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Abstract: Improving legumes crops’ performance under dense stands shade environment (e.g.,
intercropped oats–clover) is needed to promote agroecological practices. Previous studies have
revealed that ethylene produced by plants under dense standing conditions is among other factors
that affect crops’ growth performance and reduce legumes’ ability to fix nitrogen (N). Here, we
identified a Pseudomonas thivervalensis strain T124 as a high ACC deaminase-producing bacterium
and evaluated its potential ability to alleviate the effects of reduced light (RL) and exogenous ethylene
applied as ACC (ethylene precursor) on clover growth and development under controlled conditions
and field conditions at dense stands of clover and oats intercrops. RL decreases clover root and
shoots biomass, whereas the T124 strain counteracted RL effects, enhancing clover tolerance to shade.
Exogenous ACC reduced clover growth and chlorophyll content while inducing overaccumulation of
reactive oxygen species (H2O2 and O2

•−). ACC-elicited cellular stress was suppressed by strain T124,
suggesting the role of bacterial ACC deaminase activity. Combined with Rhizobium leguminosarum
strain T618 (the strain identified as being able to fix N in symbiosis with clover), T124 prevents early
nodule senescence by improving nodule leghemoglobin and reducing nodule nitric oxide levels.
Co-inoculation with T124 + T618 increased shoot N content (+24%) more than T618 alone. Field
experiments revealed that intercropping decreases Photosynthetic Active Radiation (PAR) at the
top of clover due to oats, affecting clover photosynthesis assimilation. Interestingly, under T124
inoculation treatments, clover net photosynthetic rate (Anet) and stomatal conductance (Gs) were
found to improve relative to the control and T618 inoculation treatments. Clover exhibits improved
growth performance in terms of branching and nodulation after T124 inoculation. Most significant
improvements occurred with the mixing of the two strains. Data suggest that co-inoculation with
R. leguminosarum T618 and P. thivervalensis T124 potentially decreases the interspecific competition
between clover and oats intercrops by reducing ACC (ethylene precursor) levels. Our study revealed
that co-inoculation of legumes with competitive rhizobia and ACC deaminase-producing PGPRs is
an eco-friendly approach to improving intercropping systems’ performance.

Keywords: ACC deaminase; intercropping; shade; ethylene; nodulation; photosynthesis

1. Introduction

Cereals–legumes intercropping constitutes a sustainable agricultural practice to im-
prove yields and quality for forage production (e.g., oats–clover) [1,2]. Meanwhile, a decline
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has frequently been observed in legume biomass and the forage crude protein concentration
in intercrops relative to pure stands [3–5]. Despite the positive interspecific interactions
between cereals and legumes intercrops regarding complementarity (e.g., for nitrogen) [6]
and facilitation (e.g., for phosphorous) [7], interspecific competition mainly for sunlight
remains a significant constraint [8].

Usually, cereals shade the forage legumes when intercropped, which affects the light
environment of the legumes [3,5]. Reduced light—shade—substantially modifies the plant’s
agronomic characteristics and inhibits metabolic processes, including photosynthesis and
antioxidant capacity [9]. In such a crowded environment, prolonged shade exposure
elicits a group of growth responses in shade-intolerant plants collectively termed the
Shade Avoidance Syndrome (SAS) [10]. SAS responses consist of a range of morphological
adjustments at the expense of leaf and storage organ expansion to avoid shade, including
reduced branching, accelerated flowering time, and reduced growth cycle [10–12]. However,
as reported in several studies, legumes fail to avoid shading from cereals throughout the
growing cycle [13,14]. Therefore, legumes shade avoidance responses may not be adaptive
since the severe growth investment in shade responses at the expense of other organs
does not yield a benefit, where storage organs constitute the forage yield [15]. Thus,
such an adaptive evolutionary strategy might be disadvantageous under high-density
cereal–legume intercrops intended for forage production.

Both light and plant hormones, including ethylene, are involved in SAS-related re-
sponse regulation. Although molecular mechanisms remain relatively unclear, there is
strong evidence that ethylene plays a key role in SAS response induction [10,16,17]. Several
studies have indicated the accumulation of ethylene in dense stands such as cereal–legumes
intercrops [18,19]. Furthermore, ethylene emission has been demonstrated to increase sig-
nificantly under low R:FR light resulting in a high seedling elongation [20,21]. High
concentrations of ethylene, an intense neighbor-sensing cue, might significantly affect plant
physiology and growth, notably through SAS response induction. Moreover, ethylene acts
as a potent inhibitor of nitrogen-fixing root nodules [22]. Therefore, legumes intercropped
with cereals face low PAR occurrence in addition to high ethylene accumulation, impairing
their growth performance and their ability to fix nitrogen.

Several factors seem to have been assessed carefully and managed to achieve better
benefits from crop mixtures for forage production and reduce competition mainly for sun-
light, such as seeding ratio [23] and fertilization regime [24]. In this way, recent studies have
proposed the defoliation of cereal leaves [25], while others have focused on the hormonal
regulations and molecular mechanisms underlying SAS alleviation [17,26,27]. This latter
approach aims to reduce the shade avoidance responses toward more efficient photosyn-
thesis under low photosynthetic active radiation (PAR). In plants, 1-aminocyclopropane-
1-carboxylase (ACC) is the direct precursor of the ethylene hormone [28]. Some plant
growth-promoting bacteria (PGPR) feature the ACC deaminase enzyme, which degrades
the ACC to ammonia and α-ketobutyrate [29], thereby reducing the level of ethylene
in plants [30]. In this context, in the present study, we speculate that inoculation with
high ACC deaminase-producing bacteria could alleviate SAS responses by decreasing
ethylene levels and thus direct energy and resources to other pathways, mainly growth
performance and nitrogen fixation. Several studies suggest that inoculation with ACC
deaminase-producing bacteria alleviates the ethylene production induced by abiotic stress
and makes plants more resistant to various stresses, including drought [31], salinity [32],
and flooding [33]. However, to our knowledge, no study has investigated the potential
of ACC deaminase-producing bacteria to alleviate legumes shade effects and enhance
growth performance under low PAR. In this context, the present study aimed to (i) investi-
gate the ability of ACC deaminase-producing bacteria to mitigate the effects of ethylene
applied as exogenous ACC (ethylene precursor) on clover growth and nitrogen fixation
under reduced light; (ii) assess, under field conditions, the potential enhancement of
clover shade tolerance traits, including photosynthesis and nitrogen fixation, through ACC
deaminase-producing bacteria under dense stand oat–clover intercrops; (iii) evaluate the
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yield and forage quality value of an oat–clover intercropping system inoculated with ACC
deaminase-producing bacteria.

2. Materials and Methods
2.1. Bacterial Strains

Two bacterial strains, Pseudomonas thivervalensis strain T124, and Rhizobium legumi-
nosarum strain T618, were used for the present investigation. Both strains were selected
following a prospection and identification process based on the ACC deaminase activity and
the ability to fix N in symbiosis with clover. Briefly, the acdS gene coding for ACC deaminase
was checked by PCR amplification using forward (5′-GGCAAGGTCGACATCTATGC-3′)
and reverse (5′-GGCTTGCCATTCAGCTATG-3′) primers [34]. The nifH and nodC sym-
biotic genes were checked by PCR amplification using nifHF–nifHI and nodCF–nodCI
primers, respectively [35]. Quantitative assessment of ACC deaminase activity, N-Fixing
efficiency, and other plant growth-promoting traits was performed through the standard
protocols as described by [36,37]. Taxonomic identification of 16S rRNA sequences was
achieved through the BlastN software from the National Center for Biotechnology Infor-
mation, (NCBI, Bethesda, MD, USA). Sequences were deposited in the GenBank database
(www.ncbi.nlm.nih.gov/Genbank (accessed on 17 December 2020)). The NCBI acces-
sion numbers for these sequences are MW375693 (Rhizobium leguminosarum strain T618)
and MW375690 (Pseudomonas thivervalensis strain T124). All the strain features are given
in Table 1.

Table 1. 16S identification, plant growth-promoting traits, and symbiotic characteristics of T618 and
T124 selected strains.

Strain T618 Strain T124

16S identification

Closest relative species Rhizobium leguminosarum bv. trifolii strain
ECRI 10A

Pseudomonas thivervalensis isolate
2.C.10

Accession number MW375693 MW375690

Similarity (%) 100% 97.35%

ACC deaminase

Presence of acdS gene + +

ACC deaminase activity (µM keto mg
protein−1 h−1) 0.7 19.42

Other PGPR trails

Auxin production (µg mL−1) 83.79 42.88

Phosphate solubilization (µg mL−1) 214.91 −

Siderophore production (psu) − −
Alternaria alternata inhibition − +

Macrophomina phaseolina inhibition − −
N-Fixing ability

Presence of nifH gene + −
Presence of nodC gene + −

Nodulation + nd

Efficiency 318% nd

+, positive test; −, negative test; nd, not determined; Efficiency, enhancement of shoot clover dry matter in
sterilized sand relative to the un-inoculated plant.

www.ncbi.nlm.nih.gov/Genbank
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2.2. Controlled Conditions Experiments
2.2.1. Experimental Design

Two experiments were conducted. The first (Exp-1) was conducted to evaluate the
effect of inoculation with strain T124 on clover growth subjected to exogenous ACC appli-
cation under normal and reduced light conditions. Clover (Trifolium alexandrinum L.; Masri
Baladi variety) seeds were cleaned with ethanol (75%) and 0.1% HgCl2 for 2 min, washed
three times with sterile distilled water, and then germinated for 48 h in the dark at 25 ◦C.
Clover seedlings were then planted in 300 mL pots filled with sterile sand and irrigated
with a sterilized complete nutrient solution [38]. First, all the pots were placed in a plant
growth chamber adjusted at 600 µmol m−2 s−1 PAR. Following 5 DAS, one-half of these
pots were transferred into a plant growth chamber at 100 µmol m−2 s−1 PAR. For each
light growth condition, four treatments were applied, namely, C: Control; P: Inoculated
with strain T124; ACC: Nutrient solution supplemented with ACC; P-ACC: Inoculated
with strain T124 and nutrient solution supplemented with ACC. The second experiment
(Exp-2) consisted in evaluating the effect of the inoculation with strain T124 on clover
seedlings inoculated with an efficient N-fixing bacteria. The experimental design was the
same as Exp-1, except that the nutrient solution was exempt from the N source, and all
clover seedlings were inoculated with the effective rhizobium strain T618.

ACC was added to the nutrient solution as 40 µM ACC (Sigma-Aldrich, St. Louis,
MO, USA) and applied after the plants had developed up to five leaves (15 DAS). The
effective ACC concentration [concentration that significantly affects clover plant growth]
was determined based on separate tests.

Bacterial inoculants (R and P) were prepared by growing the strains (T618 and T124)
to the exponential phase in the Yeast Extract Mannitol medium [39], and the bacterial sus-
pensions were adjusted to 108 CFU mL−1 using the CyFlow® Cube 6 equipment (Sysmex,
Norderstedt, Germany). One ml of fresh bacterial inoculants was applied to the adjacent
area of the plants.

The pots were placed in a growth chamber regulated at 60/70% day/night relative
humidity, 16:8 light–dark photoperiod, and at 25 ◦C. The plants were subjected to ei-
ther a reduced or normal light intensity treatment, including 100 µmol m−2 s−1 (RL) or
600 µmol m−2 s−1 (NL) for 30 days.

2.2.2. Measurements

Measurement parameters were determined at 35 DAS. The individual plant within
each treatment was used to form one sample (n = 4). Shoot and root dry weight (DW) as
well as the nodule number and fresh weight per plant were recorded.

The content of chlorophyll (Chl) a and Chl b was determined using the spectropho-
tometric method [40]. Fresh leaves (100 mg) were used to extract chlorophyll using 95%
ethanol. Total Chl was calculated as the sum of Chl a and Chl b.

Superoxide anion (O2
•−) levels were measured using the procedure reported by [41].

Fresh samples were homogenized with phosphate saline buffer (PBS, 65 mM, pH 7.8).
After centrifugation at 5000× g for 10 min, a sample of the supernatant was added to the
following mixture: buffer (65 mM PBS), 10 mM hydroxylammonium chloride, 1% (w/v)
sulfanilamide, and 0.02% (w/v) N-(1-naphthyl)-ethylenediamine-dihydrochloride. After
incubation for 30 min, the absorbance was measured at 540 nm.

Hydrogen peroxide (H2O2) levels were determined at 520 nm as described by [42].
Freshly harvested samples were homogenized in TCA (0.1%) and then centrifuged at
12,000× g for 15 min at 4 ◦C. The supernatant was added to 1 mL potassium iodide
(KI, 1 M) prepared in phosphate buffer (10 mM, pH 7).

To quantify nitric oxide (NO) generation, excised nodules were powdered with
50 mM cold acetic acid buffer (pH 3.6; consisting of 4% zinc diacetate) and then cen-
trifuged at 10,000× g for 15 min at 4 ◦C. An amount of 0.1 g of charcoal was added to
the supernatant and extraction buffer which were vortexed and filtered. An amount of
1 mL of Greiss reagent (1 mL of sulfanilamide (1%, w/v) and 1 mL of N-(1-naphthyl)-
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ethylenediamine dihydrochloride (0.02%, w/v) were added for 1 h and then the absorbance
assays were performed at 540 nm [43].

Leghemoglobin (Lb) was determined as described by [44]. Fresh nodules (100 mg)
were homogenized in 2 mL of Drabkin’s solution [45]. Extraction was performed three
times [46]. The homogenate samples were centrifuged at 15,000× g and 4 ◦C for 30 min.
The supernatant was used for leghemoglobin determination, by reading the absorbance at
540 nm. Lb content was expressed as [mg Lb (g NFW)−1].

2.3. Field Experiments
2.3.1. Site Description

The field experiment was conducted for two seasons, 2017 and 2018, at two locations
in the northwest of Tunisia: Beja El Gnadil (BEG) and Jendouba Bou-Salim (JBS). The BEG
site (36◦7258′ N, 9◦3043′ E) features a subhumid climate and fine loamy soil texture. The JBS
site (36◦3156′ N, 9◦5715′ E) features a humid climate and sandy-clay soil texture. Monthly
precipitation and minimum and maximum temperatures during each growing season are
shown in the Supplementary Materials, Figure S1. The total rainfall at BEG was 646 mm
and 595 mm in 2016–2017 and 2017–2018, respectively, while at JBS, it was 466 mm and
449 mm in 2016–2017 and 2017–2018, respectively (Figure S1). Soil physicochemical
properties at both sites before starting the experiment are shown in the Supplementary
Materials, Table S1.

2.3.2. Experimental Design and Management

The experiment was done to study the effects of two strains (T124 and T618), in mono
and co-inoculation, on oat and clover intercrops. There were four treatments, including
un-inoculated control ®, inoculated with T124 strain (P), inoculated with T618 stra®(R),
and co-inoculated with T618 and T124 strains (P + R). Treatments were arranged in a
randomized complete block design with four replicates. The area of each plot was 35 m2

(5 m× 7 m). The intercropped oat and clover were row-alternated, where the inter-row distance
was 12 cm. The sowing densities were 180 seed m−2 for oat and 200 seed m−2 for clover.

Preliminary field management was done to build a suitable land base before sowing.
A false seedbed was adopted for better weed control. Sowing was performed in November
using a conventional seed drill at a depth of 4 cm. Weeds were hand-controlled periodically
and when required. Individual strains inoculants were prepared as described above. At
the two-leaf stage, seedlings were inoculated by manually applying inoculant diluted with
well water (1/10) along the clover seedling line.

2.3.3. Measurements

Photosynthetically active radiation (PAR), net photosynthetic rate (Anet), and stomatal
conductance (Gs) were measured on a sunny day at 60, 90, and 120 DAS at both sites during
the 2017 crop season. PAR measurements were carried out by placing the PAR sensor
horizontally at the top of each intercropped oat and clover using a Skye PAR meter (Powys,
UK). Readings were taken from 10:30 a.m. to 2:00 p.m., six times for each plot. Anet and Gs
were measured in young fully developed clover leaves (second or third leaf) in three plants
per plot, between 10:00 and 13:00 h using a portable photosynthesis system (LCi, ADC
BioScientific Ltd., Hertfordshire, UK) with a 6 cm2 leaf chamber. Readings were taken when
values remained as constant as possible, i.e., at the steady-state (±2 min). The chamber was
open most of the time, exposing the interior to the ambient conditions.

Intercrops were harvested at 150 DAS. Before harvest, plant heights, leaf SPAD values,
clover shoot branching, and nodule numbers were recorded. Oat and clover plant heights
were measured from the soil surface where plants stayed intact, with four measurements
in each of the three middle rows. Leaf SPAD values were measured using a Minolta
SPAD 502 chlorophyll meter at the topmost fully developed leaf of oat and clover. SPAD
measurements were made on four randomly selected plants in each of the three middle
rows. The branching of clover plants was determined by counting the number of branches
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in 12 plants in each plot and averaging them. After harvest, the nodulation status of the
clover was visually checked by gently uprooting 12 plants’ roots in each plot. The number
of nodules per plant then was recorded.

Dry weight production of clover and oats was determined by cutting a 1.5 m2 area in
each plot. All the plants were cut at about 5 cm from the ground. Then, after sorting and
drying for 72 h at 75 ◦C, the dry weight of clover and oats was obtained. Total forage dry
weight was determined as the sum of the clover and oat dry weight in each plot. Shoot
nitrogen [47] and phosphorus [48] contents were determined.

2.4. Statistical Analysis

Statistical analyses were performed using SPSS version 22.(Armonk, New York, NY,
USA). All studied parameters were tested using a one-way ANOVA. When the ANOVA
indicated significant effects, Tukey’s HSD test was used to determine significant differences
between the means of the treatments.

3. Results
3.1. Effect of Exogenous ACC and P. thivervalensis Strain T124 on Clover Growth under Normal
and Reduced Light Conditions

Colonization of clover roots by the strain P. thivervalensis T124 at 35 DAS reflects that
the strain was effectively sustained on clover roots with 6–10 CFU 106 g−1 of root tissue
(Supplementary Figure S2).

As compared to normal light (NL), reduced light (RL) resulted in a marked reduction
in shoot and clover root dry weight of 27 and 32%, respectively, in control treatments
(C) (Figure 1A,B).
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Figure 1. Effect of P. thivervalensis strain T124 inoculation and exogenous ACC on clover shoot
biomass (A), root biomass (B), chlorophyll a (C), b (D) and total chlorophyll (E) under normal and
reduced light conditions. (C, Control treatment; P, plant inoculated with P. thivervalensis strain T124;
ACC, exogenous ACC; NL, Normal light condition; RL, Reduced light condition. Treatment columns
in each light condition followed by different letters are significantly different (p < 0.05). The error bar
represents the standard error of the mean (n = 4)).
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Particularly under RL, root and shoot dry weights were significantly improved in
the P treatment, inoculated with P. thivervalensis T124, by 25 and 35%, respectively, as
compared to the control treatment (C). Exogenous ACC reduces clover root and shoot
dry weight markedly in both light conditions as compared to controls (Figure 1A,B). In
addition, the P inoculation appeared to mitigate the effects of exogenous ACC, but only
in the NL condition. Indeed, the root and shoot dry weights were 35 and 44% higher in
P + ACC than that in ACC treatment under NL (Figure 1A,B).

Shoot and root Reactive Oxygen Species (ROS) including O2
•− and H2O2 at 35 DAS are

given in Figure 2. A similar profile was noted in both light conditions, whereas higher levels
were observed in RL than in NL (about 37% for O2

•− and 21% for H2O2) (Figure 2A,B).
ROS levels were boosted under the ACC treatment compared with the control C (up to
+156% for O2

•− and +74% for H2O2). P + ACC showed significantly lower levels of ROS
than the ACC but still higher than the control. Compared to ACC, decrease rates under
P + ACC ranged between 16 to 31% for O2

•− and between 17 to 24% for H2O2 (Figure 2A,B).
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accumulation in clover shoot and root under normal and reduced light conditions. (Plots (A,B) refer
to experiment 1. Plots (C,D) refer to experiment 2. C, Control treatment; P, plant inoculated with P.
thivervalensis strain T124; R: inoculated with R. leguminosarum strain T618; ACC, exogenous ACC;
NL, Normal light condition; RL, Reduced light condition. Treatment columns in each light condition
followed by different letters are significantly different (p < 0.05). The error bar represents the standard
error of the mean (n = 4)).

3.2. Potentialities of P. thivervalensis Inoculation for the Improvement of Clover Nodulation Status
and N-Fixing

The N-free experiment (Exp-2) using R. leguminosarum T618 inoculation revealed
that light had a significant effect on the root and shoot dry weight of clover (35 DAS)
(Figure 3A,B). Overall, the dry weight was lower in RL than in NL (approximately −20%
for the shoot and −29% for the root). Under both light conditions, co-inoculation with R.
leguminosarum T618 and P. thivervalensis T124 (P + R) increased clover dry weight compared
to R. leguminosarum T618 alone (R). Interestingly, as compared to R inoculation alone,
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co-inoculation P + R improved clover nodulation status under RL. The increase rates were
32, 54, 31, and 45%, respectively, for the shoot dry weight, root dry weight, nodulation
number, and weight (Figure 3A–D). Exogenous ACC negatively affected clover dry weight,
as in Exp-1, and nodulation status (Figure 1A,B and Figure 3A–D). Clover dry weight and
nodulation status were significantly improved under P + R + ACC compared to R + ACC
under the NL condition. However, under the RL condition, only the nodule number and
weight were improved in P + R + ACC compared to P + R (Figure 3A–D).
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In contrast to the Exp-1, overall total chlorophyll concentration decreased under RL
compared to NL. This negative effect was reversed by inoculation with P. thivervalensis,
where Chlt was higher by 27% in treatment P compared to the control under RL (Figure 3E).
Furthermore, exogenous ACC adversely affects Chlt, and P. thivervalensis reduces this
impact (Figure 3E).

The nodule Lb content was drastically affected under RL compared to NL (about −25).
Under both light conditions, Lb was the highest under treatment P + R. Particularly under
RL, the nodule Lb was 27% higher under P + R relative to R. The lowest nodule Lb was
shown under the ACC + R treatment (Figure 3F).

Reduced light seems to increase nodule NO content (about +37%) (Figure 3G). Under
both light conditions, nodule NO content was the highest under P + R + ACC and the
lowest under P + R treatment. Notably, under RL, the occurrence of P. thivervalensis led
to significantly strengthened nodule NO under P + R compared to R (−25%) and under
P + R + ACC compared to R + ACC (−14%) (Figure 3G).

Shoot N content was reduced by 30% under RL compared to NL for the R treatment
(Figure 3H). Interestingly, under RL, co-inoculation under P + R treatment showed signifi-
cantly higher N content compared with R mono-inoculation, by 24%. Under either light
condition, the lowest N content was found under the R + ACC treatment. Inoculation with
P, i.e., P + R + ACC showed an increase in N content compared to R + ACC (Figure 3H).

3.3. Assessment of T124 and T618 Strains Inoculation Effects on Clover–Oat Intercrops under
Field Conditions
3.3.1. Photosynthetic Active Radiation (PAR) and Photosynthesis Assimilation

Photosynthetically active radiation (PAR), net photosynthetic rate (Anet), and stomatal
conductance (Gs) were measured at 60, 90, and 120 DAS in the 2017 season (Figure 4).
There were no significant differences between inoculation treatments for measured PAR
(data not shown). PAR data were presented based on plant height, i.e., the top of oat leaves
(TO) and the top of clover leaves (TC) (Figure 4A). At 60 DAS, PAR was similar at TO and
TC. However, at 90 and 120 DAS, a significantly lower PAR at the TC compared to TO
was observed (Figure 4A). PAR reduction rates in TC, i.e., shade effect of oats on clover,
ranged from 29 to 39%. While PAR availability for clover was not affected, Anet and gs
varied according to the inoculation treatment (Figure 4B,C). Moreover, inoculation effects
depend on the DAS growth status. Indeed, at 60 DAS, inoculation with R. leguminosarum (R)
showed a 28% higher Anet at BEG and 20% higher at JBS, relative to the control C. However,
this effect decreased as the growth status advanced. Anet appeared similar to control at
120 DAS. Inversely, for P. thivervalensis inoculation (P), the impact on Anet seems to increase
in magnitude as the growth status advances, and it becomes evident at 120 DAS. P showed
a 39% higher Anet at BEG and 21% at JBS, relative to C at 120 DAS. Similar trends were
found for gs, although there were no significant differences at 60 DAS at BEG. Compared
to C, gs was 29% and 12% higher at BEG, and 32% and 48% at JBS, respectively, at 60 and
120 DAS. Interestingly, this effect of P. thivervalensis occurred under a significant PAR
decrease. In keeping with this, P + R co-inoculation showed sustained and highest Anet
and gs values at all three DAS measurements (Figure 4).
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Figure 4. Photosynthetic active radiation (PAR) measured at the top of oat and clover intercrops and
the effects of inoculation and co-inoculation with P. thivervalensis strain T124 and R. leguminosarum
strain T618 on net photosynthetic rate (Anet) (B) and stomatal conductance (Gs) (C) of clover at BEG
and JBS sites for the 2017 season. (Plot (A): TO, top of oat; TC, top of clover; ns, not significant,
*** significant deference at p < 0.001; Plot (B,C): C, control un-inoculated, P: inoculated with P.
thivervalensis strain T124; R: inoculated with R. leguminosarum strain T618; P + R: co-inoculated with
T124 and T618 strains; treatments mean within each measurement date followed by different letters
are significantly different (p < 0.05)).

3.3.2. Crops Status at Forage Cut (150 DAS)

The plant height and leaf SPAD values at 150 DAS (i.e., the start of flowering), of
intercrops of clover and oats are shown in Table 2. There is no significant effect of the
inoculation treatment on the height of either intercrop. Oats exceed clover (about 45%).
There was a highly significant effect of inoculation treatment on clover leaves’ SPAD values
(p < 0.001), and a marginal effect on oat leaves’ SPAD values (p < 0.05). For clover, compared
with C, P showed significantly higher SPAD values. This was even more notable under
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P + R, which showed the highest SPAD values. However, the SPAD values under R were
similar to the control, except being significantly higher at JBS for 2017. Surprisingly, for
oats, R showed the highest SPAD values (Table 2), although compared to C, the effect was
not significant for 2018.

Table 2. Plant height, leaf SPAD values, number of branches, and nodules of clover and oats intercropped
at the forage harvest date (150 DAS) at the BEG and SBR sites for both experimental seasons.

BEG JBS

2017 2018 2017 2018

Clover Oat Clover Oat Clover Oat Clover Oat

Plant height (cm)

C 79 B 106 A 65 B 101 A 69 B 97 A 78 B 111 A

P 77 B 109 A 69 B 103 A 67 B 99 A 70 B 97 A

R 77 B 116 A 70 B 114 A 70 B 99 A 76 B 105 A

R + P 75 B 115 A 71 B 103 A 73 B 103 A 79 B 105 A

SPAD values

C 30.3 c 43.7 b 32.3 c 44.7 a 36.3 c 43.9 b 34.3 c 44.5 ab

P 33.3 ab 44.6 ab 35.5 ab 42.8 a 39.6 ab 43.8 b 37 ab 43.6 b

R 32 bc 45.4 a 33.6 bc 44.5 a 38.8 b 45.4 a 35.5 bc 46 a

R + P 34.9 a 44.2 ab 36.2 a 43.4 a 40.9 a 44.3 ab 38.6 a 45 ab

Clover shoots branching

C 1.8 (73) 2.1 (63) 2.2 (62) 1.8 (65)

P 2.7 (49) 2.7 (37) 2.7 (43) 2.8 (31)

R 2.2 (62) 1.8 (56) 2.2 (58) 2.3 (47)

R + P 2.9 (40) 2.9 (40) 3.3 (30) 2.8 (36)

Clover nodules number

C 26 b (36) 33 a (47) 22 c (65) 21 c (48)

P 34 ab (27) 43 a (31) 24 bc (49) 25 bc (36)

R 30 ab (36) 37 a (35) 37 ab (29) 33 ab (34)

R + P 38 a (24) 47 a (27) 39 a (34) 39 a (26)

C, control un-inoculated, P: inoculated with P. thivervalensis strain T124; R: inoculated with R. leguminosarum
strain T618; P + R: co-inoculated with T124 and T618 strains; For plant height: capital letters indicate significant
differences between both intercropped oat and clover (horizontal comparison). For SPAD values and nodules
number: lower-case indicates significant differences between treatments (vertical comparison) (p < 0.05). For
clover shoots’ branching and nodules number: values in parenthesis indicate the coefficient of variation (% CV).

In terms of clover branching and nodulation, the results reflect an effect of inoculation
treatment (Table 2). For branching, although not proved statically (p > 0.05), the highest
mean values were observed under treatment P + R, followed by P, R, and C. In addition,
the coefficient of variation (% CV) on branching values was lowest under treatments
P + R and P, indicating more homogeneous clover growth. The nodulation status showed
similar trends (Table 2). Indeed, the highest mean values were observed under treatment
P + R, accordingly with the lowest % CV. Especially at JBS, R. leguminosarum significantly
improves nodulation compared to C.

3.3.3. Forage Yield

Bacterial inoculation markedly influenced the intercropped clover biomass yield at
both sites for both seasons (Figure 5A).
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Figure 5. Effects of inoculation and co-inoculation with P. thivervalensis strain T124 and R. legumi-
nosarum strain T618 on clover–oat intercrops forage dry weight yield (150 DAS) at BEG and JBS sites
for 2017 and 2018 seasons. (Plot (A): C, control un-inoculated, P: inoculated with P. thivervalensis
strain T124; R: inoculated with R. leguminosarum strain T618; P + R: co-inoculated with T124 and T618
strains; Treatment columns within each clover, oat or forage yield followed by different letters are
significantly different (p < 0.05). The error bar represents the standard error of the mean (n = 4). Plot
(B): Clover–oat intercrops forage dry weight fractions presented as percentages averaged for both
seasons at each site).

Individual P and R inoculation revealed that P resulted in a significant increase in
clover biomass yield compared to the control while the effect of R was site-dependent.
Clover biomass yield increase rates under treatment P ranged from 13 to 21% compared
to C. However, it was only at JBS that R provided a significant increase of 15 and 8% in
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biomass yield for 2017 and 2018, respectively, compared to the control (Figure 5A). In
addition, the P + R co-inoculation showed the highest clover biomass yield, increased
significantly by 24 to 34% over C. Overall, according to treatment averaged by season, the
clover biomass yield varied between 83.9 (C) and 106 (P + R) g DW m−2 and between
101.8 (C) and 136.4 (P + R) g DW m−2 at BEG and JBS sites, respectively (Figure 5A).

On the other hand, at BEG, there was no effect of the inoculation treatment on in-
tercropped oat biomass yield. Averaged for both seasons, biomass yield ranged between
279.6 (C) and 292.6 (R) g DW m−2 (Figure 5A). However, at JBS, the inoculation treatment
effect on the biomass yield of oats was found to be significant (p < 0.05). Particularly for 2017
(p < 0.01), the biomass yield was significantly lower, by 4%, under P compared to R treat-
ment (Figure 5A).

The total forage biomass yield of the clover–oat intercropping system, i.e., the sum of
both crops’ biomass yield (150 DAS), was significantly affected by the inoculation treatment
(p < 0.05). The overall effect was that treatment P + R improved the clover–oat forage
biomass yield by ca. 6% compared to the control (Figure 5A).

Notably, the forage formulation of the clover–oat intercrops, i.e., the proportion
between the two crops as forage, was shown responsive to the inoculation treatment
(Figure 5B). Under the control treatment, the clover/oats fractions in the forage were 23/77
at BEG and 19/81 at JBS. However, under treatments P and P + R, an increase in clover frac-
tion was observed. Clover/oats fractions were 27/73 at BEG and 25/75 at JBS, particularly
under P + R (Figure 5B).

3.3.4. Nitrogen and Phosphorus Concentrations (% in Dry Matter)

The dry matter N concentration of the clover and oat intercrops varied significantly
according to the inoculation treatment (Table 3). Overall, inoculation improved N con-
centration compared to the control. While R + P co-inoculation showed the highest N
concentration, individual inoculation treatments revealed differential effects depending on
the plant. P. thivervalensis, treatment P, significantly improved the clover N concentration.
However, R. leguminosarum, treatment R, significantly improved the oat N concentration
(Table 3). For P concentration, a significant increase was revealed only with R. legumi-
nosarum inoculation, i.e., under R and P + R treatments compared to the control (Table 3).

Table 3. Nitrogen (N) and phosphorus (P) concentrations (% in dry matter) in the intercropped clover
and oats shoots (150 DAS) at the BEG and SBR sites for both experimental seasons.

BEG JBS

2017 2018 2017 2018

Clover Oat Clover Oat Clover Oat Clover Oat

N concentration (%)

C 2.12 c 1.87 b 1.93 b 2.31 b 2.13 c 1.61 b 2.47 c 1.83 b

P 2.65 a 1.91 bc 2.51 a 2.49 ab 2.73 ab 1.83 ab 2.93 b 1.86 b

R 2.34 b 2.32 a 2.09 b 2.84 a 2.43 bc 2.04 a 2.56 c 2.18 a

R + P 2.73 a 2.2 ab 2.63 a 2.53 ab 3.04 ab 1.92 ab 3.24 a 2.25 a

P concentration (%)

C 0.64 b 0.35 c 0.73 b 0.38 b 0.5 b 0.31 b 0.56 b 0.35 a

P 0.67 b 0.38 bc 0.73 b 0.39 b 0.52 b 0.33 ab 0.59 b 0.37 a

R 0.78 a 0.47 a 0.83 a 0.48 a 0.63 a 0.36 a 0.63 ab 0.36 a

R + P 0.75 a 0.44 ab 0.8 a 0.45 a 0.6 a 0.35 a 0.66 a 0.35 a

C, control un-inoculated, P: inoculated with P. thivervalensis strain T124; R: inoculated with R. leguminosarum strain
T618; P + R: co-inoculated with T124 and T618 strains; letters indicate significant differences between treatments
(vertical comparison) (p < 0.05).
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4. Discussion

Identification and characterization of microorganisms derived from natural ecological
niches present significant potential for developing effective inocula for sustainable agricul-
tural practices [49]. One of the diverse traits of such microorganisms as PGPRs includes the
ACC deaminase activity, a valued feature in promoting tolerance to various stress effects in
plants by reducing ethylene levels.

4.1. Potential Improvement of Clover Growth under Reduced Light by P. thivervalensis Strain
T124 Inoculation

Controlled experiments revealed that reduced light—shade—resulted in a decline
in clover shoot and root dry weight, and such an effect was more pronounced under the
N-free condition (Figures 1 and 3). Forage legumes, including clover, are mostly intolerant
of shaded conditions [13,14,50]. Reduced light reduces plant performance traits where the
host plants become less invested in the mutualistic interaction [51]. Our study also confirms
a reduction in nodule formation and N2 fixation in clover roots under reduced light [52,53].
In the present study, inoculation with T124 strain tends to mitigate the effects of reduced
light intensities. Of particular interest under the N-free condition, co-inoculation with T124
and T618 significantly improves clover growth and nodulation status relative to only T618
inoculation. The satisfactory ability of the P. thivervalensis T124 strain to promote growth
may be due to its origin as a native strain isolated from the clover nodule, which allows the
efficient colonization of roots.

Ethylene is part of the phytohormones that play a significant role in the response of
plants to low light intensities. Ethylene production increased significantly with decreasing
light intensities [20,54,55]. Higher concentrations of ethylene decline plant growth [56]
and activate nodule senescence [57,58]. Our study also confirms that ethylene, applied as
exogenous ACC, strongly decreases clover growth and nodulation status and induces ROS
accumulation [56,59]. Of particular interest is that when combining reduced light and N-free
conditions, we find that co-inoculation with T124 and T618 effectively reduced the negative
effect of ACC on clover growth compared with mono-inoculation with T618. In addition,
ROS (H2O2 and O2

•−) production was increased in plants under RL and exogenous ACC
application, but T124 inoculation contributed to a decrease in ROS production (Figure 3).
Light reduction and exogenous ACC reduced leghemoglobin content and increased NO
concentration in nodules. The decline in nodule leghemoglobin contents leads to the
premature senescence of root nodules [60]. Cam et al. (2012) demonstrated that the increase
in endogenous NO levels decreases nitrogen fixation and induces early nodule senescence.
By contrast, low NO levels led to a delay in nodule senescence [61,62]. Nodules high Lb
and low NO in co-inoculated plants (T124 + T618) suggest the maintenance of effective
symbiosis for a longer time and thus higher N2 fixation. Moreover, this explains the higher
N content of shoots in co-inoculated plants compared to mono-inoculated plants with
R. leguminosarum T618. As exogenously applied and endogenously produced, decreasing
ethylene levels through ACC deaminase activity, which dissociates ACC into Ammonia
and α-ketobutyrate, by T124 strain mitigated the effects of higher ethylene concentrations.
Our finding suggests the potential role of P. thivervalensis T124, highly productive of ACC
deaminase, in early nodule senescence prevention and hence the maintenance of efficient
symbiosis under reduced light conditions.

One of the main factors in determining plant photosynthesis is chlorophyll content,
which is commonly measured to estimate the light energy absorption of leaves [63,64].
Generally, plants with high levels of total chlorophyll and especially chlorophyll b under
low light conditions have better tolerance to shading [65]. The overall leaf chlorophyll
content is higher under reduced light conditions than in normal light conditions within
the N-available experiment (Exp-1). P. thivervalensis inoculation seems to further enhance
chlorophyll content and mitigate the exogenous ACC effect, providing enhanced capture
of light energy by leaves in low light environments, thereby maintaining photosynthe-
sis [66]. However, under the N-free experiment (Exp-2), where only biological fixation
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constitutes the source of N, leads to a decrease in chlorophyll content under reduced light
conditions compared to under normal light. Nitrogen is a major component of chlorophyll.
The enhancement of clover nodulation status and N-fixing ability resulted in the higher
chlorophyll content in plants co-inoculated with P. thivervalensis and R. leguminosarum
relative to plants only inoculated with R. leguminosarum. The results imply that legumes
co-inoculation with competitive rhizobia and PGPR-containing ACC deaminase might
constitute an approach to improving legumes’ (e.g., clover) N-fixing potential, chlorophyll
content, and overall growth under reduced light conditions, such as in higher density
mixed crops.

4.2. Supply of R. leguminosarum Strain T618 and P. thivervalensis Strain T124 Co-Inoculation
under Oat-Clover Field Intercrops Condition

Field trials confirm that clover failed to avoid the oats shading, and light available at
the top of the legumes as a proportion of incident light decreased with the increasing leaf
area index (LAI) of the cereal [3,13]. As reported by several studies, clover suffers from
shading by the oats when intercropped [13,14]. Comparative studies have reported that
the photosynthetic rate, transpiration, and stomatal conductance decreased in low light
conditions [67]. Inoculation of legumes with effective rhizobia is expected to stimulate
photosynthetic uptake and improve photosynthetic nutrient use efficiency [68]. However,
our results indicate an improvement of clover Anet and Gs only at the early growth stage
(60 DAS) through the R. leguminosarum T618 strain. The PAR reduction at the top of the
clover canopy at 90 and 120 DAS could explain the decline of clover Anet and Gs under
R. leguminosarum T618 inoculation treatment. A significant improvement in Anet and
Gs under treatments involving strain T124 suggested the effectiveness of P. thivervalensis
compared to only R. leguminosarum and the control. The positive effect of T124 might be
related to the ability of this strain to produce ACC deaminase, which reduces the synthesis
of ethylene, one of the most aboveground signaling components implicated in the plant–
plant interaction, as in the case of intercropping systems. Previous studies have shown
that intercropping increased the emission of ACC, the precursor of ethylene [69]. Root-
secreted ACC (secreted as root exudates) in intercropped peanut was two times that of
the pure stand peanut [18]. Because ethylene acts commonly as a growth inhibitor [20],
decreasing ACC levels through ACC deaminase activity thus increases root growth and
promotes more efficient nutrient uptake by increasing the surface area of the rhizosphere
(Glick et al., 1998). On the other hand, since legumes are less competitive than cereals [8],
it seems likely that the decrease in PAR due to oat shading leads to increased ethylene
biosynthesis [18,19], hence the decline in clover growth, as well as early nodule senescence
and nitrogen rhizodeposition [70]. Taken together, this may increase the availability of soil
nutrients for oats at the expense of clover, mainly during the late growth stages. Moreover,
our results revealed the improvement of oat plants’ nitrogen content through the inoculation
of neighboring clover with R. leguminosarum. Such an ecological process is of great interest
when using legumes as companion plants to cereal crops [24]. However, for intercropping
intended for forage production, it would be of value to strengthen both species’ growth
(cereals and legumes). Overall, a higher improvement of both intercropped species, and
particularly clover, was recorded when combining the two strains, T618 and T124. We find
that co-inoculation results in more homogeneous clover nodulation and branching. Such
improvement resulted in an increased yield, particularly for clover, and better nitrogen and
phosphorous content of the total forage (clover + oats). Previous studies have highlighted
that nodule-enhancing rhizobacteria are ACC deaminase and indole acetic acid-producing
(IAA) and that IAA and ACC deaminase work together to increase the ability of rhizobia
resident in the soil to form nodules [71]. The R. leguminosarum T618 strain in particular
exhibited an ability to produce a high level of IAA (Table 1). IAA synthesis enhances
N2 fixation by upregulating the expression of genes associated with legume–rhizobia
symbioses. ACC deaminase prolongs nodule function by delaying nodule senescence and
can reduce the negative influence of very high IAA on nodule induction [71]. Besides
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symbiotic nitrogen fixation, the R. leguminosarum strain used in the present study was
characterized by its ability to solubilize phosphorus, which makes this strain able to act as a
good biofertilizer, increasing nutrient availability (P and N simultaneously) in the root zone
of intercropped clover and oat to enhance their growth parameters [72]. The current study
highlights the promising effect of co-inoculation of the intercropped clover and oat with
R. leguminosarum and the ACC deaminase-producing P. thivervalensis not only on legumes
but also on cereals, which enhances the productivity of the whole intercropping system.
Our findings suggest that R. leguminosarum T618 and P. thivervalensis T124 co-inoculation
might alleviate inter-specific competition between co-cropped plants by lowering ACC
(ethylene precursor) levels, thereby enhancing focal plant—clover—fitness by improving
biomass production under low PAR. Thus, to take advantage of mixing crops for forage
production and avoid plant biomass reduction of intercropped species (here clover), co-
inoculation with rhizobia and ACC deaminase-producing bacteria represents an efficient
strategy in line with the sustainability principles.

5. Conclusions

We examined the limitations of light on clover performance under controlled and
field conditions when intercropped with oats, hypothesizing that bacterial ACC deaminase
might mitigate the effects of reduced PAR. Controlled experiments revealed that light reduc-
tion harmed clover growth. Light stress effects appeared to be mitigated by inoculation with
P. thivervalensis T124. Furthermore, results indicate a synergistic effect of R. leguminosarum
T618 and P. thivervalensis T124 co-inoculation on clover growth and nodulation under
nitrogen-free conditions. The results further revealed that P. thivervalensis T124 inoculation
effects were mainly due to its high production of ACC deaminase. Field trials revealed that
inoculation with mainly P. thivervalensis T124 and with both R. leguminosarum T618 and
P. thivervalensis T124 strains improves photosynthetic assimilation, growth homogeneity,
and biomass yield of clover when intercropped with oats (low PAR). Overall, the results
suggest that co-inoculation with R. leguminosarum T618 and P. thivervalensis T124 potentially
decreases the interspecific competition between clover and oats intercrops by reducing
ACC (ethylene precursor) levels. Furthermore, the results highlight the beneficial role of
combined PGPR and rhizobia inoculations in promoting intercrop productivity (here, yield
and forage quality). Our results provide a promising agroecological direction to alleviate
reduced light effects on the cereal–legume intercropping system through inoculation with
ACC deaminase-producing PGPR.
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