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In this supplementary information file, we present additional data and information related to: 

S1. NIRS Reference methods 
S2.  NIRS Calibration procedures 
S3.  NIRS Validation procedures 
S4.  Quality control of soil testing 
S5.  Scientific underpinning of the CaCl2 method 
References SI 

 

Figure S1. Scatter plots of the results of NIRS determinations versus the results derived from conventional analyses procedures 
(right-hand figures) and scatter plots of the residual variance of these relationships (left-hand figures), for N-total, S-total, Ca-CEC, 
SOM, SOC, C-inorganic, Clay, CEC, pH, Sand, K-CEC, Mg-CEC: validation data set.  

Table S1. Statistics of the calibration of NIRS to the results of the conventional methods. A distinction has been made between soil 
characteristics that have been implemented into laboratory practice for routine soil testing, and soil characteristics that are still in the 
phase of further testing (and thus have not yet been implemented into laboratory practice for routine soil testing); calibration data 
set.  
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S1. NIRS Reference methods 
NIRS analyses were calibrated to results of reference (conventional) analytical methods. N-total, and S-total were 

determined following Dumas’s combustion with an elemental analyzer (dry combustion method) [125]. Effective CEC, 
K-CEC, Mg-CEC, Ca-CEC, Na-CEC, and Mn-CEC were determined by means of cobalt hexamine trichloride extractions 
followed by ICP-AES and AAS [126,127], and pH-CaCl2 according ISO 10390 (2005) [128]. Soil organic matter (SOM) is 
determined by loss on ignition (550 °C) [129], soil organic carbon (SOC) as elemental C following dry combustion 
(550°C) [130-132], and total carbon (TC) which includes SOC and soil inorganic carbon (SIC) by dry combustion at 1150 
°C [133]. Soil inorganic carbon (SIC) is determined by acidification [133]. Moisture content (to 40 °C) and dry matter 
content (from 40 – 103°C) of soil was done according NEN 5748, 1990 [134]. For NIRS calibration and validation meas-
urement quality improvement (not as a reference) the loss of ignition procedure is also performed directly in the 40°C 
dried sample, so without oven drying from 40°C – 103°C. Plant available calcium and electric conductivity were deter-
mined with 1:2 water [135]. Clay content was determined through density fractionation [136,137]. Clay (< 2 um) was 
also measured as part of the particle size analyses together with silt (2-16, and 16-50 um) and several sand fractions (50 
– 2000 µm) (pipet and sieve after removal of salts and organic matter by hydrogen peroxide) [137]. The median grain 
size of the sand fraction (M50) was calculated based on these sand fractions. Dissolved organic nitrogen (DON) was 
measured in 0.01 M CaCl2 ([138]. Oxalate extractable Al, Fe, and P were determined[139,140] and used for P-binding 
and P-saturation (so both calculation based on oxalate extractable Al, Fe, and P). P-total was measured [141,142].  

S2. NIRS Calibration procedures  
For relating the NIR-signals to reference results, calibration models were developed. The first soil models at Eu-

rofins Wageningen were built in 2003, and in 2004 the first soil characteristics (N-total, and SOM) [86] were routinely 
offered to the soil testing market. The calibration has been continuously improved since then. Soil samples with a too 
large Mahalanobis distance (distance of an unknown sample to the middle of the local selected calibration samples) are 
considered outliers and subsequently analyzed by the reference methods (and these results are reported, and also added 
to the calibration data base). In addition, 18 soil samples are - ad randomly - selected weekly and analyzed by the 
reference methods  (at least in duplicate). Part of these results are used to improve the calibration, and part is used for 
validation.  

S3. NIRS Validation procedures  
A separate set of data has been created for validation of the NIRS models. The data are not used for calibrations. 

The validation database we describe here contains roughly between 1500 and 2000 reference samples, depending on the 
year of introduction of the soil characteristics.  

S4. Quality control of soil testing 
To establish the quality and reproducibility of the different soil characteristics, the results of analytical procedures 

are subject to quality assessment and assurance. This quality control is subdivided in first-, second- and third-line con-
trol procedures. The first-line control is performance checking by the laboratory analysts, using standard soil samples 
with well-known results. When the results of the standard soil samples exceed twice the standard deviation (95.5% of 
the results are within ± 2 s.d.) a notice will be made. When the results exceed three times the standard deviation (99.7% 
of the results are within ± 3 s.d.) the following step are taken i) investigation into the cause of the variation, ii) results 
are not reported iii) all samples of this batch are re-analyzed after the problem has been solved and the results meet the 
requirements, and iv) all results are recorded in a logbook. The second-line control is a check within the laboratory but 
independent of the executors (so the results of these control samples are not known to the analysist). The third-line 
control is an independent external check, a ring test. Eurofins Agro participates in the ring tests of ILVO 
(www.ilvo.vlaanderen.be), VITO (www.vito.be), and  Wepal (http://www.wepal.nl/website/products/ISE.htm). Both 
second and third line controls are part of   NEN-EN-ISO 17025, 2018 [143] for which the laboratory is accredited.  

S5. Scientific underpinning of the CaCl2 method 
The multi-nutrient extractant 0.01 M CaCl2 method is used worldwide and embedded in many scientific testing 

programs and papers [144]. To illustrate the case further, the 0.01 M CaCl2 extraction method has been used for testing 
Si fertilization of sugar cane in South Africa [145], for testing K fertilization of rice in Iran [146] and finger millet in India 
[147], for testing Mn fertilization in tea in Turkey [148], and for testing S fertilization of various field and forage crops 
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in USA [149]. These reports indicate that the 0.01 M CaCl2 extraction method is diagnostic for identifying fertilization 
needs of a wide range of soil, crop and nutrient element combinations. 

The multi-nutrient extractant 0.01 M CaCl2 method [150,151] was also tested in The Netherlands in several field 
trials for maize (Zea mays) grassland (Lolium perenne), and arable crops and vegetable crops [152-154]. Further, a large 
number of archived soil samples from Germany (arable crops) was re-analysed at the Eurofins laboratory in Wa-
geningen and related to results from field experiments in Germany [155]. Also, results from 250 fertilization experiments 
were related to the results of thousands of re-analysed soil samples from the archive of Wageningen University TAGA 
[156], and the resulting relationships were used for new crop, and soil based fertilization recommendation. Meanwhile 
further desk studies and field trials were performed and are still in process for K, and Mg [157-162]. Also validation 
studies were performed; soil N-tests (e.g. dissolved organic nitrogen extracted with CaCl2) and their role in N-fertiliza-
tion recommendations were extensively investigated [163-165]. Relations between selenium (Se-CaCl2), plant uptake 
and fertilization of both grassland and arable land were studied by Supriatin [166,167]. 
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Figure S1. Scatter plots of the results of NIRS determinations versus the results derived from con-
ventional analyses procedures (right-hand figures) and scatter plots of the residual variance of these 
relationships (left-hand figures), for N-total, S-total, Ca-CEC, SOM, SOC, C-inorganic, Clay, CEC, 
pH, Sand, K-CEC, Mg-CEC: validation data set.  

Table S1. Statistics of the calibration of NIRS to the results of the conventional methods. A distinc-
tion has been made between soil characteristics that have been implemented into laboratory practice 
for routine soil testing, and soil characteristics that are still in the phase of further testing (and thus 
have not yet been implemented into laboratory practice for routine soil testing). PMN = potentially 
mineralizable nitrogen [168]: calibration data set.  

Soil characteristic        calibration       
Implemented   n r2 year  Bias RPD Sres RMSD 
N-total  55947 0.99 2004 0.002  8.6  0.53  0.53  
S-total  37783 0.97 2004 -0.000  5.5  0.21  0.21  
K-CEC  16144 0.79 2006 -0.040  2.0  2.19  2.19  
Ca-CEC  15742 0.97 2006 0.483  5.5  17.52  17.53  
Mg-CEC  15732 0.88 2006 -0.015  2.7  6.32  6.32  
pH-CaCl2  89075 0.97 2013 -0.004  5.3  0.18  0.18  
SOC  21976 0.99 2004 0.066  12.9  4.93  4.93  
SOM  24825 1.00 2004 0.007  17.5  6.46  6.46  
SIC  15864 0.97 2004 0.001  5.6  1.45  1.45  
Clay  49121 0.98 2004 0.664  7.0  17.97  17.99  
Sand  8419 0.96 2015 1.390  4.7  58.37  58.39  
ECEC  16122 0.97 2005 0.125  5.8  20.44  20.44  
 
In process/ not reported 

 
       

DON-CaCl2  4421 0.89 - 0.788  2.8  28.26  28.27  
PMN  7897 0.88 2007 0.816  2.7  21.58  21.60  
P-total  4280 0.95 - -0.119  4.2  26.63  26.63  
P-oxalate  7477 0.74 - -0.067  1.7  5.80  5.81  
Al-oxalate  7478 0.95 - -0.109  4.1  12.66  12.66  
Fe-oxalate  7498 0.91 - 0.126  3.1  24.12  24.12  
P-binding   4853 0.93 - 0.020  3.5  13.70  13.70  
P-saturation  4853 0.68 - 0.222  1.6  12.71  12.72  
P-Al (Brolsma et al., 2018)  113,072 0.83 2014 0.770 2.6   
Ca-water  2567 0.87 2015 0.019  2.6  0.93  0.93  
Na-CEC  10238 0.77 2006 -0.008  1.8  0.71  0.71  
Mn-CEC  7243 0.69 - 0.011  1.5  0.32  0.32  
EC   3433 0.77 - 0.011  1.8  0.37  0.37  
TC  5870 1.00 - 0.038  14.3  4.21  4.21  
Dry matter (40 - 105°C)  23374 0.99 - 0.022  8.5  2.33  2.33  
2-16 µm texture  2401 0.96 - 0.181  4.7  3.27  3.28  
Median sand (50 – 2000 
µm) 

 
2518 0.83 2017 -1.242  2.2  26.67  26.70  

PLFA total   1093 0.88 2019 5.808  2.7  299.39  299.45  
PLFA fungi  1077 0.84 2019 1.420  2.3  106.84  106.85  
PLFA bacteria  1086 0.91 2019 3.837  3.0  108.68  108.74  

 

References SI 
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