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Abstract: The increasing production of biosolids (BS) as a result of urban wastewater treatment
generates pollution problems in their management and final disposal, and a better management is
needed for their disposal. The composting of BS is an alternative process for obtaining a product
with potential application as an organic amendment in the recovery of agricultural soils. As a
biotechnological contribution, this study analyzed a composting process with BS, bovine manure
(BM) and rice husks using four treatments T1 (C/N = 24); T2 (C/N = 34); T3 (C/N = 44); T4
(C/N = 54) for 120 days, in order to develop compost quality indexes (CQIs) through the analysis of
18 physicochemical, biological and ecophysiological indicators. Subsequently, three methodologies—
successfully used on soils—were implemented for the development of the CQIs called “unified”,
“additive” and “nemoro”. The indicators that comprised the CQIs were nitrification index (NI)
and synthetic enzymatic index (SEI). The CQIs made it possible to differentiate the quality of the
compost according to the treatments applied. The treatments used resulted in composts considered
phytonutritious whose average quality value depending on the CQI developed was considered high
(CQIw = 0.62), moderate (CQIa = 0.56) and low (CQIn = 0.30). The developed CQIs can be applied to
determine the quality of BS composting systems reducing the cost of monitoring.

Keywords: biosolid; compost; enzyme activity; principal component analysis; unified index; additive
index; nemoro index; C and N transformation

1. Introduction

Water pollution is an issue of environmental, social and economic concern. The
growing population, urbanization and industrialization worldwide has led to a rise in the
concentration of pollutants in water bodies [1]. For this reason, the creation of wastewater
treatment plants (WWTPs) has increased in order to reduce the load of pollutants, aiming
for the protection of the environment and the health of the inhabitants.

Mexico is no exception to this problem. Most WWTPs apply biological treatment for
the sanitation process using activated sludge, obtaining treated water and a quantity of
stabilized sludge called “biosolids” (BS) [2]. Water treatment capacity at a national level has
been rising over the last decade, having 2766 WWTPs with an installed treatment capacity
of 196,000 L s−1 by the year 2020 [3]. Increased water treatment capacity consequently
raises the production of BS, causing it to accumulate on land adjacent to the facilities or to be
deposited in landfills, requiring an increasing amount of land for its final disposal [4]. Most
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of the BS produced in Mexico is disposed of in landfills. However, BS is characterized by a
composition rich in nutrients and organic matter (OM) [5]. These BS can be used as organic
amendments for the remediation of degraded soils or as organic fertilizers for agricultural
soils, improving their physical, chemical and biological properties [6]. Improved soil
conditions have been reported following the addition of BS, through improved water
holding capacity (WHC) and improved soil structure, as well as increased fertility from
the addition of easily degradable C and N compounds [7]. The addition of BS to degraded
soils increases plant cover, microbial activity and diversity, which are stimulated by the
addition of easily degradable OM, allowing better nutrient cycling in the soil [5,8–10].

The application of BS in soils in Mexico is controversial, due to the social stigma of
the process from which they are obtained. In order to ensure the safety of BS, national and
international regulations are in force (NOM-004-SEMARNAT-2002 and EPA 503) [11,12],
which establish limits on the concentration of contaminants and biological agents—bacteria,
fungi and actinomycetes—when applying BS to soils.

In addition to the aforementioned regulations, another process to ensure the safety
of BS is composting [13], a process by which most pathogens are eliminated through
decomposition processes at temperatures of around 55 ◦C. The correct composting process
will result in a stable, mature and nutrient-rich compost to use as an organic amendment in
degraded soils and crops. However, the intrinsic variability of the process of obtaining BS
leads to variability in the composting process [13]. For this reason, constant monitoring
by means of different physicochemical and biological indicators is necessary in order to
ensure a quality end product.

As composting is a complex and multifactorial process, monitoring can be laborious
and costly. Therefore, several studies have established a small number of indicators related
to the maturation, stability and quality of compost products. Saldarriaga et al. [14] suggest
that four indicators—respirometry, ash content, moisture content and WHC—are sufficient
to determine the quality of composts obtained from municipal solid waste. Peña et al. [15]
established quality indicators from a PCA—such as germination index (GI) and relative
emergence (RE)—related to the phytotoxicity of composts in systems consisting of fruit
residues, biosolids and frying residues. Meena et al. [16] defined five indicators highly
related to the quality of composts made from various organic wastes, pressed sewage sludge
and gypsum, added with inorganic sources of sulfur (S). The resulting indicators were water
soluble sulfur (WSS), total nitrogen (TN), GI, NI (ammonium/nitrate ratio (N-NH4

+/N-
NO3

−)), hydrogen potential (pH) and the concentration of arylsulfatase. Those indicators
were integrated into an equation weighed by the variability of the principal components
(PCs) obtained from a PCA. In the same context, studies such as those described above have
used a PCA to reduce the dimensionality of the composting process. However, they use BS
as co-substrates in lower proportion in the composting processes than those established in
the treatments of the present study, therefore there are no quality indicators directly related
to BS composting. The aim of this study was to carry out an analysis of composting systems
using BS as the main substrate—higher proportion substrate—for the establishment of
physicochemical, biological and ecophysiological indicators related to compost quality, by
means of a PCA and its subsequent integration in CQIs using three different techniques
focused on the establishment of soil quality indexes. The hypothesis put forward for this
study is that the implementation of techniques for establishing soil quality indexes in
composts will allow for the selection of indicators related to the quality of BS compost, as
well as to differentiate the treatments implemented based on the quality of the compost
obtained.

2. Material and Methods
2.1. Obtaining and Conditioning of BS, BM and Rice Husk Samples

The BS was obtained from a WWTP with activated sludge treatment under extended
aeration, located in the municipality of Celaya, Guanajuato, Mexico, with coordinates
20◦29′34′′ N, 100◦56′03′′ W. The BS sampling was systematic, taking samples every ten
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minutes for a period of one hour, with handling and transport under sterile conditions at
4 ◦C. For physicochemical analyses, the BS samples were transported at room temperature
(T). Subsequently, the samples were convective dried and sieved to a particle size of
2 mm. BM as co-substrate was obtained from “La Maceta” ranch located at coordinates
20◦32′27′′ N, 100◦41′49′′ W. The BM was obtained from Holstein and Indian cattle, fed on
alfalfa and pasture. The BM samples were transported to the laboratory in plastic bags with
subsequent drying at room T. For better particle size control, the samples were crushed to
5 mm. Dried rice husks were used as a bulking agent (BA) due to their high silica content,
giving high mechanical resistance to microbial degradation [17].

2.2. Physicochemical Characterization of BS and BM

Heavy metals—As, Cd, Cr, Cu, Hg, Ni, Pb and Zn—from the BS and BM samples were
characterized in triplicate (1.0 kg BS or BM) using the EPA method 3050B [12], reported
in mg k−1 of dry BS or BM. The pH was determined in a BS:water or BM:water solution
(1:5 w v−1) as stated by Thomas [18]. Electrical conductivity (EC) was determined in a
BS:deionized or BM:deionized water solution (1:2.5 w v−1) using a HANNA HI9811-5 digi-
tal conductivity meter(Woonsocket, RI, USA), reported in dS m−1 [19]. Moisture (M) was
determined by placing 2.0 g of BS or BM under forced convection (100 ◦C) in a RIOSSA H-33
(Monterrey, NL, Mexico)oven until having a constant weight, reported as a percentage [20].
For the determination of T, monitoring was carried out at the beginning and during the
mineralization dynamics using the methodology of Tiquia et al. [21], reporting the results
in ◦C. For bulk density (BD), BS or BM samples were placed in a 1.0 L test tube, compacted
to reduce voids, then dried by forced convection at 105 ◦C and weighed. The weight of the
BS or BM was divided by the volume of the specimen [22] and reported in g cm−3. NT was
determined by the micro-Kjeldahl method using a micro-Kjeldahl equipment model mdk-6,
San Pedro Tlaquepaque, Jal, Mexico [23], quantified colorimetrically at 660 nm in a JENWAY
6305, (Sheung Wan, Hong Kong, China) single beam UV-Vis spectrophotometer, reported
in mg N kg−1 of dry BS or BM, using the same equipment for all spectrophotometric
analyses. Inorganic N—expressed as ammonium (N-NH4

+), nitrite (N-NO2
−) and nitrate

(N-NO3
−)—was analyzed by pre-extraction of the samples with potassium sulfate (0.5 M)

(1:5 w v−1) for two hours [24]. After extraction, the extract was filtered using Whatman No.
2 filter paper (Solna, Sweden) and the filtrate was kept frozen at −4 ◦C until analysis. For
N-NH4

+, a salicylic acid solution (5% w v−1) was used, and colorimetric determinations
were performed at a wavelength of 660 nm, reported in mg N-NH4

+ kg−1 of dry BS or
BM [25]. For the determination of N-NO2

−, a diazonium salt solution (0.3% w v−1) was
used, quantified at a wavelength of 410 nm and reported in mg N-NO2

− kg−1 of BS or dry
BM [25]. For N-NO3

− analysis, a sulfanilamide solution (0.5% w v−1) was used, quantified
at a wavelength of 540 nm and reported in mg N-NO3

− kg−1 of dry BS or BM [25]. Total
organic C (TOC) was quantified colorimetrically at a wavelength of 660 nm and reported
as a percentage [26]. Ammonia (N-NH3

+) was determined by monitoring N volatilization
using the method by Conde et al. [24]. For this purpose, 20.0 g of BS or BM samples were
placed in 1.0 L glass bottles, incubated with 20.0 mL of boric acid (2%) contained in amber
bottles at 25 ◦C. After three days, an aliquot of 5.0 mL of boric acid was taken by gauging
to 50.0 mL with distilled water. Subsequently, the samples were titrated with sulfuric
acid (0.02 N) and a mixed indicator, expressing the results in mg N-NH3

+ kg−1 of dry
BS or BM. Soluble organic C (SOC) was estimated using a sample of 10.0 g of BS or BM
in 25.0 mL of distilled water. Afterward, the samples were centrifuged at 2500 rpm for
five minutes in a ZEIGEN CH90-1A, Ningbo, China centrifuge, and then gravity filtered.
For the quantification of SOC concentration, 2.0 mL of filtrate was taken and analyzed
spectrophotometrically at a wavelength of 590 nm, reported as mg SOC kg−1 of dry BS or
BM [27].



Agronomy 2022, 12, 2290 4 of 33

2.3. Experimental Design

The BS and BM composting units were designed based on the initial values of the
TOC and TN (C/N) indicators (Table 2). Due to the nature of its high silica content, the
BA was not included in the calculation of the C/N ratio. However, 30.0 g of BA was
added to all composting units and treatments. The volumetric capacity of the composting
units was 0.113 m3 when adjusting the WHC to 40%. A completely randomized block
experimental design (CRB) with four treatments and five replicates was applied. During
the composting process, each composting system was sampled in triplicate on days 0, 7,
15, 30, 60, 90 and 120. T and M loss due to natural evapotranspiration were controlled
during the whole composting process. In order to increase T in the thermophilic stage, the
composting systems were covered with tulle 15 nylon fabric during the first two weeks
of the experiment. M was maintained throughout the experiment at 40–60% of WHC by
periodic manual application of sterile distilled water. Aeration was carried out by turning
and manual-mechanical mixing every three days for the first two weeks, thereafter, the
aeration process was carried out in periods of 8–15 days until the end of the experiments.
The treatments (T) used in the composting systems are listed as follows: T1 (BS [C/N = 24]);
T2 (BS and BM [C/N = 34]); T3 (BS and BM [C/N = 44]); T4 (BM [C/N = 54]).

2.4. Dynamics of C and N Mineralization in Composting Systems
2.4.1. Physicochemical Indicators

The pH, EC, WHC, N-NH4
+, N-NO2

−, N-NO3
−, N-NH3

+, Nmin, NI, C-CO2 and SOC
were analyzed in triplicate during the C and N mineralization dynamics. The methodolo-
gies used for the indicators pH, EC, M, T, N-NH4

+, N-NO2
−, N-NO3

−, N-NH3
+ and SOC

were previously described in Section 2.2. The WHC was determined using the methodology
described by Nannipieri [25]. Briefly, 20 g of dry compost was placed on Whatman No.
2 filter paper (Solna, Sweden), 100 mL of distilled water was added and left to stand for
24 h. The WHC was calculated by the difference between the weight of the filter with
sample and the filter without sample, reporting the results as a percentage. The Nmin
indicator—which represents the net N mineralization—was determined by the contribution
of the inorganic N indicators (N-NH4

+ + N-NO2
− + N-NO3

−) [28], reported in mg N kg−1

of dry compost. The NI indicator—which would represent the partial flux of the inor-
ganic N cycle in the composting system—was obtained from the quotient of the indicators
N-NH4

+ and N-NO3
−, where high values have been related to denitrification and low

values to nitrification processes [16]. Regarding C mineralization, this was monitored by
the emission and evolution of carbon dioxide C from microbial activity. Finally, 20.0 g of a
compost sample was placed in 1.0 L glass jars and incubated for three days together with a
bottle containing 25.0 mL of sodium hydroxide (1.0 M), after which an aliquot of 5.0 mL
of sodium hydroxide (1.0 M) was taken and titrated with hydrochloric acid (1.0 M) and
phenolphthalein as an indicator [29]. The procedure was carried out in triplicate, estimating
the average value in mg C-CO2 kg−1 of dry compost.

2.4.2. Biological Indicators

Biological indicators were analyzed in triplicate, including those related to enzymatic,
microbiological and ecophysiological activities in the composting systems.

Enzyme Indicators

The biological characterization consisted of the quantification, analysis and profiling of
enzymatic activities related to the C, N and phosphorus (P) cycles. Specific dehydrogenase
enzyme activities (DA) were determined using the INT (Iodophenyl-3-p-nitrophenyl-5-
phenyltetrazolium) method [30]. Briefly, 1.0 g of compost was weighed and mixed with
1.5 mL of TRIS buffer and 2.0 mL of INT solution (9.88 mM). The samples were incubated
at 40 ◦C for two hours. Afterward, an enzymatic extraction was performed using 10.0 mL
of a mixture of ethanol and DMF (N,N-dimethylformamide) (1:1 v v−1), homogenized
for 20 min at 50 rpm. The mixture was then centrifuged at 2000 rpm for ten minutes in
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a ZEIGEN CH90-1A centrifuge (Ningbo, China). The supernatant was quantified at a
wavelength of 464 nm. Results were reported as nmol INTF kg−1 of compost h−1.

Urease activity (UA) was determined by adding 20.0 mL of borate buffer solution
to 5.0 g of compost, plus 2.5 mL of freshly prepared urea solution (1:6 w v−1). The
samples were incubated for two hours at 37 ◦C. For the control sample, 2.5 mL of sterile
distilled water was added instead of urea. Then, 6.0 mL of potassium chloride solution
(7.46% w v−1) was added to each test tube and shaken at 1500 rpm for 30 min. After
that, the contents were gravity filtered using Whatman No. 2 filter paper (Solna, Sweden).
Finally, 1.0 mL of filtrate was used to determine the N-NH4

+ content by spectrophotometric
method. The spectrophotometric analysis consisted of adding 9.0 mL of sterile distilled
water, 5.0 mL of sodium salicylate-sodium hydroxide solution (1:1:1) and 2.0 mL of sodium
dichloroisocyanurate solution (0.1% w v−1) to the filtrate. The samples were left to stand
for 30 min in the dark at room T, then the enzyme activity was measured at a wavelength
of 690 nm. The results were expressed as nmol N-NH4

+ kg−1 compost h−1 [31].
The overall activities of proteases, lipases and esterases were analyzed by fluorescein

diacetate hydrolysis (FDA) [32]. FDA hydrolysis was determined by weighing 1.0 g of
compost, to which 15.0 mL of phosphate buffer and 0.15 mL of FDA were added. The
mixture was then stirred for one hour at 50 rpm. Subsequently, 2.0 mL of acetone was
added and centrifuged at 4000 rpm at 4 ◦C for ten minutes. The supernatant obtained was
used for the quantification of enzyme activities by spectrophotometry at a wavelength of
490 nm, reported as nmol of fluorescein kg−1 of compost h−1.

In addition to the evaluation of individual enzyme activities, an index called synthetic
enzyme index (SEI) [5,33] was developed, reflecting the overall enzyme activity in the
composting systems. The SEI included the enzymatic activities of DA, UA and FDA,
reported in nmol kg−1 compost h−1. For the development of the SEI, Equation (1) was used:

SEI =
k

∑
i=1

Xi (1)

where Xi is the concentration of the enzyme activity of DA, UA and FDA.
At the same time, the Shannon diversity index (H’) was also developed, which evalu-

ates the enzymatic functional diversity in composting systems, where high values of the
indicator (H’ > 4.0) reflect a high metabolic capacity of the microorganisms present in the
samples. The H’ indicator was developed using Equation (2):

H = −
k

∑
i=1

(Xi ∗ ln(Xi)) (2)

where Xi is the concentration of the enzyme activity of DA, UA and FDA.
In addition, the API ZYM® system was used as a complement to the enzyme analysis.

The API ZYM® system included the testing of 19 specific enzyme activities in order to es-
tablish an enzyme profile over time in the composting systems [34]. The API ZYM® system
consisted of a gallery of microcups containing chromogenic dehydrated substrates to deter-
mine enzyme activities belonging to the following enzyme families: (i) glycosyl hydrolases
(α-Galactosidase, β-Galactosidase, β-Glucuronidase, α-Glucosidase, β-Glucosidase, N-
Acetyl-β-glucosaminidase, α-Mannosidase and α-Fucosidase); (ii) proteases (Trypsin and
α-Chymotrypsin); (iii) aminopeptidases (Leucine arylamidase, Valine arylamidase and Cys-
tine arylamidase); (iv) esterases (Esterase, Esterase-lipase and Lipase); and (v) phosphatases
(Alkaline phosphatase, Acid phosphatase and Naphthol-AS-BI-phosphohydrolase) [35].
For enzyme determinations, aqueous extracts from a compost:distilled water mixture
(1:3 w v−1) were used. The mixture was shaken at 650 rpm for 20 minutes. Subsequently,
the samples were centrifuged at 2430 rpm for ten minutes at 25 ◦C. The supernatant was
filtered using Whatman No. 2 filter paper (Solna, Sweden). Aliquots of 65.0 µL of the
filtrate were added to each of the 20 microcups of the API ZYM® system and incubated
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for four hours at 37 ◦C. After incubation, 30.0 µL of ZYM A and ZYM B reagents were
added to each microculture and left to stand for five minutes [35]. The reactions generated
color patterns, which were compared using the color codes and intensities established by
the manufacturer and previously reported studies [5,35]. The intensity levels were: very
high (Level 5, 40 nmol), high (Level 4, 30 nmol), medium (Level 3, 20 nmol), low (Level 2,
10 nmol), very low (Level 1, 5 nmol) and no intensity (Level 0, 0 nmol) [5].

Microbiological and Ecophysiological Indicators

During the dynamics of C and N mineralization, compost samples were also taken and
microorganisms were extracted using Ringer’s solution (1:9 w v−1), which was composed
of 8.2 g of sodium chloride, 4.18 g of potassium chloride, 3.32 g of calcium chloride, 1.9 g of
monopotassium phosphate and 3.46 g of magnesium sulfate in 1.0 L of distilled water. The
samples were shaken at 200 rpm for 20 min [34] and the obtained indicators were labeled
as bacterial (BAC), fungi (FUN) and actinomycetes (ACT). In order to determine the BAC
indicator, a 1:10 dilution with sterile saline (0.9% w v−1) was performed, taking 0.1 mL
aliquots and placing them in Petri dishes with BD Bioxon® nutrient agar solid medium [36].
The planting technique used was spread plate and the cultures were incubated at 37 ◦C for
a period of 24–72 h.

The FUN indicator was determined following the methodology of Scheu and Parkin-
son [37], using BD Bioxon® malt extract agar solid medium. The Petri dishes were incubated
at a T interval of 25 to 28 ◦C for seven days. Regarding the ACT indicator, the colonies were
grown at 25 ◦C for 15 days according to the methodology described by Wellington and
Toth [38]. For the calculation of the indicators BAC, FUN and ACT, the colonies developed
on the aforementioned solid media were determined and reported as CFU g−1 of dry
compost in accordance with Zuberer [36].

To establish the evolution of microbial biomass during the mineralization dynamics,
the microbial biomass C indicator (MBC) was quantified by the fumigation-extraction
method [39], where samples of 20.0 g of compost were fumigated with water-free chloro-
form and incubated for 24 h at 25 ◦C [40]. Subsequently, the chloroform was removed from
the samples and 100 mL of potassium sulfate (0.5 M), concentrated sulfuric acid and barium
chloride (0.4% w v−1) were added, after which the mixture was stirred for 40 min and
filtered with Whatman No. 2 filter paper to obtain an extract. The extract was quantified
spectrophotometrically at a wavelength of 600 nm, reporting the results in g Cmic kg−1

of compost.
As a complement to the evolution of the MBC indicator, the microbial biomass N

indicator (MBN) was also determined, using the method established by Joergensen and
Brookes [41]. Briefly, 0.6 mL of previously fumigated extract were taken, and 1.4 mL of
citric acid buffer and 1.0 mL of ninhydrin agent were added. It was then placed in a water
bath for 25 min. Afterward, 4.0 mL of ethanol:water solution (1:1 v v−1) was added. The
supernatant obtained was quantified at a wavelength of 570 nm and reported in g Nmic
kg−1 of compost.

The metabolic quotient (qCO2)—as an important biological indicator—was estimated
at the beginning and at the end of the composting process. This quotient has been obtained
by calculating the respiration rate of the biological phase (e.g., soils (C-CO2)) divided by
its MBC [42]. This indicator has also been used in the analysis of composts and other
environmental matrices, in order to evaluate the physiological state of the biological phase,
reported in g C-CO2 kg−1 of compost.

As an indicator of compost maturity, the analysis of the GI was performed during the
composting process, following the methodology of Tiquia et al. [43]. The GI was based
on the determination of primary germination. For this purpose, 10.0 g of compost were
weighed and diluted in 100 mL of sterile distilled water; the mixture was stirred at 120 rpm
for one hour and then filtered by gravity with Whatman No. 2 filter paper. Subsequently,
10.0 mL of the filtrate was added to 20 lettuce seeds of the species Lactuca sativa, incubating
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them for five days at 22 ◦C in a LUZEREN DHP 952 incubator (Guadalajara, Jal, Mexico)
and expressing the results as a percentage.

2.5. Statistical Analysis

The software R version 3.6.3 (R Development Core Team, Vienna, Austria) [44] was
used for statistical analyses. The normality of the data was determined by the Shapiro-
Wilk normality test with a significance level of p ≤ 0.05. Statistical differences between
the evaluated indicators were estimated by a two-way ANOVA with a Tukey’s mean
test with significance level p ≤ 0.05 [45]. To establish the correlations between the
indicators, a Pearson’s product-moment correlation matrix was developed, considering a
linear correlation r2 > ±0.6 as a significant correlation [46]. A PCA was carried out, where a
minimum data set (MDS) was established for the analyzed indicators. The PCA started with
a normalization by natural logarithms (y = ln(x)) of the values of the assessed indicators.
A Kaiser-Meyer-Olkin (KMO) data adequacy analysis [47] was then performed to test the
suitability of the data for the PCA. The KMO analysis indicated the variance present in
the data due to underlying factors, where high (KMO > 0.5) or low (KMO < 0.5) values
indicated the suitability or unsuitability of the data for the PCA, respectively. The criterion
of eigenvalue > 1 was also used to select the PCs [48]. Once the PCs were established, the
indicators that presented a significant linear correlation with their PC

(
r2 ≥ ± 0.06

)
were

selected [46], having a commonality > 0.6 with their PC [49]. After that, a redundancy
reduction process was carried out among the indicators related to their PC, under the
following criteria and in order of importance: number of significant interactions > PC
membership (PC1 > PC2 > . . . > PCn) > correlation with their PC [50]. The quality results
obtained by the developed CQIs were analyzed by a nonparametric Friedman’s ANOVA,
with subsequent Dunnett’s test of difference of medians with Bonferroni adjustment, using
a significance level of p ≤ 0.05.

2.6. Development of Compost Quality Indexes (CQIs)

For the development of the indexes, three different methodologies were used: additive
index (CQIa), unified additive weight index (CQIw) and nemoro index (CQIn).

For the establishment of the CQIa, Equation (3) was used [51]:

CQIa =
∑n

i=1 Si

n
(3)

where Si is the value of the scored indicator resulting from the redundancy reduction
process and n is the number of indicators included in the CQIa.

For the establishment of the CQIw, the methodology employed by Yu et al. [52] was
followed, using the unified additive weight equation (Equation (4)) and the indicator
scoring equations (Equations (5) and (6)) [52]. The unified additive weight equation was
developed using the PC variability obtained in the process of developing the CQIs, which
offers advantages over other techniques—such as fixed additive weight equation, expert
opinion and linear additive indexes—and makes it one of the most widely adopted by the
scientific community, allowing for comparison with other studies [33].

CQIw =
n

∑
i=1

WiSi (4)

where Wi is the proportion of PC variability to which the indicator is correlated, Si is the
value of the scored indicator resulting from the redundancy reduction process obtained
from the analysis of the compost samples.
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Equation (5) was used to score the indicators whose role in the compost was considered
as “the more the better” or “the less the better”:

Si =
a

1 +
(

X
Xm

)b (5)

where a is equal to the maximum value of the indicator, Xm is the mean value of the
indicator obtained from the analyses, X is the value of the indicator and b is the slope of
the indicator score function (−2.5 and 2.5 for indicators whose function was considered to
be “ the more the better” and “the less the better”, respectively).

Equation (6) was used to score the indicators whose function in the compost was
considered “optimal” and whose maximum or optimal value was 0.5 [53]:

Si =
1[

1 +
(

B−L
X−L

)2L(B+X−2L)
] (6)

where B is the value of the indicator whose slope is equal to 0.5, L is the lower limit value
of the indicator and X is the value of the indicator.

For the establishment of the CQIn, Equation (7) was used [51]:

CQIn =

√
P2

ave + P2
min

2
× n− 1

2
(7)

where P2
ave and P2

min are the average and minimum value of the indicators resulting from
the redundancy reduction process and n is the number of indicators included in the CQI.

The objective of the CQIs was to obtain a value between 0 and 1, thus establishing the
quality of the compost, where 1 would represent maximum quality and 0 very poor quality.

3. Results and Discussion
3.1. Physicochemical Characterization of BS and BM

Table 1 shows the concentration of heavy metals in the BS and BM samples, as well as
the maximum permissible limits according to the Mexican standard NOM-004-SEMARNAT-
2002 [11] and the international rule EPA 503 [12]. The obtained results showed that the
BS and BM samples were in the quality category for direct contact use. Therefore, it was
decided not to include their analysis during the dynamics of C and N mineralization in the
evaluated composting systems and in the development of the CQIs. Another reason for
not including them is the fact that it has been reported that in the composting process, the
bioavailability of heavy metals is reduced by the formation of trace metal elements [54],
which is not an important variability factor to consider in the development of CQIs.

Table 1. Concentration of heavy metals in BS and BM.

Heavy Metal (mg kg−1)
Samples NOM-004-SEMARNAT-2002

and EPA 503BS BM

As 8.401 1.475 41
Cd 0.638 <0.005 39
Cr 33.22 3.46 1200
Cu 123.00 19.00 1500
Hg <1.00 <1.00 17
Ni <0.25 <0.25 420
Pb 215.20 135.9 300
Zn 714.00 116.0 2800

All the results are presented on a dry-weight basis.
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The values of the physicochemical indicators during the initial characterization of
BS and BM are presented in Table 2. The T of BS was 42.3% higher than the one of BM;
the difference was probably due to the post-stabilization of the sludge, increasing its T [5].
However, the initial values of BS and BM were found to be in the range of those reported by
other authors [13,54]. Regarding M, there was a difference in values between the substrates
(12.7%), being higher in BS; this difference could be mainly due to the stabilization process
of BS [5] and to the characteristic composition of BM, as the latter has been reported to
contain large amounts of organic residues and fibers resistant to degradation, thus reducing
the moisture holding capacity [55,56]. The pH of BS was neutral, while the one of BM was
alkaline. The EC of BS was 1.9 dS m−1, 17.4% lower than that of BM (2.3 dS m−1), which
corresponds with the high availability of macro and micronutrients reported in similar
studies of BS added with BM [6]. However, it should be taken into consideration that
the addition of BM in excess or without prior characterization could lead to a possible
accumulation of ions [56,57]. Nonetheless, the values obtained for the EC indicator were
within those reported for composting processes, which can make the substrates be regarded
as suitable [58].

Table 2. Initial values of physicochemical indicators for BS and BM.

Indicators BS BM

T 44.4 25.6
M 47.1 41.1
pH 7.2 9.9
EC 1.9 2.3
BD 0.09 - - -

N-NO2
− 0.014 0.019

N-NO3
− 0.474 3.103

N-NH4
+ 0.006 0.000

Nmin 1.36 4.86
NI 0.0168 0.0001

N-NH3
+ 11.2 20.9

TN 0.32 0.08
SOC 35.0 56.0
TOC 7.8 4.26

T, temperature (◦C); M, moisture (%); pH, hydrogen potential; EC, electrical conductivity (dS m−1); BD, bulk
density (g cm−3); N-NO2

−, nitrite (mg N-NO2
− kg−1 of BS or BM); N-NO3

−, nitrate (mg N-NO3
− kg−1 of BS or

BM); N-NH4
+, ammonium (mg N-NH4

+ kg−1 of BS or BM); NI, nitrification index (N-NH4
+/N-NO3

−); TN, total
N (%); SOC, soluble organic C (mg SOC kg−1 of BS or BM); TOC, total organic C (%).

BS presented four times more TN than BM, being a source of N to be exploited by the
microbial biomass present during the mineralization of C and N sources. The difference
in N content may be due to the nature of the physicochemical composition of the co-
substrates that were used, e.g., BS had a higher concentration of mineralizable N—mainly
N-NH4

+—and a lower C/N ratio [2]. However, the SOC in BM was 37.5% higher compared
to BS because BM by nature of its composition presented not only a higher amount of C
compounds in general, but also heavier C molecular structures (fiber or more recalcitrant
C compounds). Higher SOC values in BM could be a consequence of the degradation of
complex C compounds by the microorganisms [54,56]. As for TOC concentration in BS, it
was 45.4% higher than in BM. It is important to note that SOC and TOC values have been
reported as reservoirs of C sources for the microbial biomass activity present in composting
processes. High TOC values in composting systems increase SOC values as the metabolism
of the microorganisms acts on the OM, converting complex organic fractions into more
labile and easily degradable fractions, producing an increase in microbial activity [54].
Nevertheless, there was great variability in both BM and BS with respect to these indicators,
mainly due to the sources of their collection, therefore, a previous characterization is
necessary for their use in composting systems [59].
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3.2. Dynamics of C and N Mineralization in Composting Systems
Physicochemical Indicators

Regarding the T indicator, there were significant differences (p ≤ 0.05) between treat-
ments with respect to time, presenting the following order: T1 > T3 > T2 > T4 with values
21.1, 28.0 and 57.3% lower—respectively—compared to T1 (Figure 1A). The range of T
reached in the different treatments was between 45.2 and 19 ◦C, with an average of 24.6 ◦C.
From the beginning of the mineralization dynamics, temperatures were mesophilic but
close to thermophilic [58,60], decreasing in all the treatments up to day 15. Subsequently,
there was a gradual increase in T until it reached a range between 20 and 30 ◦C in all
the treatments on day 90, and there were no significant differences (p > 0.05) between
them during this period. Finally, the T indicator reached a value of 19 ◦C after 120 days,
a mesophilic temperature characteristic of the maturation stage of the composting pro-
cess [13]. It is important to mention that a higher T value in T1—compared to the other
treatments—could be due to the metabolism of a different microbial community, linked to
a higher content of M [4].
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Similarly, the M indicator remained in a range of 39.8 to 62.2% in all the treatments,
with an average of 50% and no significant differences between them (p > 0.05). This could
be due to the recurrent addition of water to the composting systems in order to avoid
evapotranspiration or desiccation of the systems, therefore, the M content remained in the
abovementioned range (Figure 1B). It has been reported that M contents in the range of 34
to 43% allow for reaching thermophilic stages in the composting processes, a phenomenon
observed in the present study during the first days of C and N mineralization dynamics in
the treatments T1, T3 and T4 [58].

With regard to the pH indicator (Figure 1C), at the beginning of the mineralization
dynamics there were significant differences (p ≤ 0.05) between treatments, having a
tendency towards alkalinity, which showed a positive relationship with the C/N ratio of
the runs. Alkalinity in the treatments could be linked to the addition of BM (T4 > T3 > T2 >
T1), being that the initial pH values were 28.2, 23.6 and 7.6% higher than T1, respectively.
In general, the pH indicator presented values in the range of 6.5 to 10, with an average
of 8.1. An increase in the pH indicator was observed, reaching a maximum on day 15 in
the treatments, except for T1, whose maximum value (7.7) was reached until day 60. The
dynamics of the pH indicator over time could also be linked to the volatilization of N-NH3

+

and the mineralization of N compounds with production of N-NO3
−, as a consequence of

the types of N present in the co-substrates and the activity of the microorganisms present in
the composting systems [1,13]. Subsequently, a generalized decrease in pH was observed
in all the treatments, being T1, T2 and T3 in a neutral range at the end, whereas T4 was in
an alkaline range, with the following order of the pH indicator being observed: T4 > T3 >
T1 > T2. A decrease in pH at the end of the processes could be a result of the degradation
of OM due to the production of organic acids, which would neutralize the salts produced
by OM mineralization (Figure 1C) [13].
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In context, the EC indicator showed an increase at the beginning of the mineralization
dynamics, with significant differences (p ≤ 0.05) between treatments T1, T2 and T4, with
respect to T3. By day 120 there were no significant differences between them (p > 0.05)
and the following order for the EC indicator was established: T3 = T1 = T2 = T4 (Figure 1D).
It should be noted that, from day 7 onward, all the treatments were considered to have
salt concentrations in the range of 1.65 to 3.55 dS m−1, with an average of 2.42 dS m−1

(Figure 1D). An increase in the EC indicator toward the end of the mineralization dynamics
could be due to the mineralization process of the various C and N compounds or molecules
present in the systems [61]. Additionally, it has been reported that increased EC is linked to
increased N-NO3

− and N-NH4
+ and decreased SOC [13,62]. It is also important to note that,

in composting systems, EC concentrations can affect plant growth and the development of
microbial communities. However, other studies have reported higher values compared to
the ones obtained in this research, suggesting a previous characterization of the utilized
co-substrates and the final use or destination of these composts [5].

As for the BD indicator, there were significant differences (p ≤ 0.05) between treat-
ments with respect to time. The BD indicator showed a tendency to increase, with values in
the range of 0.09 to 0.29 g cm−3, and an average of 0.16 g cm−3. The treatments presented
the following BD order: T4 > T1 = T3 > T2, with significant differences (p ≤ 0.05) only
between treatments T4 and T2 (Figure 1E). The increase in the BD indicator may be due to
the compaction of the compost as a result of OM degradation, which in turn is linked to the
action of microorganisms present in the composting systems. Both OM and BD have been
considered to be indicators of the maturity and stability of composts [54]. On the other
hand, a lower BD value at the beginning of the C and N mineralization dynamics could not
only have allowed for microbial growth and proliferation, but also for the adequate aeration
of the system, facilitating the aerobic degradation of OM and preventing the development
of anaerobic zones [14].

Regarding the WHC indicator, at the end of the mineralization dynamics (day 120)
there were significant differences (p ≤ 0.05) between treatments, presenting values in
the range of 71.3 to 119.8%, with an average of 87.1%. It was observed that the higher
the amount of BM in the treatment, the lower the WHC (T1 > T2 = T4 = T3) (Figure 1F).
A lower WHC in the BM treatments could be due to the high content of fibrous material
that was difficult to degrade, which increased the porosity of the system, preventing water
retention, with a tendency to further desiccation. This decrease in WHC may also affect
the degradation of OM and therefore influence the porosity in less compacted composting
systems [63].

The C-CO2 indicator showed values in the range of 0.39 to 1.07 mg C-CO2 kg−1

of dry compost, with an average of 0.79 mg C-CO2 kg−1 of dry compost, indicating
significant differences (p ≤ 0.05) between treatments. The treatments presented the
following order of C-CO2 concentration: T1 > T2 > T3 > T4 (Figure 1N). At the beginning
of the mineralization dynamics T2, T3 and T4 had values 0.8, 2.6 and 3.1% lower than T1,
however, at the end their values were 16.9, 29.3 and 41.5% lower than T1, respectively. The
behavior of the C-CO2 indicator reflected an increase in microbial activity at the beginning
of the mineralization dynamics, being higher for T1 due to the presence of a higher fraction
of labile N compounds, while for the remaining treatments such fractions may have been
influenced or compromised by the incorporation of BM [64]. Nonetheless, the decrease
in the concentration of C-CO2 in the different treatments—except for T1—at the end of
the dynamics (day 120) has been stipulated as an indication of the maturity stage in the
composting systems, due to the degradation of OM [54]. Likewise, it could be mentioned
that the addition of BM had a positive effect on the degradation of OM, observing—in
comparison to T1—a decrease in the C-CO2 indicator in the different treatments at the
end of the mineralization dynamics (ranging from 16.9 to 41.5%). Moreover, adequate
aeration of the composting systems possibly contributed to the development of more
diverse microbial communities with the capacity to mineralize various C and N sources
from the co-substrates used in this study [14].
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The SOC indicator showed significant differences between treatments (p ≤ 0.05)
only at the end of the mineralization dynamics, compared to T1 (Figure 1L). Values of SOC
were observed in a range from 5.19 to 61.99 mg SOC kg−1 of dry compost, with an average
of 24.34 mg SOC kg−1 of dry compost, presenting the following order according to their
concentration at the end of the mineralization dynamics: T1 > T4 = T2 = T3. Therefore, the
SOC values were 44.9, 58.6 and 61.2% lower than T1—respectively—toward the end of the
mineralization dynamics (Figure 1L). This coincides with other authors [65] who reported
an increase in C concentrations in the treatments, followed by a decrease, due to microbial
activity through the use of C compounds by the microorganisms and an increase in N. It is
important to note that all the treatments showed a decreasing trend from the beginning
of the mineralization dynamics. A higher degradation of C compounds represented by
the SOC indicator and a lower production of C-CO2 has been reported as an indication of
the maturation of the composting systems, as well as the fixation of C in possibly more
recalcitrant compounds such as fulvic acids [54].

Furthermore, the N-NH3
+ indicator showed significant differences between treatments

with respect to time (p ≤ 0.05), with values ranging from 4.40 to 22.67 mg N-NH3
+

kg−1 of dry compost and an average of 11.28 mg N-NH3
+ kg−1 of dry compost. In

order of concentration, the N-NH3
+ indicator was observed as follows: T4 > T3 > T2

> T1, with values at the beginning of the mineralization dynamics 86.8, 75.0 and 43.8%
higher than T1, respectively (Figure 1M). At the end of the mineralization dynamics, the
concentrations remained in the same order, being 44.4, 40.9 and 26.2% higher than T1,
respectively (Figure 1M). Higher N-NH3

+ volatilization was observed as a function of BM
application rate in the treatments. A higher volatilization showed by this indicator at the
beginning could be a result of higher microbial activity due to the addition of C and labile
N compounds—as witnessed by the concentration of SOC in treatments T4, T3 and T2
(Figure 1L)—and an increase in the concentration of C-CO2 (Figure 1N), as well as the
N requirements of the microorganisms and the tendency to denitrification processes [54].
A higher concentration of N-NH3

+ in the BM-added treatments could be a consequence
of alkaline pH values that affected the oxidation process of N-NH4

+, thus producing its
volatilization and loss in the form of N-NH3

+ [13,66]. Consequently, conditions for adequate
conversion of N-NH4

+ to oxidized N compounds—such as N-NO2
− and N-NO3

−—were
compromised until days 7 (T2), 15 (T3) and 30 (T4) [67]. The above coincides with the study
by Awasthi et al. [68], who obtained higher N-NH3

+ production in the thickener-added
treatments than in the controls (biosolid composting).

On the N-NH4
+ indicator, significant differences (p ≤ 0.05) were observed between

treatments with respect to time. The N-NH4
+ indicator presented values in the range of

0 to 0.15 mg N-NH4
+ kg−1 of dry compost, with an average of 0.03 mg N-NH4

+ kg−1 of
dry compost, having the following concentration order at the beginning of the dynamics:
T1 = T2 > T3 = T4, where values were 38.3, 73.4 and 92.8% lower than T1, respectively
(Figure 1I). However, in treatments T1 and T2, N-NH4

+ concentrations increased, reaching
their maximum concentration on day 7. Treatments T3 and T4 showed an opposite trend
to T1 and T2, reaching their minimum concentration on day 15 (Figure 1I). After day 7,
treatments T1 and T2 showed a decrease, whereas T3 and T4—after day 15—showed an
increase in the concentration of N-NH4

+. By day 60, there were no significant differences
(p > 0.05) between treatments. Subsequently, all the treatments showed a decrease in
their concentration of N-NH4

+ up to day 120, in the following order of concentration: T1
> T2 > T3 > T4 (Figure 1I). Likewise, at the end of the mineralization dynamics, values
were 78.6, 96.1 and 99.5% lower than T1, respectively. The concentration of the N-NH4

+

indicator showed a tendency to decrease as a function of the doses of BM application
in the various treatments. This could be due to the fact that T1—as it did not contain
BM—had a higher labile fraction of N compounds, while the other treatments had less
labile fractions to be degraded by microorganisms and also had a higher initial C/N
ratio [58]. This can also be seen in Figure 1K, where high values of the indicator NI
were observed in T1, presumably with a strong tendency for a denitrification process
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to occur [54]. At the same time, it has been reported that high C-CO2 concentration
(Figure 1N) and alkaline pH conditions (Figure 1C) could produce inhibitory effects on the
OM mineralization process under saline conditions [13,69]. Given the above, it could be
established that the addition of BM in the treatments could favor N conversion processes
via denitrification and presumably N volatilization processes (Figure 1M). At the end of the
mineralization dynamics, low concentrations of the N-NH4

+ indicator could be observed
in all the treatments, confirming the maturation of the composting process. The difference
in N-NH4

+ concentration between T1 and the other treatments at the beginning of the
mineralization dynamics could be due to a contribution of high values in the C/N ratio
(>30), which limited the concentration of N available for the microorganisms, thus causing
that in T3 and T4 the microorganisms could not fix the available N in their cellular structure,
provoking its decrease via volatilization [15]. The tendency to decrease the concentration of
the N-NH4

+ indicator in composting processes has been reported by other authors [13,64]
whose composting systems showed an increase in N-NH4

+ concentration during the first
few days, followed by a decrease until the end of the composting process.

On the other hand, the N-NO2
− indicator showed concentrations without variability,

being constant for T2, T1 and T4 until days 15 and 30, respectively, whereas T3 presented
its maximum concentration on day 7, with significant differences between treatments
up to day 90 and the end of the mineralization dynamics (p ≤ 0.05). At the end of the
mineralization dynamics, the following concentration order was observed: T1 > T4 = T3 =
T2, with values 70.6, 77.1 and 79.5% lower than T1, respectively (Figure 1G). In general, the
N-NO2

− indicator showed values in the range of 0.006 to 0.208 mg N-NO2
− kg−1 of dry

compost, with an average of 0.06 mg N-NO2
− kg−1 of dry compost. Higher concentrations

of the indicator N-NO2
− have been considered as an indication of oxidative mineralization

processes of N compounds, being an intermediate compound of N-NH4
+ oxidation to

obtain N-NO3
−. This is consistent with the decrease of the N-NH4

+ indicator (Figure 1I) at
the end of the mineralization dynamics, as well as the fact that anaerobic conditions are
presumably not present due to the manual-mechanical mixing process regularly carried
out in the composting systems.

Regarding the N-NO3
− indicator, there were significant differences between treat-

ments with respect to time (p ≤ 0.05). The N-NO3
− indicator presented values in the

range of 0.23 to 7.75 mg N-NO3
− kg−1 of dry compost, with an average of 2.97 mg N-NO3

−

kg−1 of dry compost. At the beginning of the mineralization dynamics, the following
order of concentration of the N-NO3

− indicator was observed: T4 = T3 = T2 > T1, with
values 664.5, 461.2 and 252.3% higher than those of T1, respectively. In the treatments
added with BM, there was a decrease in the concentration of N-NO3

− from day 7 (T3),
15 (T2) and 30 (T4), subsequently increasing the concentration of N-NO3

−, while for T1
it remained unchanged until the end of the mineralization dynamics. At the end of the
dynamics, the following order of concentration of the N-NO3

− indicator was observed in
the treatments: T3 > T2 = T4 > T1 (Figure 1H), showing values 559.8, 259.8 and 173.9%
higher—respectively—compared to T1. The increase of this indicator was attributed to the
mineralization and oxidation processes of N compounds (N-NH4

+, N-NH3
+ and N-NO2

−),
since it has been observed, for example, that the presence of various organic and inorganic
co-substrates in BS promotes N mineralization by microorganisms [70]. Other factors
involved in the mineralization of N compounds are T and pH, with a low concentration
of N-NO3

− being observed in the initial stages of the composting process (thermophilic
phase and alkaline pH), increasing its concentration at a mesophilic T and neutral pH
(Figure 1A,C) [13]. This corresponds with what was observed on the N-NO3 indicator,
having low concentrations at the beginning of the mineralization dynamics and an increase
toward the end (day 120). The addition of BM as a compost co-substrate presumably
improved aeration conditions, allowing for the proliferation of nitrifying microorganisms.
This was related to the UA indicator (see below), which showed a maximum value on day
15 of the mineralization dynamics (Figure 2B) presumably stimulated by the addition of
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N in the treatments when adding BM [69]. An increase in the concentration of N-NO3
− is

considered as the beginning of maturation in the various composting systems [63].
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At the same time, the Nmin indicator showed a similar trend to the N-NO3
− indicator,

decreasing at the beginning of the mineralization dynamics and then increasing until the
end of the composting process, with values in the range of 0.24 to 7.76 mg N kg−1 of dry
compost, and an average of 3.03 mg N kg−1 of dry compost, showing significant differences
between the treatments and T1 (p ≤ 0.05). At the beginning of the mineralization dy-
namics, the treatments presented the following concentration order for the Nmin indicator:
T4 = T3 = T2 > T1, with values 664.5, 461.2 and 252.3% higher than T1, respectively. At
the end of the mineralization dynamics, the various treatments presented the following
concentration order T3 > T2 = T4 > T1 (Figure 1J), with values 526.1, 237.1 and 157.4%
higher—respectively—compared to T1. This is in agreement with what was mentioned
about the N-NH4

+ and N-NO3
− indicators, which showed variations due to nitrification

processes during the mineralization dynamics. It has been previously observed that a
decrease in N-NH4

+ concentration in composting systems under aerobic conditions is due
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to its conversion into compounds such as N-NO2
− and, subsequently, N-NO3

− [13]. Thus,
the increasing trend of the Nmin indicator supports the theory that the addition of BM as a
co-substrate promoted the mineralization of nitrogenous compounds present in the com-
posting systems mainly after day 30. The tendency of Nmin to decrease and subsequently
to increase, is more similar to the one presented by the N-NO3

− indicator, possibly due to
the fact that the mineralization of N compounds under adequate oxygenation conditions
directs the N cycle in the composting system to a greater extent after day 30, avoiding the
loss of N through N-NH3

+ [64].
In reference to the NI indicator, there were significant differences between treatments

with respect to time (p ≤ 0.05), presenting values in the range of 0 to 0.026, with a mean
of 0.02. The order of NI indicator concentration in the treatments at the beginning of the
mineralization dynamics was as follows: T1 > T2 > T3 > T4, showing values 85.9, 96.2
and 99.2% lower than T1, respectively (Figure 1K). Specifically, a decrease of the indicator
was observed in the BM treatments, with the exception of T2, which reached its maximum
value on day 15, decreasing thereafter. The treatments presented significant differences
until the end of the dynamics (p ≤ 0.05), showing the following order: T1 > T2 > T3 = T4
(Figure 1K), with values 94.1, 99.4 and 99.8% lower—respectively—compared with T1. The
high values in T1 and T2 possibly promoted the volatilization and fixation of N observed
through the indicators N-NH3

+, ACT and FUN, as well as the alkaline pH conditions in
the composting systems [13]. This is supported by the fact that, in the first 30 days of the
mineralization dynamics, no significant increase (p > 0.05) in the N-NO3

− indicator was
observed in the treatments described above. For this reason, the addition of BM in the
treatments allowed for the oxidative mineralization of organic N compounds from day
30, during the mesophilic stage [66]. Figure 1H,J confirm the increase in N-NO3

− and
Nmin indicators, respectively. The measurement of indicators related to the N cycle has
been implemented to measure the maturity and quality of the products of composting
systems, since ammonification processes are intensified at the beginning of the process,
while nitrification processes are intensified at the end, with the stabilization and maturation
of the compost [63,71,72].

3.3. Biological Characterization
3.3.1. Enzymatic Indicators

Enzyme activities are closely related to the development and growth of microbial
communities in composting systems, as well as to the utilization of substrates and nutrients.
Figure 2 shows the results for the enzyme indicators DA, UA, FDA and SEI.

For the DA indicator, the treatments showed significant differences with respect to
time (p ≤ 0.05), with values ranging from 1.47 × 104 to 1.39× 106 nmol INTF kg−1 of
compost h−1, with an average of 7.8× 105 nmol INTF kg−1 of compost h−1. The order of
concentration of the DA indicator at the beginning of the mineralization dynamics was:
T2 > T4 > T1 > T3, with values 46.0 and 29.0% higher for T2 and T4, and 34.0% lower
for T3, compared to T1. Treatments T2 and T4 showed a decrease, contrary to T1 and T3,
which increased on days 7 and 30, respectively, decreasing afterward. At the end of the
mineralization dynamics, the treatments presented the following order of concentration
of the DA indicator: T1 = T4 > T2 > T3, with values 2.45, 68.53 and 73.78% lower than
T1, respectively (Figure 2A). The decrease observed in T2 and T3 could be due to the
presence of less labile C compounds, contrary to T1 and T4, where the latter—containing
BM—presumably presented conditions conducive to the proliferation of microorganisms,
with an increase in their enzymatic activity [55]. At the same time, the decrease in the
concentration of the DA indicator at the end of the dynamics is an indication of the stability
and maturation of the composting system, supported by the decrease in pH, SOC and
C-CO2, as well as the increase in mineralization, resulting in a higher concentration of the
N-NO3

− indicator [63].
In reference to the UA indicator, there were significant differences (p ≤ 0.05) be-

tween treatments with respect to time, presenting values in the range of 3.25 × 105 to
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1.67× 107 nmol N-NH4
+ kg−1 of compost h−1, with an average of 5.17 × 106 nmol N-

NH4
+ kg−1 of compost h−1. At the beginning of the C and N mineralization dynamics,

UA presented the following order of concentration in the treatments: T4 = T3 > T2 > T1,
observing values 1345.8, 1173.1 and 468.1% higher than T1, respectively. In T1 and T2, an
increase in UA concentration was observed until day 15, followed by a decrease until the
end of the mineralization dynamics. T3 and T4 showed a decrease in UA concentration
until day 15, then an increase in concentration until day 30, followed by a decrease until the
end of the mineralization dynamics. On day 120, UA presented the following concentration
order in the treatments: T4 = T1 > T3 > T2 (Figure 2B), with values 32.76% higher in T4, and
39.27% and 45.74% lower in T3 and T2—respectively—compared with T1. The significant
increase (p ≤ 0.05) for T1 and T2 was consistent with the composition or mixture of the
established substrates, as T1 and T2 had a higher proportion of BS, which had a higher
concentration of labile nitrogenous compounds such as N-NH4

+ [5,63]. This was also
in agreement with the increase in the N-NH4

+ concentration observed in T1 and T2 in
Figure 1I. The decrease in UA concentration in T3 and T4 was linked to a higher C/N
ratio (44 and 54, respectively) suggesting a lower access to labile nitrogenous compounds
present in the OM, causing a slow growth of microorganisms at the beginning of the C and
N mineralization dynamics [15]. At the end of the dynamics (day 120) a decrease in UA
concentration was observed in all the treatments, which was stated as a signal or biological
event linked to the stabilization and maturation process of the composting systems.

Regarding the FDA indicator, the treatments showed significant differences (p ≤ 0.05),
with values ranging from 2.77× 104 to 6.24× 105 nmol of fluorescein kg−1 of compost h−1,
with an average of 2.48× 105 nmol of fluorescein kg−1 of compost h−1. The treatments
presented the following order for the FDA indicator concentrations at the beginning of the
mineralization dynamics: T2 = T4 > T3 > T1, showing values 81.7, 78.9 and 37.0% higher
than T1, respectively. The FDA values in T3 and T1 showed an increase in FDA concen-
tration until day 15 and 30, respectively, then a decrease. At the end of the mineralization
dynamics, the treatments showed significant differences (p ≤ 0.05) with respect to the
FDA indicator, observing the following concentration order: T1 > T2 > T3 = T4 (Figure 2C).
The estimated FDA percentages of T2, T3 and T4 were 39.27, 45.74 and 47.25% lower than
T1, respectively. The difference in FDA concentrations between the BM treatments and
T1 could be due to the fact that an increase in enzyme activity in composting processes
has been linked to the addition of OM, which would increase access to labile C and N
compounds for the present microorganisms; this coincides with the concentrations shown
by the SOC and C-CO2 indicators (Figure 1L,N). The decrease in the overall FDA con-
centration could be due to the action of extracellular protease enzymes, which act on the
enzymes secreted by the microorganisms, causing a decrease in the overall enzyme activity
toward the end of the mineralization dynamics [5]. Another factor that could contribute to
the decrease in the overall enzyme activity is the increase of BD, causing a lower access
of microorganisms to the OM, leading to a lower microbial activity and a decrease in the
enzyme concentration (Figure 2A) [14].

The SEI was developed in this study as an indicator to summarize the overall en-
zymatic activity in the composting systems. The SEI presented significant differences
(p ≤ 0.05) between treatments with respect to time, with values in the range of 7.65× 105

to 1.80× 107 nmol kg−1 of compost h−1, and an average of 6.20× 106 nmol kg−1 of compost
h−1. The trends and order of concentration in the treatments for this indicator followed
the same behavior as the UA indicator (Figure 2D). At the beginning of the mineralization
dynamics, the following concentration order was observed on the SEI indicator: T4 =
T3 > T2 > T1, with values 308.99, 230.57 and 137.65% higher than T1, respectively. In
the same way as the UA indicator, the concentration of SEI decreased over time, where
the following order of concentrations was observed in the treatments at the end of the
dynamics: T4 = T1 > T3 = T2, with values 14.3% higher in T4, and 52.69 and 60.93% lower
in T3 and T2—respectively—compared to T1. The overall enzyme activity represented by
the SEI indicator is mostly influenced by the UA indicator and the degradation processes



Agronomy 2022, 12, 2290 19 of 33

of N compounds. This is supported by the indicators N-NO3
−, N-NH4

+, Nmin and NI
(Figure 1H–K) because this indicator was related to the N cycle within the composting
systems and because it was a limiting element for microbial growth due to the high C/N
ratio in the BM-added treatments [15].

In the same context, the API ZYM® system made it possible to evaluate and comple-
ment the dynamics of the enzyme activity profiles of the composting systems. Nineteen
enzymes related to C, N and P cycling were analyzed across treatments and time (Figure 3).
The concentrations of enzyme activities in the following order were observed in the treat-
ments: T1 > T2 > T3 > T4. With regard to the activity of the enzyme families, they presented
the following order: phosphatases > glycoacyl hydrolases > peptidases > lipase esterases
> aminopeptidases. In addition to the abovementioned, individual enzyme activities
were observed in the following order: Alkaline phosphomonoesterase = α-Fucosidase >
Acid phosphomonoesterase = Trypsin = α-Chymotrypsin > Phosphohydrolase = Lipase
esterase > N-acetyl-β-glucosaminidase > Cystine arylamidase > Esterase = β-Glucosidase >
α-Glucosidase = β-Glucosidase > β-Galactosidase > Lipase = Valine arylamidase > Leucine
arylamidase > α-Mannosidase > α-Galactosidase. With respect to time, enzyme activi-
ties generally decreased as the days of the mineralization dynamics elapsed. A higher
activity of the phosphatase enzyme family was related to the low availability of P in the
composting systems, forcing the microorganisms to secrete enzymes (alkaline and acid
phosphomonoesterase) for the incorporation of P into their structure (membrane and energy
accumulation) [33,34]. Moreover, increased enzymatic activity of alkaline phosphatase was
observed. The activity of this enzyme has been reported under neutral to slightly alkaline
pH conditions, which coincides with the conditions presented by T1 and T2 (Figure 1C) [63].
Phosphatase activity generally increased as a function of the BM concentration added to
the studied treatments, possibly because BM has been reported to provide a source of P to
composting systems (Figure 3). In the same context, the activity of the glycosyl hydrolase
enzyme family is related to the C cycle in composting systems and its acquisition by the
present microorganisms. A higher activity of this family at the beginning of the mineral-
ization dynamics could be a consequence of higher availability of C compounds due to
the addition of BM [34,55]. On the other hand, a decrease in the activity of the glycosyl
hydrolase enzyme family at the end of the mineralization dynamics could be explained
by a decrease in OM in the composting systems and developed treatments, which is also
related to a decrease in microbial activity and the SOC indicator, leading to a decrease in
C-CO2. The activity of the peptidase family is related to the degradation of proteins to
amino acids with the release of organic acids, which could lead to a decrease in the pH of
the composting systems. In this study, the peptidase family showed higher activity in T1
and decreased over time as a function of the addition of BM [34,73]. The esterase-lipase
and aminopeptidase enzyme families showed the lowest activity because the former is
related to the degradation of water-soluble C compounds (SOC) (ester bonds and organic
acids) and the latter to the degradation of amino acids from protein mineralization. At the
beginning of the mineralization dynamics, the esterase-lipase and aminopeptidase enzyme
families had a higher concentration of substrates (labile C and N compounds) on which
to act, so it was suggested that the microbial community in the systems did not require a
higher production of extracellular enzymes.
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3.3.2. Microbiological and Ecophysiological Indicators

The concentration of specific microbial groups in composting systems has been an
indicator of the stability of a compost, as well as the utilization of the various nutrient
pools [16]. Figure 4 shows the dynamics over time of the BAC, ACT, FUN and H’ indicators.

Regarding the BAC indicator, there were no significant differences (p > 0.05) be-
tween treatments with respect to time, presenting values in the range of 6.78 × 105 to
1.59× 108 CFU g−1 of dry compost, with an average of 3.43× 107 CFU g−1 of dry compost.
At the end of the mineralization dynamics, the following concentration order was observed
for the BAC indicator: T3 = T1 = T2 = T4, with values 16.1 and 4.8% lower in T2 and
T4—respectively—and 35.2% higher in T3, compared to T1. In general, the BAC indicator
decreased over time in all the treatments (Figure 4A). The decrease in BAC concentra-
tion was possibly due to the decrease in C and labile N sources, which was supported
by the SOC and N-NH4

+ indicators (Figure 1L,I) [73], and confirmed by the DA enzyme
activity, related to viable cells and enzyme activity in the composting systems (Figure 2A).
The decrease in the BAC indicator and related enzyme activity in all the treatments was
considered to be an indication of the steady state of the composting systems [63].

The ACT indicator presented significant differences (p ≤ 0.05) between treatments
from day 15 of the mineralization dynamics. The observed values were in the range of
1.49× 105 to 1.43× 107 CFU g−1 of dry compost, with an average of 2.63× 106 CFU g−1 of
dry compost (Figure 4B). On day 120 of the mineralization dynamics, the ACT indicator in
the treatments presented the following order: T1 > T2 = T3 > T4, with values 68.3, 74.9 and
90.0% lower than T1, respectively. The concentration of actinomycetes increased in the first
days of the mineralization dynamics, with maximum concentrations on days 30 (T3), 60 (T2),
90 (T4) and 120 (T1). This group of microorganisms has been reported to be involved in the
degradation of long-chain C compounds (cellulose and lignin) [70], therefore, the increase
in their concentration at the beginning of the dynamics would be related to the degradation
of long-chain C compounds and the release of shorter C compounds (SOC) and C-CO2.
The major impact factor in ACT growth is the C content [70], consequently, the decrease
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in ACT at the end of the mineralization dynamics was related to the decrease in SOC and
C-CO2 (Figure 1L,N).
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Figure 4. Two-way ANOVA for Shannon index and microbiological indicators of composting systems.
Different letters indicate significant differences according to the two-way ANOVA with subsequent
Tukey’s test of means at a significance level p ≤ 0.05. Vertical bars represent the standard deviation
(n = 5). (A) BAC, bacteria (CFU g−1 dry compost); (B) ACT, actinomycetes (CFU g−1 dry compost);
(C) FUN, fungi (CFU g−1 dry compost); (D) H’, Shannon index. Dotted line represents the mean of
the indicator; ns, not significant; *, significant (p ≤ 0.05); ***, highly significant (p ≤ 0.001).

As for the FUN indicator, it showed significant differences between treatments with
respect to time (p ≤ 0.05), with values in the range of 0 to 3.87× 106 CFU g−1 of dry
compost, and an average of 4.65× 105 CFU g−1 of dry compost. The treatments presented
the following concentration order for the FUN indicator at the beginning of the miner-
alization dynamics: T4 > T1 = T3 > T2, with values 660.3% higher in T4, and 69.5% and
98.5% lower in T3 and T2—respectively—compared to T1. Treatments T1, T2 and T3 had
an increase during the first days of the mineralization dynamics, reaching their maximum
concentrations on days 7, 15 and 30, respectively. Subsequently, there was a decrease in this
indicator over time. In the case of T4, there was a decrease in the concentration of FUN
at the beginning of the mineralization dynamics, then an increase on day 30, followed by
a decrease until the end of the dynamics (Figure 4C). The increases over time in the FUN
indicator in the different treatments could be due to the presence of cellulose and lignin
compounds in the added BM, which were decreasing in concentration toward the end of the
mineralization dynamics (day 120) [34]. On the other hand, a decrease in the concentration
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of FUN could be interpreted as a state of maturation of the composting system toward the
end of the mineralization dynamics [63].

In addition, the H’ indicator has been reported to be a reflection of the enzymatic
diversity in the environmental systems. This indicator did not show significant differences
(p > 0.05) between the treatments with respect to time (Figure 4D), having values in the
range of 0.20 to 1.21. The average value was 0.66 and was considered as low diversity
(H’ < 4.0) for an environmental system [5]. In all the studied treatments, there was a
decrease in enzyme diversity in the first days of the mineralization dynamics, followed by
an increase in enzyme diversity until the end of the mineralization dynamics (Figure 4D).
The H’ indicator presented the following order of: T2 = T1 = T3 = T4, with values 2.56%
higher, and 15.6 and 17.5% lower than T1, respectively. A decrease in enzyme diversity
during the first 15 (T1 and T2) and 30 days (T3 and T4) could be due to the decrease in the
concentration of microorganisms present in the composting systems, and it could linked to
the dynamics of the indicators BAC, ACT and FUN. Furthermore, the decrease in easily
accessible or labile C and N compounds may have affected the expression of enzymes in
the microorganisms (Figure 3), i.e., as time went by, the activity of the various enzymes
decreased and even reached a level at which their activity could not be detected. This was
also consistent with the concentration of other indicators such as SOC, N-NH3

−, N-NH4
+

and C-CO2. In summary, based on the H’ values, it was established that the microbial
communities present in the composting systems over time and in their treatments were
not affected by the addition of the utilized substratum, nor by the time period of the
mineralization dynamics, which could mean that the microorganisms were well adapted to
the physical and chemical conditions of the system [6].

Regarding the ecophysiological indicators, the results obtained are shown in Figure 5.
The MBC indicator showed significant differences (p ≤ 0.05) between treatments with
respect to time, with values in the range of 75.31 to 1716.13 g Cmic kg−1 of compost, and an
average of 535.68 g Cmic kg−1 of compost. MBC generally decreased from the beginning to
the end (day 120) of the mineralization dynamics in all the treatments. However, on day 15,
an increase in MBC was recorded for all the treatments, although it decreased thereafter. At
the end of the dynamics, the composting systems showed an MBC concentration in the fol-
lowing order: T2 = T4 > T3 > T1 (Figure 5A), with values 381.7, 281.2 and 69.9% higher than
T1, respectively. Being that the MBC indicator is related to the number of microorganisms
present in the composting systems, a decrease in this indicator was linked to a decrease in
the BAC and FUN indicators in this study. At the same time, the MBC indicator is closely
related to the enzymatic activities in their ability to degrade OM present in the composting
systems [68], therefore, a decrease in MBC indicated a lower concentration of OM, which in
turn was reflected in a decrease in the SOC, C-CO2, DA, UA and FDA indicators [5].
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As for the MBN indicator, the treatments showed significant differences (p ≤ 0.05)
throughout the mineralization process, contrary to what was observed at the end of the
process, where there were no significant differences (p > 0.05). At the end of the mineral-
ization dynamics, the treatments showed the following order of concentration: T2 = T4 =
T3 = T1, with values 19.1, 7.7 and 4.9% higher than T1, respectively. The MBN indicator
presented values in the range of 1.39 to 80.38 g Nmic kg−1 of compost, with an average
of 32.66 g Nmic kg−1 of compost. This indicator showed a slight tendency to increase in
the composting systems during the mineralization dynamics and presented its maximum
concentration values on day 7 in T1 and T3, while in T2 and T4 the maximum concentra-
tion was reached until day 60 (Figure 5B). The increase in the concentration of MBN was
declared to be a process of biological fixation of the N present in the composting systems.
This can be related to the behavior of the N-NO3

− and Nmin indicators, which increased at
the end of the mineralization dynamics. However, the trend of the MBN indicator in the
present study contrasts with what has been reported in other studies, in which an increase
of the indicator is established as the composting process progresses [68].

Likewise, the GI indicator—which has been related to the phytotoxicity of the composts
—presented significant differences between treatments with respect to time (p ≤ 0.05),
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showing values in the range of 0 to 295.91%, with a mean of 95.25%. The GI indicator
showed a tendency to increase over time, with the treatments presenting the following
order: T4 > T3 > T2 > T1 (Figure 5C), having values 722.9, 618.1 and 431.9% higher than
T1, respectively. From the beginning of the mineralization dynamics, it could be observed
that T3 and T4 presented better conditions with respect to phytotoxic compounds. From
day 30 onward, all the treatments except T1 presented GI values higher than the ones
recommended for composts (GI = 80%) [13]. Lower values in the early stages of composting
could be due to the release of toxic substances in the process of decomposition of OM; as
time passes, phytotoxic substances are eliminated or degraded by microorganisms [16].
The phytotoxicity in T1 and T2 at the beginning of the mineralization dynamics could
be attributed to the fact that—as they contained a higher proportion of BS—phytotoxic
substances were released in higher concentrations through the degradation of OM by the
microorganisms [16]. The opposite process occurred in T3 and T4 due to the addition of a
higher dose of BM, which allowed for better aeration of the system and at the same time
added a higher concentration of microbial communities that facilitated the elimination
of phytotoxic substances from the composting system. High values of the GI indicator
(GI > 80%) made it possible to establish the state of maturity and quality of the composts in
the different treatments used in this study, besides, values of GI > 100% are considered to
be phytonutritious, which supports the obtained composting process [16].

Within the same context of analysis of ecophysiological indicators, the qCO2 indicator
showed significant differences (p ≤ 0.05) between treatments with respect to time, having
values in the range of 25.96 to 332.21 g C-CO2 kg−1 of compost, with an average of 87.52 g
C-CO2 kg−1 of compost (Figure 5D). This indicator has been related to stress conditions and
nutrient uptake by microbial communities in environmental systems [5,34]. The trend of
the qCO2 indicator for T1 and T3 was to increase over time, while for the other treatments
it remained unchanged. At the end of the mineralization dynamics, the qCO2 indicator
presented the following order: T1 > T3 > T2 = T4 (Figure 5D), with values 56.4, 83.1 and
85.0% lower than T1, respectively. Higher values of the qCO2 indicator in treatments T2,
T3 and T4 could be related to the addition of OM to the composting systems, a behavior
described in other investigations [5,34]. A higher value in T1 compared to the other
treatments at the end of the mineralization dynamics could be a consequence of higher
stress due to the low access of microorganisms to labile C and N compounds [5], contrary
to treatments T2 and T4, which were added with OM. This OM provided better nutritional
conditions for the composting systems, allowing for the maintenance of microbial activity
through a higher concentration of nutrients during the mineralization dynamics.

3.4. PCA

In the Pearson’s correlation matrix (Figure 6), it could be observed that the indicators
N-NO3

−, N-NH4
+, Nmin, NI, TOC, GI, and SEI showed significant correlations with at

least one other indicator
(
r2 ≥ ± 0.6

)
. The remaining indicators did not show significant

correlations with any other indicator. It is important to highlight that the addition of OM
promoted an increase in the concentration of indicators such as NI (0.63) and SEI (0.64).
The degradation of OM increased the phytotoxicity of the system, probably due to the
release of toxic compounds when the microorganisms degraded the OM (GI = −0.62). On
the other hand, mineralization processes of N compounds (N-NO3

− and Nmin) decreased
phytotoxicity by promoting the maturation and quality of the compost (GI = 0.73).
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As a result of the PCA, two PCs were obtained, which fulfilled the criterion of eigen-
value > 1. The selected PCs accounted for 83.4% of the variability of the indicators analyzed
during the mineralization dynamics. The variability was distributed as shown in Figure 7.
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The analyzed indicators showed significant correlations with their respective PCs.
PC1 showed significant correlations with all the indicators, whereas PC2 only showed
significant correlations with the SEI indicator (Figures 8 and 9).
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3.5. Establishment of CQIs

Due to their relevant results, the NI and SEI indicators were established as those with
the highest relationship to compost quality [16]. These indicators were transformed using
the scoring equation (Equation (5)), with the indicators being considered as having the
functions of “the less the better” and “the more the better”, respectively, in the composting
systems. The NI indicator and its selection as a compost quality indicator coincided
with what has been reported by Peña et al. [15] and by Meena et al. [16], whose studies
established—through a PCA—indicators related to N cycling and phytotoxicity as the
most related to compost quality. Saldarriaga et al. [14], through a PCA as well, concluded
that moisture and respirometry (indicator related to enzymatic activity) are the factors
that presented the closest relationship to the maturation, stability and quality of composts.
The aforementioned studies presented a methodology similar to the one followed in the
present study. However, this study seeks to contribute with a well-defined scale to relate
the values of the selected indicators to the quality of the compost through the use of CQIs.
Therefore, the indicators obtained and their applicability in the monitoring of composting
systems highlight the importance of establishing the biosolids application dose with respect
to their N concentration and their biological functionality—enzymatic activity. Previous
studies carried out by the research group related to the application of biosolids to soils,
were already incapable of monitoring indicators related to the N cycle and the diverse
microbial activities of the soil [5,8,10]. Finally, the obtained CQIs are shown below:

CQIa =
SNI + SSEI

2
(8)

CQIw = (0.672× SNI) + (0.672× SSEI) (9)

CQIn =


√

P2
aveNI

+ P2
minNI

2
× 1

2

+


√

P2
aveSEI

+ P2
minSEI

2
× 1

2

 (10)

The CQIw index classified the treatments into two groups: the highest quality, con-
sisting of T2, T3 and T4, and the lowest quality, consisting of T1 (Figure 10), presenting an
average value considered as high quality (CQIw = 0.62), coinciding with what was obtained
through the GI indicator, considered as a parameter of the maturity and quality of the
compost products (Figure 5C). The CQIa index could not classify the treatments in the
same way as CQIw, obtaining a higher quality group that comprised treatments T3 and
T4, an intermediate quality group for T2 and a lower quality group for T1 (Figure 11),
presenting average value considered to be of moderate quality (CQIa = 0.56). The CQIn
presented an inverse tendency to the two previous ones, being T1 and T2 in the highest
quality group, T3 in the intermediate quality group and T4 in the lowest quality group
(Figure 12), presenting an average value considered as low quality (QCIn = 0.30). The
behavior of the different CQIs that were developed could be explained by the fact that the
CQIa and CQIn indexes established an equal weight for the selected indicators—which is
not completely true—and therefore did not allow for a proper classification of the quality
of the different composting systems and treatments used in this study. This is contrary
to what was obtained by the CQIw, which—using a statistical technique—established the
proportional weights of each indicator based on the variability of the selected PCs, thus
facilitating a classification according to the quality of the composting systems in relation to
the utilized treatments.
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In order to numerically compare the various CQIs developed in this study, linear cor-
relation equations were established. Figure 13 shows that all the comparisons between the
developed indexes were significant (p ≤ 0.05), however, the highest correlation coefficient
was presented in the comparison between CQIa and CQIw

(
R2 = 0.98

)
(Figure 13A).
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3.6. Applications, Challenges and Perspectives

The developed CQIw is a tool that allows to measure in a fast, simple and easy way
to interpret the product quality of BS composting systems, which gives clues of the most
related indicators regarding the quality of the compost and the processes involved. This tool
can be applied to similar systems around the world, reducing costs and evaluation periods,
allowing for systematic monitoring. The challenges to be overcome in this type of research
are based on the temporal variation of BS production, which must be taken into account
in subsequent studies, in order to refine the CQIs developed. The perspectives for this
study are the evaluation of the application of BS composts with different qualities obtained
from the monitoring based on the developed CQIw, in soils with low fertility, degraded or
contaminated, with the purpose of observing the effect caused by the treatments.

4. Conclusions

The treatments with added BM generally improved the conditions of transformation
and assimilation of C and N sources in the various composting systems, allowing for
better aeration and higher addition of OM. The treatments used in this study promoted
the loss of N via volatilization. The final products obtained from the composting systems
showed conditions of maturity, stability and quality, reflected in low values of SOC and
N compounds and high values of GI. Moreover, the PCA methodology used in this study
allowed for the selection of the indicators that were most related to compost quality (NI and
SEI), indicators selected in previous investigations as important to monitor in composting
processes. The CQIw index presented the best performance in the classification of quality
for the different utilized treatments. The CQIw developed stands out as an easy-to-interpret
tool for measuring the quality of BS composts with BM and similar systems at the national
and international level, reducing the number of indicators analyzed and therefore the
difficulty and cost of monitoring.
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71. Cáceres, R.; Malińska, K.; Marfà, O. Nitrification within Composting: A Review. Waste Manag. 2018, 72, 119–137. [CrossRef]
72. Domeizel, M.; Khalil, A.; Prudent, P. UV Spectroscopy: A Tool for Monitoring Humification and for Proposing an Index of the

Maturity of Compost. Bioresour. Technol. 2004, 94, 177–184. [CrossRef] [PubMed]
73. Robledo-Mahón, T.; Martín, M.A.; Gutiérrez, M.C.; Toledo, M.; González, I.; Aranda, E.; Chica, A.F.; Calvo, C. Sewage Sludge

Composting under Semi-Permeable Film at Full-Scale: Evaluation of Odour Emissions and Relationships between Microbiological
Activities and Physico-Chemical Variables. Environ. Res. 2019, 177, 108624. [CrossRef] [PubMed]

http://doi.org/10.1080/03650340.2017.1373188
http://doi.org/10.1016/j.scitotenv.2017.10.301
http://doi.org/10.1016/j.apsoil.2012.12.009
http://doi.org/10.1016/j.renene.2017.02.068
http://doi.org/10.1016/j.soilbio.2018.06.002
http://doi.org/10.22201/fi.25940732e.2018.19n4.036
http://doi.org/10.3389/fvets.2021.633858
http://www.ncbi.nlm.nih.gov/pubmed/33708812
http://doi.org/10.1080/1065657X.2020.1838357
http://doi.org/10.3390/en15010385
http://doi.org/10.1002/jeq2.20067
http://www.ncbi.nlm.nih.gov/pubmed/33016488
http://doi.org/10.1016/j.biotechadv.2018.04.004
http://doi.org/10.1016/j.jhazmat.2015.10.061
http://doi.org/10.1007/s42452-019-0889-2
http://doi.org/10.1007/s42729-019-00116-w
http://doi.org/10.1111/ejss.12881
http://doi.org/10.1002/jsfa.10791
http://www.ncbi.nlm.nih.gov/pubmed/32892367
http://doi.org/10.1002/anie.201903014
http://doi.org/10.1016/j.biortech.2017.09.061
http://www.ncbi.nlm.nih.gov/pubmed/28946087
http://doi.org/10.1134/S1064229319060085
http://doi.org/10.3390/su11082229
http://doi.org/10.1016/j.wasman.2017.10.049
http://doi.org/10.1016/j.biortech.2003.11.026
http://www.ncbi.nlm.nih.gov/pubmed/15158510
http://doi.org/10.1016/j.envres.2019.108624
http://www.ncbi.nlm.nih.gov/pubmed/31422221

	Introduction 
	Material and Methods 
	Obtaining and Conditioning of BS, BM and Rice Husk Samples 
	Physicochemical Characterization of BS and BM 
	Experimental Design 
	Dynamics of C and N Mineralization in Composting Systems 
	Physicochemical Indicators 
	Biological Indicators 

	Statistical Analysis 
	Development of Compost Quality Indexes (CQIs) 

	Results and Discussion 
	Physicochemical Characterization of BS and BM 
	Dynamics of C and N Mineralization in Composting Systems 
	Biological Characterization 
	Enzymatic Indicators 
	Microbiological and Ecophysiological Indicators 

	PCA 
	Establishment of CQIs 
	Applications, Challenges and Perspectives 

	Conclusions 
	References

