples at time point i, respectively. The symbol I depicts the number of samples per day.
The average, maximum, minimum, and FR parameter values of temperature and humidity
in each cultivation zone are shown in Table 5. The average temperatures in zones A1,
B1, A2, and B2 were 19.62 ◦C, 20.20 ◦C, 19.04 ◦C, and 19.50 ◦C, respectively. The average
humidity in zones A1, B1, A2, and B2 was 82.03%, 79.48%, 91.5%, and 92.68%, respectively.
The temperature variation in each zone ranged from 2.23 to 2.65. However, the humidity
fluctuations in the B1 and B2 zones ranged from 12.85 to 13.58, and were significantly
higher than those in the A1 and A2 zones.

The soil moisture content of each zone ranged from 72% to 90% (Figure 18a, with an
average of about 81 ± 5.82%. The carbon dioxide concentration in each cultivation zone
was about 455 ppm from 15:00 to 19:00, and remained at about 556 ± 26.52 ppm at other
times (Figure 18b).
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Table 5. Variation in temperature and humidity in four zones during tea plant cultivation. The range
of fluctuations (FR) is defined in (5) (N = 180 and I = 1440).

Parameters
Zone

Temperature (Degrees Celsius) Humidity (%)

Mean Max. Min. FR Mean Max. Min. FR

A1 19.62 ± 0.51 z 21.70 17.51 2.38 82.03 ± 8.54 97.95 66.28 9.78
B1 20.20 ± 0.40 23.12 15.50 2.65 79.48 ± 8.39 96.96 61.64 13.58
A2 19.04 ± 0.51 20.82 16.45 2.57 91.50 ± 2.75 100 81.61 9.78
B2 19.50 ± 0.49 21.41 17.51 2.23 92.68 ± 2.47 100 77.07 12.85

z Means and their standard errors.
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4. Discussion
4.1. Performance of Environmental Control

The position and direction of the sensor must consider air convection in the cultivation
zone. Placing it in a location with poor air convection results in unreliable sensing data.
The experimental results showed that the difference between the temperature measured
by the instrument and the temperature measured by the sensor were within 0.5 degrees
of each other. In addition, the indoor ambient temperature was still mainly regulated by
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air-conditioning equipment supplemented with fans and atomisers. The atomizer can
produce a large amount of water vapour in the cultivation area in a short time and increase
the humidity. Once the atomiser is turned off, the air humidity will gradually drop when
the fan is turned on. The degree of the air humidity drop in the A1 and B1 zones is higher
than that in A2 and B2 due to the fact that the two zones (A1 and B1) are located in the
upper layer of the planting frame. The height of the A2 and B2 zones from the ground is
the same as the height of the air outlet of the air conditioner, and the convection effect is
better. In addition, the average ambient temperature of each cultivation area will rise by
about 1.2 degrees when the LED light group is turned on, and the temperature will drop
immediately once the LEDs are turned off (see Figure 16b,d). Since the light intensity of the
A1 and B1 zones was higher than that of the A2 and B2 zones, the average temperature will
be higher than that of the A1 and B1 zones. Since the ambient humidity in the cultivation
area was at least 60%, there was no significant correlation between air humidity and soil
moisture content in each cultivation zone.

The large fluctuation in carbon dioxide concentration in the cultivation zone was
attributed to the operator entering and leaving the cultivation room. It can be observed
from Figure 18b that although the LED light source was turned off from 15:00 to 19:00, the
CO2 concentration in each zone decreased because the CO2 supplement was turned off.
Because CO2 and mist are transmitted to each cultivation area using the same pipeline,
when the CO2 or the atomiser is activated, the circulating fans in the water tank will be
activated and the indoor air will be sent to each cultivation zone. This phenomenon caused
some fluctuations in the environmental parameters of the cultivation zone.

In addition, it can also be observed from Figure 17 and Table 5 that if the humidity was
maintained at about 90%, the number of leaf diseases in the tea plants tended to increase
(such as in the A2 and B2 zones). The effect of atmospheric pressure on the growth response
of tea trees was not considered in this study, and further research in this area still needs to
be carried out.

4.2. Effect of Tea Plant Growth Response on LED Lighting Treatment

According to the results of the first and second stages of light treatment, the number
of leaves and contour area of the leaves of tea plants can be effectively increased when
the light intensity in the range of 600–760 nm is higher than the other wavelengths. In
contrast, when the lighting intensity of 500–600 nm is higher than the other wavelengths,
the leaf colour can be effectively shifted to dark green. No relevant research has been
found to analyse the effects of different light qualities on the growth of tea plants, and
most of the research subjects are lettuce. Wang et al. [60] observed that the increase in
lettuce leaf area was proportional to the R/B ratio. Similar results were also observed
in this study. Frąszczak et al. [61] mentioned that different varieties of lettuce seedlings
also responded differently to the applied spectrum. Adding either blue or red light to
white light significantly increased the relative chlorophyll content in dark green lettuce
varieties. However, the experimental results for Taicha No. 18 in this study showed that
an excessively high proportion of red light would inhibit the production of chlorophyll,
while there was no significant difference for Taicha No. 8. The green light band is used to
irradiate tea plants, which can increase the production of chlorophyll, but different lighting
ratios also affect the increased amount of chlorophyll in tea plants.

Related studies have pointed out that the content of chlorophyll in tea has a significant
correlation with catechins, and environmental factors, especially light, also affect the levels
of catechins [62]. At low lighting intensities (360–500 nm), leaf chlorophyll concentrations
were lower, indicating higher catechin content. The illumination intensity of light and the
content of chlorophyll are significantly correlated with rosewood plants [63]. In particular,
the shaded tea trees have higher chlorophyll content and a lower content of catechins. In
the second stage of light treatment, the Taicha No. 18 tea trees growing in the A1 and B1
zones were, respectively, subjected to two light formulas with different lighting intensities.
Among them, the cumulative lighting intensity of the A1 zone was higher than that of the
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B1 zone. The experimental results showed that the relative chlorophyll content of tea leaves
in B1 zone was slightly higher than that in A1 zone.

This result also verifies that low levels of lighting intensity can increase relative
chlorophyll content. In addition, increasing the lighting intensity of 600–760 nm could
reduce the accumulation of chlorophyll in the leaves of the two varieties of tea plants
and indirectly increase the content of catechins. Leaf colour is an important indicator for
evaluating tea quality [64]. Regarding Taicha No. 18, in the second stage of light treatment,
the number of leaves, contour area of the leaves, and leaf colour were significantly different
when different light intensities were given at different times. For example, the tea plant
planted in A1 had many leaves and a small contour area of its leaves, and the colour of
the leaves was light green. On the other hand, the colour of its tea leaves was significantly
correlated with the average chlorophyll content. The experimental results showed that the
relative chlorophyll content was higher when the number of old leaves was more than that
of new leaves, and vice versa.

The combination of different light qualities affects the physiological development
of lettuces [47]. In the first stage of light treatment, under the same light quality ratio,
high lighting intensity reduces the number of leaves but increases the contour area of
the leaves. A lower amount of light intensity resulted in a lower number of leaves but a
relative increase in the contour area of the leaves. For Taicha No. 18, the light intensity
of the second stage (150–209 µmol·m−2·s−1) was lower than that of the first stage (except
for the light treatment in the B1 zone), and the experimental results show that the high
light intensity (449 µmol·m−2·s−1), the number of leaves on the tea trees did not increase
significantly. For Taicha No. 8, higher light intensity (340–373 µmol·m−2·s−1) resulted in
higher leaf numbers. In the case of light intensity of about 150 µmol·m−2·s−1, the high
proportion of light intensity of 600–760 nm increased the contour area of the leaves and
the number of leaves. Since increasing the intensity of red LED irradiation can improve
the growth and development of lettuce, both the leaf area and the number of leaves will
increase significantly [45], and the same results were also found for Taicha No. 8. However,
for Taicha No. 18, increasing the irradiation intensity of 600–760 nm did not significantly
increase the number of leaves, and the contour area of the leaves was reduced. Although
red light can promote an increase in leaf area for most plants, these growth responses still
vary by plant species, and the combination of wavelengths and the intensity of illumination
must also be considered.

The results show that in the three wavelength ranges (360–500, 500–600, and 600–760 nm),
the ratio of the light intensity of the tea plants (Taicha No. 18) illuminated by LEDs was
2.5:2.0:5.5, and the lighting intensity was about 150 µmol·m−2·s−1. With a photoperiod
of 20:4 (dark), a higher number of leaves and a smaller contour area of the leaves can be
achieved with this light treatment. Different varieties of tea plants have different growth
traits. In the first stage of light treatment, the contour area of the leaves and number of
leaves of Taicha No. 8 were higher than those of Taicha No. 18, but there was no significant
difference in leaf colour. However, under the spectrum with a high proportion of red light,
the contour area of the leaves of Taicha No. 8 was significantly larger than that of Taicha
No. 18. The leaves of the two varieties of tea plants are green or light green, suitable for
making black tea.

During the two stages of light treatment, some tea plant leaves were infected with
diseases in each cultivation zone. In the second stage of light treatment, the plants were
irradiated with low light intensity and subjected to different lighting intensities at different
times. The results showed that the number of leaf diseases was much lower than in the
first stage. Different light intensities have different effects on inhibiting the proliferation of
pathogens in different plant species and regulating the defence mechanisms of plant bodies
against diseases [65–67]. First of all, the use of high light intensity to irradiate the Taicha No.
18 tea tree did not enhance its growth and development. Secondly, we observed that in the
first stage of the light treatment experiment, the plant leaves were infected earlier than in
the second stage of the light treatment experiment. During a long-term cultivation period,
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once a plant is infected in the cultivation area, and the pathogens in the plant body cannot
be completely eliminated, other plants will also be indirectly infected with the disease and
it will quickly spread to the entire cultivation area. However, the experimental results
showed that the plant leaves in the cultivation area were not fully infected (the proportion
of infected leaves accounted for 45–68% of the total number of leaves). We infer that the
pathogens of tea plants are inhibited under high light intensity, or the defence ability of the
plant body is improved, which slows down the spread of the disease.

The proportion of irradiation intensity in different wavelength bands also had dif-
ferent inhibitory effects and triggered different defence mechanisms against leaf diseases.
According to the experimental results, only increasing the illumination intensity of the
wavelength band of 360–500 nm could not effectively inhibit the spread of leaf diseases,
such as in the light treatment experiment in the A1 zone in the first stage. In contrast, under
the appropriate light ratio and lighting period, tea plants have good growth responses
and disease defence. For example, for the Taicha No. 18 variety, when the light intensity
was between 150 and 210 µmol·m−2·s−1 (the second stage of the light treatment) with a
high proportion of red-light irradiation (600–760 nm), the number of infected leaves was
about 12% to 16% of the total number of leaves. This result indicates that red light induces
resistance in tea plants to the spread of leaf diseases, which is the same as in [68]. Although
related studies have pointed out that supplementation with 405 nm LEDs in greenhouses
can effectively inhibit the breeding of tomato plant pathogens [69], and the use of blue
or ultraviolet LEDs alone can effectively inhibit the spread of Botrytis cinerea on tomato
leaves [70], it is necessary to consider different light quality combinations and ratios to
obtain the best plant growth response and disease resistance.

The experimental results showed that when the light intensity was increased to more
than 300 µmol·m−2·s−1, it had little effect on the development of plants and the inhibition
of diseases. Meanwhile, 500–600 nm could promote crop growth, and this result is the same
as in [71]. When the irradiation intensity in the 500–600 nm band was slightly less than
that in the 360–500 nm band, the ratio of the irradiation intensity (about 2:1.5) had a better
inhibitory effect on leaf diseases. The inhibition and spread of leaf diseases and the defence
mechanism of tea trees against diseases still need to be discussed and further studied.

4.3. Effect of LED Lighting on Leaf Trait Extraction

However, the measurement error of the number of leaves and diseases affected by this
phenomenon is small and negligible. The results of this study indicate that the leaf trait
identification method is suitable for tea plants in the seedling stage, especially when only
a single lens is used to obtain 2D images—that is, when the leaf distribution is relatively
sparse. When using an automatic identification system in a plant factory, it is necessary to
avoid the interference of LED light sources of different colours while shooting. Fortunately,
the LED dimming system can cooperate with the camera, and turn on only the white LED
when taking pictures to avoid affecting the image quality. By adjusting the light intensity
of the LEDs, it is possible to reduce the problem of recognition failure caused by image
processing or deep learning due to excessive light intensity.

5. Conclusions

This study presented an AIoT platform that can be used to produce crops in a plant
factory. Two varieties of tea plant were selected for indoor cultivation, and the effectiveness
of the proposed platform was verified through the cultivation process. Among these,
image processing and deep learning tools were successfully used to identify changes in the
growth appearance of tea trees, including the number of leaves, contour area of the leaves,
and the number and types of diseased leaves. In addition to the wide AFOV, the disease
detection accuracy was less than 85% (algal spot), and the trait recognition accuracy in other
scenarios reached 95%. Compared with the results recorded via manual measurement,
the error was about 3–15%. Environmental monitoring and control technology with the
function of IoTs has been successfully used to adjust the environmental parameters in
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cultivation zones. This technology enables the maintenance of desired environmental
parameter values. It can be beneficial for supplying out-of-season crops that are lacking
in the market and can also reduce the risk of market price collapse due to overplanting.
Additionally, growers do not need to constantly inspect the growth response of crops, thus
reducing time costs. Finally, the number of leaves, contour area of the leaves, and colour of
the leaves have been verified to be regulated by different LED light quality ratios and light
intensities. Researchers can use this platform to develop crop physiological models or to
improve the quality of tea leaves. Finally, heterogeneous data on crop growth, including
environmental and physiological data, can be collected through this platform, which can
provide tea farmers with the ability to develop teas with different flavours and even teas
rich in nutritional value.

Future work should focus on stereo-vision technology to attempt to improve the
detection rate of leaf traits and reduce errors between manual measurements. At the same
time, the impact of atmospheric pressure changes on plant growth should also be studied,
and can be further used as a new measurement solution for precision agriculture.
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