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Abstract: Fungal endophytes are not widely known for their role in bioactive metabolite production
and salinity stress alleviation in different crop plants. Presently, we investigated the salt stress (NaCl,
KCl, and H2SO4) mitigation capabilities of fungal endophyte Candida membranifaciens (FH15) isolated
from Euphorbia milii L. The pure culture filtrate (CF) of C. membranifaciens revealed siderophore
production and solubilization of phosphate, with high levels of indoleacetic acid (IAA: 35.8µg/mL),
phenolics (70 µg/mL), and flavonoids (50 µg/mL) by using a UV spectrophotometer. The LC/MS
analysis of the CF showed different phenols and flavonoids that were identified as Salicylic acid,
Baicalein, Aconitic acid, Feruloylquinic acid, Coniferyl aldehyde hexoside, Pentose, Chlorogenic
acid, Myricetin, Propoxyphene, and Amino-flunitrazepam. Inoculation of maize seedlings with
C. membranifaciens significantly (p = 0.05) enhanced the fresh and dry biomass, carotenoid, and
chlorophyll contents under 100 mM salt stress conditions. Similarly, the catalase, peroxidase activity,
phenols, proline flavonoids and relative water contents (RWC) of the maize plants were enhanced.
More interestingly, the inoculation of C. membranifaciens on maize revealed a higher endogenous IAA
level as compared to non-inoculated control plants. Endophyte C. membranifaciens inoculation on
maize seedlings under salt stress revealed a 20.87% and 16.60% increase in fresh and dry biomass,
as well as significantly enhanced root shoot length and allied growth attributes, in addition to an
alleviation of the adverse effects of salinity stress. Conclusively, endophytic C. membranifaciens
significantly enhanced the growth attributes of maize and mitigated the adverse effects of salinity
stress. Such endophytic fungal strain could be used for further field trails to enhance agricultural
productivity and facilitate sustainable agricultural practices.

Keywords: endophytic fungi; Candida membranifaciens; maize; salt stress; IAA; phenols; flavonoids

1. Introduction

Salt stress can reduce crop productivity by triggering an osmotic and ionic imbalance
inside plant cells; salinity is one of the main stressors impacting agricultural crops around
the world. Plants’ growth and development are slowed down by salinity stress, which also
causes toxicity, a reduction in water availability, the immobilization of reserves in storage,
and alterations to the organization of structural proteins [1–3]. In fact, to address such
stresses and to ensure sustainable agriculture, robust measures must be taken. To combat
salinity, a number of strategies are recommended, such as the production of salt-resistant
crops; however, the techniques are either time-consuming or extremely expensive. It has
been revealed that using fungal endophytes to deal with salinity stress is affordable, effec-
tive, and environmentally beneficial [1,2,4]. Plant-associated microorganisms fulfill pivotal
functions and influence the growth and development of their host plant by various mech-
anisms, whereas the integration of beneficial microorganisms is pivotal for augmenting
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plant growth, nutrient uptake, and stress-tolerance in the context of modern agricultural
systems.

The pragmatic role of beneficial fungal endophytes has attracted more interest recently,
and fungal endophytes have received heightened attention from plant biologists due to
their role in phytostimulation under environmental stress to develop the most appropriate
biofertilizers [5]. Fungal endophytes contribute to the robust life cycle of their host plant
through a variety of mechanisms, and confer stress tolerance. Endophytic fungi greatly
contribute through the availability of macro- and micro-nutrients to their host plant [6], and
release phytohormones such as IAA and gibberellic acids (Waqas et al., 2012). Additionally,
endophytic fungi improve mycorrhizal colonization and hyphae production, provide bio-
fixed nitrogen, produce siderophores, etc. [7,8]. Fungal endophytes are also known for their
ability to solubilize zinc, phosphate, and potassium, etc. [9], and have a higher phosphorus
solubilization efficiency than bacteria [10].

Endophytes are asymptomatically occurring beneficial microorganisms living inside a
host plant that greatly contribute to the growth and development of the host plant, enhance
nutrient uptake, reduce disease severity, and enhance host plant tolerance to environmental
stresses. Plants in saline environments face physiological drought, and the lack of water
available to the roots causes osmotic stress and induces ionic and nutrient imbalance, while
fungal endophytes support plants and confer stress tolerance, and ultimately, promote
plant growth. Besides being highly diverse in nature, these endophytes are a novel source
of bioactive secondary metabolites. Endophytic symbiosis decreases Na+ toxicity and
ROS generation, and enhances the plants as compared to un-inoculated plants [11–13].
The mutualistic interaction mitigates stress by compromising the activities of catalase,
polyphenol, oxidase, and peroxidase. Endophytes ameliorate the stressful conditions by
regulating hormonal levels, such as altering jasmonic acid, enhancing salicylic acid, and
down regulating ABA, compared to control plants [13]. Fungal endophytes enhance plant
growth and development by influencing the main characteristics of plant physiology and
host defense against stressful conditions [14]. Endophytic fungi related to higher plants
have recently been discovered to be a good source of potent antioxidants [15]. Antioxidants
significantly alleviate harmful effects by deactivating free radicals before they can attack
the cells and inhibit damage to proteins, enzymes, lipids, carbohydrates, and DNA [16].
Endophytes encode for plant hormones [17] that can influence the synthesis of secondary
metabolites to help plants escape stressful conditions [18]. Phytohormones such as ABA,
jasmonic acid (JA), and salicylic acid (SA) respond to abiotic stress stimuli and perform as
defense-signaling components [19]. Gibberellins, along with other phytohormones such
as IAA, secreted by endophytic fungi, can enhance crop production [20]. Production of
IAA by plant-associated endophytes is shown to be a key character allowing the fungal
endophytes to stimulate plant growth under abiotic stress [21]. Conversely, host plants
without fungal endophytes are devastated by different environmental stresses.

After wheat and rice, maize is the third leading cereal crop in the world. Maize
is economically important due to the minerals, vitamins, fiber, and oil it contains. The
dry weight of maize consists of starch (71%), protein (9%), and oil (4%); 80% of maize is
consumed by humans and animals, and the remaining 20% is utilized by different industrial
processes. Maize provides several nutrients to humans and animals and helps as a basic
raw material for the production of oils, starches, food sweeteners, alcoholic beverages,
proteins, and more recently, fuel. The maize plant is pharmacologically useful for its anti-
inflammatory, hypoglycemic, diuretic, and antioxidant properties [22,23]. In the present
study, we aimed to isolate, screen, and identify the most competent fungal endophyte,
which would not only improve plant growth by producing bioactive secondary metabolites
but also extend greater salt stress tolerance to maize plants.
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2. Materials and Methods
2.1. Isolation of Fungal Endophyte

The samples of Euphorbia milii L. were carefully washed with tape water and then
surface sterilized. Tape water was used to remove any dust materials that were attached to
the plant samples, which were then washed with 70% ethanol and 4% sodium hypochlorite
for 30 s to remove any attached microorganisms. Finally, the plant parts were washed with
dual purified water to eliminate sterilizing agents, and double filter papers were used to dry
the plant materials, which were then surface sterilized and cut into small pieces (5–6 mm)
with a sterilized blade and subjected on PDA plates by following the methods of Photita,
et al. [24]. The fungal isolates were sub-cultured until pure colonies were developed, which
were then stored at 4 ◦C for further processing.

2.2. Fungal Isolates Screening for PGP Traits

The methods of Jan, et al. [25] were followed for the screening of endophytic fungal
isolates for their PGP traits. Accordingly, fungal spore suspension was used on waito-c
rice to evaluate the growth-augmenting capabilities of the fungal isolates. Each plant in
the pot was treated with fungal spore (10 mL) suspension. Under natural conditions for
fungal plant symbiosis, the seedlings were grown in pots for about two weeks. The growth
characteristics of the seedlings were measured after two weeks.

2.3. Halo-Tolerance Screening of Fungal Isolates

The fungus isolate was tested for halo tolerance at different salt concentrations (NaCl).
In the Czapek broth medium, the fungal endophyte was grown, then treated with NaCl
(0, 100, 150 and 200 mM) to monitor the potential of the isolated strain to treat salt stress
conditions. For 7 days, at 27 ◦C at 120 rpm, the flask was incubated in a shaking incubator.
The mycelia were filtered and checked for their fresh weight and dry weight after 7 days of
incubation [26].

2.4. Fungus Evaluation for the Production IAA, Siderophore and Phosphate Solubilization

The endophytic fungi with robust results was used for further screening. For the
production of IAA, endophytic fungi were grown in a 100 mL flask in 50 mL Czapek liquid
media at 120 rpm for 6 days at 30 ◦C. The method of Chadha, et al. [27] was followed for
IAA in the CF. For phosphate solubilization and siderophore production, endophytic fungi
were inoculated in Pikovskaya ‘s media and Chrome–AzurolS (CAS) media, respectively,
and incubated for five days of incubation at 27 ◦C, according to the detailed methods of
Chadha, Prasad, and Varma [27], and Schwyn and Neilands (1987).

2.5. Estimation of Phenol, Flavonoid in the CF of Endophytic Fungi

The detailed method of Bhalodia, et al. [28] was followed for phenol estimation and
checked at 750 nm. The aluminum chloride colorimetric procedure was employed to
determine the flavonoid contents according to the detailed method of Akbay, et al. [29], and
measured at 416 nm. The creamy white appearance was a clear indication of the presence
of flavonoids. A Quercetin calibration curve was used for flavonoid quantification.

2.6. Molecular Identification of the Fungal Isolate

The competent fungal endophyte was subjected for molecular identification according
to the detailed method of [13,17]. The fungal endophyte was inoculated in Czapek-broth
media for one week and kept on a shaking incubator at 120 rpm, 28 ◦C. Fungal mycelium
was collected for the extraction of genomic DNA according to manufacturers protocols by
using a Solgent Kit (SGD-S120). The sequences were obtained by using specific primers.
The BLASTn search program was used to compare sequence similarity, and closely related
sequences were aligned through CLUSTAL W using MEGA (Version 6.0) software, by
Thompson and Higgins, Uinversity College Dublin, Ireland [17].
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2.7. Evaluation of Fungi Effect on Maize Growth under Salt Stress

The seeds were surface-sterilized by soaking In 3% sodium hypochlorite for 90 s,
then ethanol (70%) was applied for 90 s, and finally, the seeds were washed three times
with sterilized distilled water. Uniform seedlings were selected after germination of the
sterilized seeds at 27 ◦C for 3 days. The uniform seedlings were transferred to pots with
autoclaved soil. Treatments consisted of control (100 mM KCl, NaCl, K2SO4) salinity and
control without salinity, endophytic fungi with salt stress (100 mM KCl, NaCl, K2SO4),
and endophytic fungi without salt stress. After the maize plants had been established
in pots, each maize plant in the pot was supplied with 10 mL fungal spore suspension.
The seedlings were inoculated with fungal endophytes for about two weeks, in pots. Salt
stress was induced on each plant in the pot after two weeks of fungal symbiosis. A 20 mL
(100 mM) quantity of salt solution was applied to the pots after each third day for 20 days.
The growth characteristics, such as biomass and length of harvested plants, were measured
after 20 days of salt stress. The methods of Khan, et al. [30] were adopted for carotenoids
and chlorophyll contents. Similarly, for the estimation of the relative water content (RWC)
in maize, the method of Bagheri, et al. [31] was followed by using the following equation:

RWC (maize) = FW − DW/TW − DW × (100%)

2.8. Estimation of Proline, Catalase and Peroxidase Activities

For proline determination in the leaves, the detailed method of Bagheri, Saadatmand,
Niknam, Nejadsatari, and Babaeizad [31] was used. Absorbance was checked at 520 nm.
For catalase, the detailed method of Sherameti, et al. [32] was used. There was an absorption
decrease at 240 mm and the activity of the enzyme with the use of a formula was determined.
Catalase activity was measured as a reduction in absorbance at 240 nm and represented
as a number of units in which one unit of catalase was defined as g of H2O2 released/mg
protein/minute. For the activity of peroxidase (POD), the protocol of Ikram, Ali, Jan, Iqbal,
Hamayun, Jan, Hussain, and Lee [1] was used by incubating the reaction mixture at 25 ◦C
for 5 min, while 5% 0.5 mL H2SO4 was used to stop the reaction at 420 nm. The proline
content, catalase, and peroxidase activities were investigated for all treatments in triplicate.

2.9. Total Phenolics, Flavonoids and Phytohormones Estimation in Maize

According to the detailed methods of Gurupavithra and Jayachitra [33], the Folin–
Ciocalteau reagent procedure was used to determine the total phenolic content. As provided
by Zhishen, et al. [34], the aluminum chloride colorimetric procedure was used to quantify
flavonoids. Salkowski reagent, as proposed by Zhishen, Mengcheng, and Jianming [34],
determined a quantitative estimate of IAA. At 540 nm, UV absorbance was checked using
a UV spectrophotometer.

2.10. LCMS Data Analysis of Endophytic Fungal Culture Filtrate

Cultural filtrate with prominent results in antioxidant activities were subjected for
bioactive compounds analysis by using LC MS/MS (LTQ XL, Thermo Electron Corporation,
California, USA analysis, as described earlier by Khan, et al. [35]. A positive-mode Electron
Spray Ionization (ESI) probe was used for the direct injection mode detection. While
the sample flow rate was set to 8 L/min, the capillary temperature was held constant at
280 ◦C. A range of 50 to 1000 m/z was chosen as the mass range. Depending on the kind
of parent molecule ion, the collision-induced dissociation energy (CID) during MS/MS
was maintained in the range of 10–45. For the HPLC fractions, acetonitrile and methanol
were mixed at a mobile phase ratio of 80:20 (v/v). By manually adjusting the settings and
infusing the analytes, the MS parameters for each compound were adjusted to provide the
best ionization and ion transfer, and achieved the best signal for both the precursor and
fragment ions. Similarly, the source parameters were identical for all of the analytes.
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2.11. Statistical Analysis

ANOVA and Ducan’s Multiple Range Test (DMRT) were used to examine the data
using SPSS statistical software. Graph Pad Prism was used for plotting the graphs. The
experiment was repeated in triplicate.

3. Results
3.1. Isolation of FH15 from Euphorbia Milii

Currently, 08 endophytic fungi were isolated from Euphorbia milii. Among the isolated
endophytes, the cultural filtrate (CF) of FH15 revealed 30 ± 1.7 µg mL−1, 60 ± 1.8 µg mL−1,
and 50 ± 1.5 µg mL−1 of IAA, phenols, and flavonoids, respectively. Moreover, the fungal
endophyte (FH15) revealed resistance to different salts (NaCl, KCl and H2SO4) at a higher
concentration of 100 mM (Data not shown). Based on the initial screening, FH15 was
selected for further detailed study.

3.2. Physiochemical Traits of FH15 and Salt Tolerance

The fungal strain was assessed on waito-C rice for its PGP characteristics. Due to the
plant growth-stimulating ability of fungal strains, FH15 was selected for halotolerance.
The growth of fungal endophytes was supplemented with varying NaCl concentrations in
the Czapek broth medium to investigate the halotolerance potential of the selected strain.
The results showed that the current weight and dry weight of FH15 were not significantly
affected by salt stress at a 100 mM NaCl concentration, which showed its potential to
relieve NaCl stress. However, with an increase in NaCl concentration above 100 mM, the
fresh and dry weight of FH15 was reduced, compared to control (Table 1). Based on its
halotolerance and marvelous growth-improvement performance for waito-c rice, FH15 was
chosen for molecular identification and further study. Likewise, FH15 encoded for IAA,
phenol, and flavonoids in prominent quantities, and showed robust growth and tolerance
to NaCl (100 mM), whereas other isolates could not tolerate the higher concentration of
NaCl (Table 1).

Table 1. Salt resistance of selected fungal isolate (FH15) and their effect on biomass, IAA, phenols
and flavonoids content under salinity stress. The bars represent mean with ± SE and the different
letters on the bars represent significance at p = 0.05.

Fungal Fresh
Biomass

Fungal Dry
Biomass IAA (µg/mL) Phenols (µg/mL) Flavonoids

(µg/mL)

Control 3.97 ± 0.2 b 1.9 ± 0.2 c 21 ± 1.2 c 50 ± 2.8 c 40 ± 2.3 b

100 mM NaCl 3.7 ± 0.2 b 1.8 ± 0.1 c 35.8 ± 1.3 d 70 ± 3.2 d 50 ± 2.5 c

150 mM NaCl 1.1 ± 0.1 a 0.6 ± 0.1 b 8 ± 0.5 b 20 ± 1.1 b 11 ± 0.6 a

200 mM NaCl 1 ± 0.1 a 0.1 ± 0.1 a 2 ± 0.1 a 9 ± 0.5 a 7 ± 0.4 a

3.3. Molecular Identification and Phylogenetic Analysis of FH15 Isolate

The ITS region of the isolate FH15 was compared to related sequences present in the
NCBI GenBank database (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on
23 November 2021) to identify the isolate. The ITS region includes partial sequences of 18S
rDNA, ITS1, and ITS2 complete sequences, complete sequences of 5.8S rDNA, and partial
sequences of 28S rDNA genes. The isolate FH15 sequencing displayed 98% homology
and 99.9% query with E values (0.0) with 99% homology to Candida membranifaciens. The
isolate was grouped with Candida membranifaciens, having 98 bootstrap supports. Based on
molecular analysis, the isolate FH15 was named as Candida membranifaciens FH15 (Figure 1).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 1. Molecular identification of the FH15. The analysis included 21 nucleotide sequences using
the Neighbor joining tree method according to the model from Tamura. Evolutionary analysis has
been carried out in MEGA-7. Our new fungal strain C. membranifaciens strongly recommended as a
new strain, the 98% bootstrap support for C. membranifaciens isolate FH15.

3.4. C. membranifaciens FH15 Augment Maize Plants under Salt Stress

Salinity decreased the morphological and growth attributes of the maize plant, while
inoculation of C. membranifaciens FH15 alleviated the salt stress-induced alterations. The
plants inoculated with endophytic fungus revealed considerably higher (p > 0.05) plant
biomass compare to non-inoculated control plants and the fresh and dry biomass was in-
creased by 20.87% and 16.60%, respectively. Without salinity (KCl, NaCl, and K2SO4) stress,
the percent increase in fresh and dry biomass was 15.38% and 13.03%, respectively, upon
the inoculation of the endophytic fungus. However, the application of C. membranifaciens
FH15 showed its prolific effect and enhanced shoot length (13.55%) under salt stress, and
when salt-stressed seedlings were inoculated with the endophytic fungi, restoration of root
length was observed in the treated plants. The results also revealed an increase in root
length by 18.18% in the treated plants compared to normal control plants, whereas the root
length of the endophytic fungus increased by 94.54% under saline conditions (Figure 2A,B).
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3.5. C. membranifaciens FH15 Improved Chlorophyll and Carotenoids Content in Maize Plants

The percent increase in chlorophyll and carotenoids was 49.29% and 46.67%, respec-
tively, in plants inoculated with C. membranifaciens FH15 as compared to the non-saline
control. However, the percent increase in chlorophyll and carotenoids was 69.54% and
57.07%, respectively, when salt-stressed plants were inoculated with endophytic fungus C.
membranifaciens FH15. The strain was able to improve pigment concentration under salt
stress, suggesting its usefulness as salt-stress alleviator (Figure 3).
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3.6. C. membranifaciens FH15 Improved RWC and Electrolyte Leakage in Maize Plants

Under salinity stress, the RWC of the plants are greatly affected (Figure 4A). However,
the application of endophytes to salinity-stressed seedlings enhanced their relative water
content values. Increase in RWC was 53.24% under stressed maize plants with C. membran-
ifaciens FH15. The relative water content was increased by 2.5 folds in maize inoculated
with C. membranifaciens FH15 as compared to the non-saline control. A significant increase
in electrolyte leakage from maize leaf grown under higher (100 mM) salinity (KCl, NaCl,
and K2SO4) was observed as compared to the non-saline control (Figure 4B).

A reduction in EL (p < 0.001) was found with application of C. membranifaciens FH15
under all treatments. Percent reduction in EL was 62.79% when salt-treated plants were in-
oculated with C. membranifaciens FH15. A significant decrease in electrolyte leakage (80.77%)
was observed when the non-saline control was inoculated with C. membranifaciens FH15.
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3.7. Effect of C. membranifaciens FH15 on Proline Content and Antioxidant Enzymes System

Proline is an osmoprotectant that accumulates in plants due to salinity stress. In
agreement with this, our finding (Figure 5A) revealed that maize with C. membranifaciens
FH15 produced a significantly higher level of proline under salinity stress. A 2.9 fold
increase in proline content was observed when maize plants were inoculated with C.
membranifaciens FH15 under salt stress conditions.
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activity of maize with or without endophytic fungal strain C. membranifaciens FH15. The bars represent
mean with ± SE and the different letters on the bars represent significance at p = 0.05.

The proline content was decreased several hundred folds when stressed maize was
inoculated with C. membranifaciens FH15 as compared to the non-saline control. Similarly,
salt stress triggered a significant rise in antioxidant enzymes activities. The percent in-
crease in POD activity was 15.12% when salinity-stressed maize was inoculated with C.
membranifaciens FH15 (Figure 5B). Increase in catalase activity was 76.83% when salinity
stressed maize was inoculated with C. membranifaciens FH15 (Figure 5C). Catalase and POD
activities were decreased by 50% and 90%, respectively, when maize was inoculated with
C. membranifaciens FH15 as compared to the non-saline control.

3.8. Effect of C. membranifaciens FH15 on IAA, Total Flavonoids and Phenolics

To understand the effect of the endophytic interaction and its role in salinity stress
alleviation, IAA content treated with or without salinity stress was analyzed. The IAA
content of maize was increased by 41.67% when inoculated with C. membranifaciens FH15
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compared to the non-saline control. A 2.3 fold increase in IAA content in C. membranifaciens
FH15-inoculated salinity-stressed maize plants was observed as compared to the salinity-
stressed control (Figure 6A). Moreover, a prominent decrease was observed in the phenolic
and flavonoid contents of maize plants when subjected to stressful conditions. The average
decrease of phenolic content was 34.33 µg/mL, and the average decrease of flavonoids
was 21.67 (µg/mL) compared to control without any stress. However, increases of both
phenolics and flavonoids were detected upon the inoculation of C. membranifaciens FH15
in the maize plants under stressful conditions. The highest increase, i.e., 76 µg/mL,
was observed when maize plants under KCl and K2SO4 stress were inoculated with C.
membranifaciens FH15 (Figure 6B,C).
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3.9. Identification of Compounds in C. membranifaciens FH15 in the CF by LC-ESI-MS/MS

Utilizing comparative standards data and LC-ESI-MS/MS spectrum data, the active
components in the C. membranifaciens extract were identified (Table 2). Presently, com-
pound 1 with t R = 1.6 displayed [M-H]-ive ions at S137.00 and 106.92 m/z fragment ions in
its MS 2 spectrum at 137.00 m/z w. After comparing the obtained spectrum data to earlier
standard data, molecule 1 was determined to be salicylic acid (Figure S1, Table 2). The
results for compound 2 revealed a precursor ion with t R = 3.39 at 269.00 m/z. The substance
was categorized as baicalein, since the data were compatible with the structure of baicalein
(Table 2, Figure S2). Compound 3’s [M-H]-ive ion displayed t R = 2.58 at 173.00 m/z, and
fragments at 115.92 m/z were visible in its MS 2 spectrum. These results were consistent
with the structure of aconitic acid (Table 2, Figure S3). Compound 4 (t R= 7.83) displayed a
[M-H]-ive ion at 367.00 m/z along with fragment ions at 177.08 m/z. After comparing the
spectrum data of compound 4 with the reference standard and literature, compound 4 was
identified as feruloylquinic acid (Table 2, Figure S4).

Table 2. Characterization of chemical constituents in the extract of C. membranifaciens FH15 by
LC-ES1-MS/MS method.

NO t R
(min)

Proposed
Formula Mode Precursor Ion,

m/z LC-ES1-MS/MS Ions Identification References

1 1.66 C7H6O3 _ [M-H] − 137 106.92, 92.92 Salicylic acid Bduhafsdun et al.,
2018 [36]

2 3.39 C15H10O5 _ [M-H] − 269 267, 251, 225, 223, 209, 197, 195,
181, 167, 154 Baicalein Soraia et al., 2009 [37]

3 2.58 C6H6O6 _ [M-H] − 173 115.92, 128.83 Aconitic acid Soraia et al., 2009 [38]

4 7.83 C17H20O9 _ [M-H] − 367 177.08 Feruloylquinic acid Ghareeb et al.,
2018 [39]

5 7.79 C16H20O8 _ [M-H] − 339 163.00, 132.92 Coniferyl aldehyde
hexoside

Terraza et al.,
2016 [40]

6 5.53 C18H26O10 _ [M-H] − 401 383, 365, 357, 344, 321, 284, 260,
241, 213, 197, 176, 144

Benzyl alcohol hexose
pentose

Bystroma et al.,
2008 [41]

7 8.26 C26H29O15 _ [M-H] − 581 501.42 Pentose Beelders et al.,
2014 [42]

8 7.33 C16H18O9 _ [M-H] − 353 177.00, 163.00 Chlorogenic acid Koolen et al.,
2013 [43]

9 4.55 C15H10O8 + [M+H] + 318 300.33, 256.25 Myricetin Bonta, 2017 [44]

10 4.71 C22H29NO2 + [M+H] + 340 322, 296, 215, 284, 312 Propoxyphene Cao et al., 2015 [45]

11 3.85 C16H14FN3O + [M+H] + 284 228.17, 198.08, 184.00, 170.00,
157.00, 143.92, 129.92 Aminoflunitrazepam Cao et al., 2015 [45]

Additionally, the data for compound 5 revealed a precursor ion with t R = 7.79 at
339 m/z. Compound 5’s MS 2 spectra showed fragment ions at 163.00 m/z; the compound
was found to be coniferyl aldehyde hexoside (Table 2, Figure S5). Compound 6 revealed
a precursor ion at m/z 401.42 when it was eluted at retention time (t R = 5.53). Chemical
6’s MS 2 spectrum also showed a fragment ion at m/z 383. Molecule 6 was identified as
Benzyl alcohol hexose pentose, based on the analytical standard, retention time, and MS
fragmentation paths (Table 2, Figure S6). When described previously, Compound 7 with
t R = 4.55, a distinctive precursor ion at m/z 581.00, and fragment ions at m/z 501.42 was
determined to be pentose (Table 2, Figure S7). The molecule was identified as chlorogenic
acid by consulting the literature, as the MS/MS of the precursor ion at mass m/z 353 with t
R = 7.33 is consistent with the structure of chlorogenic acid (Table 2, Figure S8). Compound
9 was detected at m/z 256.25 and 300.33. Compound 9 was identified as myricetin, based on
MS fragmentation routes, the analytical standard, and retention time (Table 2, Figure S9).
Compound 10 has a retention time of 4.71 and is shown in Table 2 and Figure S10 to have
fragment ions at m/z 322, m/z 296, and m/z 215, as well as a distinctive MS2 fragment with a
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mass of 340.00. These findings matched the structure of propoxyphene. As a result, when
compound 10 was compared to a reference standard and data from the literature, it was
determined to be propoxyphene. Compound 11 revealed an [MH] + peak at m/z 284.00
and was eluted at retention time (t R = 3.85). Additionally, fragment ions at m/z 228.17
and 198.08, 184.00, 170.00, 157.00, 143.92, and 129.92 were detected. Compound 11 was
identified as aminoflunitrazepam, using MS fragmentation pathways (Table 2, Figure S11).

4. Discussion

New bioactive substances, agrochemicals, and antibiotics which are more effective,
maintain low-toxicity, and have less environmental impact are in high demand. The
majority of synthetic medications on the market are ineffective and have a number of
negative health effects [46]. Thus, there is a universal need to identify and create medicinal
compounds, agrochemicals, and antibiotics from endophytic fungi that are highly effective,
have low toxicity, and have less or no environmental impact [47]. Endophytic fungi occur
asymptomatically and have a symbiotic association with their host plant, which make
this connection advantageous for both parties. Mutualism frequently promotes the host’s
growth [17]. Currently, a mixture of metabolites in the culture filtrate of our selected
fungal isolate were evaluated and screened through a preliminary screening bioassay
on waito-c rice.

For maize crops growing on salt-affected land, we endeavored to isolate a halotolerant
fungal strain from E. milli L. leaves with the potentiality to readily colonize its host and
mitigate salinity stress. The endophytic fungus C. membranifaciens FH15, residing on E.
milli L. leaves, was revealed to improve plant growth, produce IAA (evaluated on waito-c
rice and maize), and was halotolerant to salinity. Our results revealed that NaCl (100 mM)
adversely affects plants’ growth-promoting attributes, while the inoculation of FH15 did
not significantly improve the growth under salt stress. Similar results were reported by
Hamayun, Hussain, Khan, Kim, Khan, Waqas, Irshad, Iqbal, Rehman, and Jan [26], showing
that a higher NaCl stress of 150 mM adversely affected the fungal biomass, reducing it
by 26% (fresh biomass) and 29% (dry biomass) relative to fungal strain grown in the
control medium, which supports the present data. The strain FH15 also revealed positive
results for siderophore production and phosphate solubilization activities. Similar results
have been reported by Chadha, Prasad, and Varma [27], showing that fungal endophytes
stimulate plant growth through the production of IAA and through their phosphate-
solubilizing ability. Salinity stress negatively affects the growing crop plants; symbiotic
fungal interactions have shown enhanced plant tolerance to saline environments [48].

The release of plant growth-stimulating substances (IAA and GAs) from endophytic
fungi is a source for improved plant growth under abiotic stress environments [49]. Maize
plants inoculated with C. membranifaciens FH15 showed an outstanding increase in shoot
root length and plant fresh dry weight under salt stress. Inoculation of FH15, in addition
to salt stress, alleviated the adverse effect of salt, and a similar result has been obtained
by [50] in tomato plants. Previous studies showed that the chlorophyll content of plants is
a common indicator of abiotic stress tolerance. Singh and Gautam [51] also reported that
plants growing in saline environments had reduced chlorophyll concentration, which led
to entire growth retardation. In our present result, we observed that salt stress markedly
reduced chlorophyll content in maize plants, however, chlorophyll content was inverted
back to the level of the control in maize plants inoculated with FH15.

We also evaluated that chlorophyll content was significantly improved in maize plants
due to the inoculation of FH15, with or without the maize plants being exposed to salinity
stress. Similar reports were also given by Qi, et al. [52], Rawat, et al. [53], and Zhang,
et al. [54], which supports our present study. The strain FH15 enhances the uptake of
vital elements, especially (Mg2+), that were adversely affected by salt stress; therefore,
the chlorophyll and carotenoid production is enhanced in FH15-treated maize plants. An
additional cause for improved pigment content in maize plants might be the synthesis
of phytohormones that support the stimulation of pigment contents [55]. The improved
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pigment contents by FH15 inoculation in maize plants may be due to the inhibition of
sodium uptake [56]. Carotenoids exhibit antioxidant abilities and give photo protection to
chlorophyll contents by scavenging ROS [57]. Therefore, a reduction in carotenoids content
by different salt stresses resulted in an overproduction of ROS that consequently impeded
plant growth by stimulating oxidative damage to protein, DNA, and RNA [58].

Phenols and flavonoids are secondary metabolites that act as non-enzymatic antioxi-
dants to scavenge harmful radicals and are essential for plants’ defense [59]. The present
results indicated that with salinity stress, the accumulation of phenol and flavonoid contents
increases. Therefore, phenol and flavonoid accumulation in salt-resistant crops might be a
defensive system meant to scavenge the free radicals of oxygen and inhibit cell membrane
damage from salt stress [60]. Our finding of increasing phenol and flavonoid contents with
salinity corroborates with the outcomes of [60], which described improved flavonoid and
phenol contents in chickpeas under salt stress. The substance that produced a precursor ion
at m/z 137.00 during this study’s LC MS/MS observation was identified as salicylic acid.

Salicylic acid is an important phenolic compound that is capable of promoting plant
growth and harvesting in certain plants. Moreover, salicylic acid has the ability to affect
plant growth, serve as a possible non-enzymatic antioxidant, and significantly influence
the synthesis of a number of physiological processes and bioactive molecules in plants [61].
Aconitic acid is a phenolic acid that has two isomers: cis-aconitic acid and trans-aconitic acid.
Aconitic acid has a nutty flavor, which makes it valuable as an artificial nut flavor, as shown
by [37]. Feruloylquinic acid is phenolic compound that is a potent antioxidant, and has
been described to exhibit antiviral, antibacterial, anti-inflammatory, and anti-carcinogenic
effects [62]. While a low molecular weight phenolic molecule called coniferylaldehyde
hexoside serves as the direct precursor of coniferyl alcohol in the lignin biosynthesis
process [63].

Benzyl alcohol hexose pentose is a phenolic compound. Benzyl alcohol is a colorless
liquid that exhibits a sharp burning taste and slight odor. It is generally used as a local
anesthetic to decrease pain related to Lidocaine injection. Similarly, chlorogenic acids are
vital for plant defense mechanisms [64]. Flavonoids are commonly induced by salt stress
and have a stimulating role in plant defense [65]. These substances added in plant tissue
defend themselves from damaging effects by acting as free radical scavengers due to the
presence of hydroxyl groups in their structure. Baicalein is a type of flavonoid that is used
against several inflammatory diseases such as nephritis hepatitis, asthma, atopic dermatitis,
and bronchitis. In addition, antibacterial, anti-cancer and antiviral activities have been
observed. Baicalein’s beneficial effects on human health are also related to its antioxidant
properties, as it has good electron and hydrogen donors [66]. A naturally occurring
flavonoid is myricetin, commonly referred to as myricetol. The antioxidant abilities of
flavonoids are well known, however myricetin stands out as being more effective than
other flavonoids in this regard.

Proline is an essential nitrogen source that is accessible for plant retrieval from envi-
ronmental stress and restoration of plant growth [67]. Proline decreases the uptake of toxic
ions [68]. Therefore, proline plays a major role in defending plants from osmotic stress [69].
In our current report, the proline content was improved in maize seedlings grown under
salt stress alone, relative to control. Presently, proline was greatly increased in maize plants
inoculated with fungal strain C. membranifaciens FH15 under saline environments. The
findings of rising proline concentrations in maize plants that had been inoculated with
fungal strain FH15 under saline conditions correspond with those of Bagheri, Saadatmand,
Niknam, Nejadsatari, and Babaeizad [31]. Under salinity stress, there is an increased
generation of ROS in plants, which is thought to be a metabolic change [69]. According
to reports, IAA plays a critical function in regulating the primary signaling pathways
that contribute to plant development under salt stress [70]. Moreover, IAA plays a key
role in the growth and development of the plants, and performs an important function in
the root growth [71]. In this work, it was found that plants exposed to salt stress and C.
membranifaciens inoculation had significant IAA concentrations.
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The increased production of ROS in plants under salt stress is also considered to be a
biochemical alteration [72] that is responsible for salinity-induced harm to macro molecules
and plants’ cellular structures under stressful conditions [73]. To mitigate the harm related
to the increase production of ROS, plants naturally developed a varied series of enzymatic
defensive systems in order to detoxify the free radicals, thereby protecting themselves from
harmful biochemical (oxidative) damage [74]. The enzymatic antioxidant mechanism is
one of the main protective systems in plants; it involves the immediate action of a wide
variety of enzymes comprising CAT and POD [75].

The results from the current report determine that salinity stress induced plants to
develop increased levels of CAT and POD activity in maize plants relative to un-inoculated
plants. In the present result, antioxidant enzymes, higher catalase, and peroxidase activities
were detected in FH15-inoculated plants relative to the control plants. Increased catalase
activity is related to improved root length and enhanced seedling growth, as publicized
by [76]. Similarly, polyphenol oxidase and peroxidase protect cells against the damaging
effect of H2O2 by catalyzing its disintegration by the oxidation of phenolic osmolytes [30].
Gusain, et al. [77] revealed that Trichoderma improved the POD and SOD in rice cultivars,
granting tolerance to these plants under water stress and different endophytic fungi were
reported for the production of enzyme inhibitory metabolites [78].

5. Conclusions

The findings of the present study reveal that plants inoculated with endophytic Candida
membranifaciens (FH15) showed low signs of the adverse effects of salinity stress and
enhanced the growth parameters of maize plants. Moreover, the fungal endophyte could be
used for further field trails on a variety of economically important crop species. However,
the pragmatic role of the fungal endophyte still needs to be investigated, particularly the
rate of colonization and the give-and-take mechanism of the fungal endophyte and plant
root under salt stress conditions.
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