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Abstract: A method for the extraction of phenolic compounds from grape seeds and skins using
microwave-assisted extraction (MAE) was developed. Optimization of the effects of the extraction
parameters in terms of the results of extraction was obtained using the response surface method-
ology. The parameters studied were extraction solvent (methanol, ethanol, acetone, and water),
percentage of methanol in water, quantity of sample in relation to volume of extraction solvent
(solid:liquid, 10–50 mg mL−1), power (100–500 W), magnetic stirring speed (0–100%), and extrac-
tion time (5–20 min). Finally, the repeatability and the intermediate precision of the method were
determined. The best conditions proved to be: 65% methanol in water as an optimum extraction
solvent; 0.5 g of grape skin or seed in a volume of 25 mL; a power of 500 W with the maximum
stirring speed (100%); and an extraction time of 5 min. The phenolic compounds proved to be stable
in the optimized extraction conditions. The resulting repeatability and the intermediate precision
of the optimized method showed a relative standard deviation below 7%. The new method ap-
plied on Napoleon grape allowed for the determination of catechin (453.2 (mg kg−1)), epicatechin
(306.3 mg kg−1), caftaric acid (22.37 mg caffeic acid equivalents kg−1), dihydrokaempferol-glycoside
(11.13 mg kaempferol equivalents kg−1), quercetin (18.28 mg kg−1), quercetin-3-glucoside (20.09 mg
quercetin equivalents kg−1), and kaempferol-3-glucoside (11.10 mg kaempferol equivalents kg−1).

Keywords: phenolic compounds; grapes; microwave-assisted extraction

1. Introduction

Phenolic compounds constitute a complex and highly diverse family of secondary
metabolites of plants [1]. The majority of these compounds are widespread in the plant
kingdom, particularly in fruits and vegetables [2]. Furthermore, there is also growing
evidence that these compounds may play relevant roles in neurodegenerative disease pre-
vention and exhibit antioxidant, anti-inflammatory, anti-allergic, and powerful antibacterial
properties [3]. Amongst these foodstuffs, grapes are one of the most abundantly grown
fruits worldwide. Continuing research in grape phenolics is considered by the industry to
be a necessary element of the current market success [4–6].

Grape phenolics comprise two major groups of compounds: flavonoids and non-
flavonoids. In turn, flavonoids consist of families of anthocyanins, flavanols, and flavonols
whereas non-flavonoids include both phenolic acids and stilbenes [7]. Anthocyanins
(delphinidin, cyanidin, petunidin, peonidin, and malvidin glucoside derivatives) are the
pigments responsible for the colors of red grapes and flavanols or proanthocyanins (cate-
chin and its derivatives) are key participants in the sensations of astringency and bitterness
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produced by wine. On their side, flavanols (kaempferol, quercetin, myricetin, and their
glycoside derivatives) occurring in grape skins are mostly responsible for color in white
wines [8].

Finally, two common groups of phenolic acids are the benzoic acids (vanillic, gallic,
and syringic acids) and the cinnamic acids (caffeic, p-coumaric, and ferulic acids), most of
which are provided by wood aging [9]. Stilbenes, such as resveratrol, have more recently
focused the attention of researchers because of their antioxidant properties [10]. Stilbenes
also have several additional biological properties, including anti-obesity, anti-inflammatory,
and anti-cancer effects [11].

In grapes, phenolics are mostly found in seeds and skins. The skin, making up 10–20%
of the berry weight at maturity, contains approximately 25% (white) and 50% (red) of the
whole content of phenolics in grapes [12]. Skins can be utilized for producing non-wine
products rich in phenolics, such as grape skin extract [13]. As Dwyer et al. [14] conclude,
there is a significant market potential for pomace by-products, including colorants and
phenolic products.

Due to the interest in their use as nutraceuticals in other foods, industrial methods
have been developed for the recovery and extraction of the phenolic compounds present
in grapes [15,16]. Studies have therefore focused on the parts of the fruit with the high-
est concentration, namely the seeds and skins [17]. There are several methods that use
total phenolics [18–20], the Folin–Ciocalteau method for example, to determine the total
level of phenolic compounds instead of individual phenolic compounds. In some cases,
additional general parameters, including total catechins and total tannins, have also been
used [21]. The individual determination of phenolic compounds can be achieved by ap-
plying some chromatographic methods on the resulting extracts. However, the specific
extraction conditions can produce different recoveries for specific phenolic compounds.
Regarding extraction methods based on MAE, the effects of several extraction variables,
including solvent, temperature, time, and solvent to sample ratio, on the recoveries of
individual anthocyanins from grape skins have previously been evaluated [22]. The most
important extraction variables were identified, and the extraction solvent was found to be
the extraction variable that produced the highest effect on the recovery.

Moreover, it must be noted that both skins and seeds can easily be degraded by several
microorganisms. The skins can be degraded due to the presence of various enzyme types
and because they are a good food source for various microorganisms. It would therefore
be convenient to have an efficient, fast, and, as far as possible, automatable method for the
extraction of phenolic compounds from these parts of the fruit, with specific information
about the different individual phenolic compounds in the samples [23].

To develop a process of extraction, it is important to optimize highly significant factors
affecting this process. The classical approach of changing one variable at a time and study-
ing the effect of the variable on the response is a complicated technique, particularly in a
multivariate system or if more than one response is of importance [24,25]. Experimental
designs are statistical techniques that can be used for optimizing such multivariable sys-
tems [26]. Among the available methods, the design of experiments based on the response
surface methodology is very useful. Specifically, the Box–Behnken design [27] can be used
for the optimization of multiple variables to predict the best performance conditions with a
minimal number of experiments [28].

Different techniques have been employed for the final determination of these phenolic
compounds in the extracts from grapes, including spectrophotometry, high-performance
liquid chromatography (HPLC), high-performance liquid chromatography coupled with
mass spectrometry (HPLC-MS), and ultra-high-performance liquid chromatography (UH-
PLC) [29]. Traditionally, HPLC has been the most frequently used technique.

The aim of this work is to develop an analytical method allowing for the determination
of phenolics in grape skins and seeds. To determine the best extraction conditions, the
Box–Behnken design was used to obtain information about the effects and interactions
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among the extraction conditions on the level of recovery of specific phenolic compounds,
allowing for a faster optimization.

2. Materials and Methods
2.1. Products and Reagents

The solvents used (ethanol, acetone, and methanol (Panreac, Barcelona, Spain)) were
of HPLC grade. The water was supplied by a Millipore Milli-Q system (Bedford, MA,
USA). The standards ((+)-catechin, caffeic acid, (−)-epicatechin, and rutin) and the 2,5-
dihydroxybenzaldehyde used as an internal standard were obtained from Sigma (St. Louis,
MO, USA).

2.2. Plant Material

To carry out the MAE method, the “Napoleon” (Vitis vinifera) variety of grape was
used. Grapes were frozen and the skin and seeds were manually separated from the rest of
the fruit. All the material was first freeze-dried before being ground with a conventional
mixer until a homogenous sample had been obtained for the analysis. In the case of the
skins, the average weight loss during freeze-drying was 37.85%, while for the seeds this
was 6.39%. The dried sample obtained was stored in the freezer at −20 ◦C prior to analysis.

2.3. Extraction Process

The extraction of grape-derived phenolic compounds by means of microwaves was
carried out under different extraction conditions in closed vessels: temperature: 100 ◦C;
solvents: methanol, ethanol, acetone, and water; power: 100–500 W; volume of solvent:
15–50 mL; quantity of sample in relation to volume of solvent: 10–50 mg mL−1; extraction
time: 5–20 min; magnetic stirring: 0–100%. The extraction using microwaves was carried
out in an Ethos 1600 microwave extractor (Milestone, Shelton, CT, USA). Only microwave
energy was used to heat the samples.

2.4. Separation and Quantification of Phenolic Compounds

In this study, the analyses of the extracts were performed by HPLC in a Waters system
(Waters Corporation, Milford, MA, USA), consisting of an autosampler (717 plus), a pump
controller (600S), a pump (616), a photodiode array detector (996), and a fluorescence
detector (474), using an RP-18 column (LiChrospher 100, 250 mm × 3 mm, 5 µm particle
size, Merck, Darmstadt, Germany) and a gradient of acidified water (2% acetic acid) (sol-
vent A) and methanol–water–acetic acid (90:8:2) (solvent B) at a flow rate of 1 mL/min.
The gradient was as follows (time (min), % solvent B): 0.0, 20%; 10, 25%; 20, 50%; 21,
100%. The UV absorbance was monitored from 200 to 400 nm. Identification was made by
comparison of the UV-Vis spectrum with the commercial standards available for catechin,
epicatechin, and caffeic acid. In the case of the flavanols, identification was made using
an LC-MS system. The UV-Visible signal was used for quantification of caftaric acid and
flavanols. A fluorescence signal was used for quantification of catechin and epicatechin.
The fluorescence output signal (excitation wavelength, 280 nm; emission wavelength,
310 nm) was monitored and integrated using Millennium 32 Chromatography Manager
software (Waters). A stock solution of catechin (100 mg L−1), epicatechin (100 mg L−1),
and rutin (100 mg L−1) was prepared in methanol–water (1:1). The stock solution was
diluted to give 6 different standard solutions from 1 to 100 mg L−1. The resulting cali-
bration curves were y = 8054 x − 15154 (R2 = 0.999) for caffeic acid (LQ = 1.30 mg L−1);
y = 43738 x + 21262 (R2 = 0.999) for catechin (LQ = 0.18 mg L−1); y = 47438 x + 31076
(R2 = 0.999) for epicatechin (LQ = 0.06 mg L−1); and y = 7401 x + 1039 (R2 = 0.999) for rutin
(LQ = 0.95 mg L−1), where y (absorbance units) is the signal in the detector and x (mg L−1)
is the concentration.

For the LC-MS analyses, we used an ultra-high-performance liquid chromatograph
(UHPLC) coupled to a photodiode array (PDA) detector (Waters Corporation, Milford,
MA, USA) and a quadrupole-time-of-flight mass spectrometer (Q-ToF-MS) (Xevo G2 QToF,
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Waters Corp., Milford, MA, USA). The column was a reverse-phase C18 analytical column
with a 1.7 µm particle size, 2.1 × 100 mm (ACQUITY UPLC CSH C18, Waters). The
mobile phase A, a 2% formic acid–water solution, and the mobile phase B, a 2% formic
acid–methanol solution, were used at a flow rate of 0.4 mL min−1. The gradient employed
was the following (time (min), % solvent B): 0.00, 15%; 3.30, 20%; 3.86, 30%; 5.05, 40%; 5.35,
55%; 5.64, 60%; 5.95, 95%; and 7.50, 95%. The total run time was 12 min: 8 min for the
analysis and 4 additional minutes for re-equilibration. The mass spectra were acquired
in negative ion mode under the following conditions: desolvation gas flow = 700 L h−1,
desolvation temperature = 500 ◦C, cone gas flow = 10 L h−1, source temperature = 150 ◦C,
capillary voltage = 700 V, cone voltage = 30 V, and collision energy = 20 eV. The ions were
scanned from m/z 100 to m/z 1200. The most significant values found in the mass spectra
of each of the four flavonols were compared with those found in the literature.

2.5. Experimental Design

The extraction of phenolic compounds by means of microwave-assisted extraction
was carried out under different extraction conditions according to the experimental design
shown in Table 1. A preliminary test allowed for the selection of the two solvents producing
the higher recoveries (Section 3.1); therefore, only methanol/water mixtures were used in
the experimental design. Each experiment in the experimental design was run in duplicate.
The variables studied were solvent (35–65% MeOH in water), ratio sample to solvent
volume (10–50 mg mL−1), microwave power (100–500 W), and magnetic stirring (0–100%).

Table 1. Conditions used and results for the extractions in the experimental design.

Experiment Methanol in Water (%) Ratio (mg mL−1) Power (W) Stirring (%) Standardized Average Area

1 65 30 500 50 1.489

2 65 30 100 50 0.758

3 35 30 300 100 −0.797

4 50 30 100 100 0.680

5 50 50 300 0 0.676

6 50 10 500 50 0.379

7 35 30 100 50 −0.766

8 50 30 500 100 0.895

9 35 30 300 0 −1.287

10 50 50 500 50 1.082

11 50 30 300 50 0.613

12 65 30 300 0 −0.046

13 50 30 500 0 −1.059

14 35 30 500 50 −1.514

15 50 10 100 50 −0.118

16 50 30 100 0 −1.325

17 50 30 300 50 −0.752

18 65 50 300 50 1.537

19 35 50 300 50 −0.8667

20 35 10 300 50 −1.462

21 50 30 300 50 −0.608

22 65 10 300 50 0.382
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Table 1. Cont.

Experiment Methanol in Water (%) Ratio (mg mL−1) Power (W) Stirring (%) Standardized Average Area

23 50 10 300 100 −0.005

24 50 50 100 50 0.578

25 50 50 300 100 1.049

26 50 10 300 0 −0.425

27 65 30 300 100 0.811

The 27 extractions carried out with their distinct extraction variables (each variable
having three levels: low, medium, and high) can be seen along with the respective re-
sponses. As the response variable, the standardized chromatographic area of the com-
pounds detected was used, i.e., the signal from each of the seven compounds detected was
standardized (average = 0 and standard deviation = 1) and the arithmetic average of these
was determined.

The responses obtained from the various extractions were put into to a second-order
polynomial equation into which each of the various parameters was introduced. The
polynomial Equation (1) is as follows:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β12X1X2 + β13X1X3 + β14X1X4 + β23X2X3
+ β24X2X4 + β34X3X4 + β11 X1

2 + β22 X2
2 + β33 X3

2 + β44 X4
2 (1)

In this equation, Y is the aforementioned response; β0 is the ordinate at the origin; X1
(percentage of methanol in water), X2 (sample-solvent ratio), X3 (power), and X4 (stirring)
are the independent variables; β1, β2, β3, and β4 are the lineal coefficients; β13, β14, β23,
β24, β34, and β12 are the cross-product coefficients; and β11, β22, β33, and β44 are the
quadratic coefficients. The analysis of data for the Box–Behnken design was carried out
using Minitab statistical software (Minitab, Inc. State Collage, PA, USA). This was used
to obtain an estimation of the effects of the variables in the final response, the variance
analysis, the second-order mathematical model, the optimum levels of the significant
variables, and the surface graphs.

3. Results and Discussion

One of the advantages of MAE is the use of high temperatures to increase and ac-
celerate the efficiency of extraction of the compounds of interest from the sample. It has
previously been found that a large proportion of the phenolic compounds are stable at up
to temperatures of 100 ◦C in the extraction conditions applied in this study [30]. For this
reason, the working temperature was fixed at this value to minimize the extraction time
necessary for recovery of the phenolic compounds.

3.1. Preliminary Test to Evaluate the Best Solvent

The selection of the most appropriate solvent when extracting the analytes of interest
from the matrix of the sample is a fundamental step when carrying out any extraction
method [31]. In the case of MAE, the influence of this is greater, given that the capacity
at which the extraction solvent must absorb and transmit the microwave energy must be
taken into account. Furthermore, the phenolic compounds, obviously, must be soluble in
the solvent that is being used for the extraction.

Due to its importance, different mixtures were checked before planning the design of
the experiments for the optimization. The solvents that were used to extract the phenolic
compounds from the matrix of the sample were methanol, ethanol, and acetone, plus mix-
tures of 50% of each of these solvents with water [32]. Methanol, ethanol, and acetone are
solvents that are normally used for the extraction of phenolic compounds in various extrac-
tion techniques, such as in Soxhlet extraction and ultrasound-assisted extraction [33–35].
The extractions were carried out with a sample of skins and seeds of around 0.5 g, in
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25 mL of the three solvents, both pure and mixed with water, at a temperature of 100 ◦C
and 500 W of power for 5 min of extraction. Each assay was carried out three times. The
average areas of the chromatographic peaks were standardized to enable a comparison of
results. The areas from the following compounds were used: Catechin, Epicatechin, Caf-
taric acid, Dihydrokaempferol-glycoside, Quercetin-3-glucuronide, Quercetin-3-glucoside,
and Kaempferol-3-glucoside, because they were the identified compounds showing the
highest chromatographic areas. The areas were standardized so that all the compounds
analyzed would contribute equally to the result of the extraction. Therefore, the average
chromatographic areas were centered to 0 with a SD of 1. Positive values in the bar graphic
mean higher recoveries than the average recovery (0) and negative values mean lower
recoveries than the average one.

The results obtained in Figure 1 show that in the three extraction solvents, methanol,
ethanol, and acetone, the best pure solvent is methanol, whilst acetone is the pure solvent
that shows the lowest capacity for extraction of phenolic compounds from skins. In
Figure 1, it can be seen that mixing these solvents in water significantly increases the
recovery of phenolic compounds. This effect is more significant the less polar the organic
solvent used, whilst the increase is much more moderate when using methanol. In any
case, it was the mixture of methanol/water that obtained the highest recovery of phenolic
compounds. In view of these results, we decided to continue the study by evaluating
mixtures of methanol/water in different proportions as the extraction solvent.
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3.2. Analysis of Response Surface

Firstly, in order to minimize the number of assays, and secondly to derive mathemat-
ical models for describing the optimizations of the results of the extraction, a statistical
methodology for the surface response experimental design was selected, specifically that
of Box–Behnken [36], taking into account the following variables: percentage of methanol
in water, samples–solvent ratio, microwave power, and stirring speed.

Table 1 shows the values of each variable used in the different assays. Table 1 also
shows the mean of the standardized areas. The data in Table 1 were used to create the
response surfaces shown in Figure 2. Figure 2A shows the results of the response surface
created by the variables of sample–solvent ratio and solvent (percentage of methanol in
water). It can be seen how the influence of the percentage of solvent is substantially greater
than the influence of the ratio between the weight of solid sample and the volume of
solvent. In fact, the maximum recovery on changing the percentage of methanol in water
was not reached within the interval analyzed and must be determined with additional
experiments. Similarly, it appears that weight/volume (mg mL−1) ratios above those tested
in the design could produce greater recoveries of phenolic compounds.
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central composite experimental design to represent the weight/volume ratio (mg/mL) compared to solvent (percentage of
methanol in water) (A) and the effect of stirring speed compared to power (B).

Figure 2B shows the results of the response surface created by the variables stirring
speed and power. It can be seen how the best results are obtained with high stirring speeds
(100%) and higher values cannot be used. With respect to the influence of power, this is
not clear, but slightly higher recoveries were found at high powers, for which reason this
variable was fixed at 500 W.

As regards the coefficients and p-values obtained in the adjustment of the model
(Table 2), it can be seen that the variables producing significant effects proved to be the
percentage of methanol in water, the ratio, and the stirring speed, with a greater percentage
of methanol, a higher ratio, and faster stirring having a positive influence on recovery.
The microwave power proved to be less influential. As regards the interactions, these all
proved to be of little importance, from which it can be concluded that the influence of
variation in the variables analyzed can be carried out independently from the other three
and that their effect can be calculated on the basis of the coefficients obtained in the model,
without the need to take into account interactions with the other variables. This facilitated
later optimization of the extraction conditions.

Table 2. Estimated regression coefficients and p-values for variables in the standardized area.

Term Coefficient p-Value

solvent 0.969 0.001
ratio 0.442 0.016

power 0.122 0.453
stirring 0.508 0.007

solvent*solvent −0.123 0.613
ratio*ratio 0.448 0.082

power*power 0.232 0.345
stirring*stirring −0.007 0.978

solvent*ratio 0.140 0.617
solvent*power 0.370 0.202
solvent*stirring 0.092 0.743

ratio*power 0.002 0.994
ratio*stirring −0.012 0.967

power*stirring −0.013 0.964

3.3. Effects by the Significant Extraction Variables on the Recovery

With the results obtained using the Box–Behnken experimental design, it can be
deduced that there is a need to carry out a study on the optimum solvent for extraction and
the sample to solvent ratio. It has previously been observed that increasing the percentage
of methanol in the extraction solvent from 35% to 65% produces an increase in the recovery
of phenolic compounds. It is therefore necessary to carry out a study of percentages of
methanol–water of the optimum solvent for extraction in order to discover the percentage
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at which the maximum recovery of phenolic compounds is achieved. In order to find this
out, percentages of 65, 75, and 85 were studied as shown in Figure 3A. The previously
selected extraction variables were set to 50 mg mL−1 for ratio, 500 watts for microwave
power, and 100% stirring speed and extractions of 5 min were carried out. All the analyses
were carried out in triplicate. Figure 3A shows that percentages of methanol above 65%
produced a decrease in the recovery of phenolic compounds. Therefore, 65% methanol in
water is the percentage that must be used in the method.
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Regarding the sample to solvent ratio, the results in the experimental design suggested
that we check higher values; therefore, sample to solvent ratios of 50, 75, 100, and 150
were studied as shown in Figure 3B. The previously selected extraction variables were
set to 65% methanol in water, 500 watts for microwave power, and 100% stirring speed
and extractions of 5 min were carried out. All the analyses were carried out in triplicate.
Sample to solvent ratios higher than 50 produced non-significant differences or a decrease
in the recovery of phenolic compounds. Therefore, 50 mg mL−1 for ratio is the value that
must be used in the microwave-assisted extraction-based method.

3.4. Extraction Time

The next parameter that was studied for carrying out the method was the extraction
time. In general, increasing the extraction time increases the quantity of analytes extracted,
but degradation can occur. Two phenomena can therefore be found with opposite effects
on the recovery. Extraction times were studied between 2 and 30 min, maintaining the



Agronomy 2021, 11, 1527 9 of 11

remaining variables established in the preceding experiments. All the analyses were carried
out in triplicate. The results are shown in Figure 4.
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It can be seen that the largest quantity of phenolic compounds is extracted with an
extraction time of 15 min. If the extraction time is increased to 20 min, a decrease in the
extracted phenolic compounds can be observed, which could be due to degradation of the
same. Times of less than 15 min also achieve a lower recovery due, in this case, to the time
not being long enough for the maximum amount of phenolic compounds to be extracted.

3.5. Repeatability and Intermediate Precision

The repeatability and intermediate precision of the optimized method using MAE
for the peak area of the phenolic compounds analyzed were studied. To do this, a total of
15 analyses of the same sample were carried out over three days as follows: 9 analyses were
carried out on the first day of the study and 3 further analyses on each of the following
two days. The results obtained are expressed as a percentage of relative standard deviation
for both repeatability and intermediate precision in respect of the peak area. As shown in
Table 3, the greater values of standard deviation are lower than 7%, both in intra-day and
inter-day analyses.

Table 3. Levels (mg Kg−1 dw), intra-day (n = 9) standard deviations, and inter-day (n = 9) standard deviations for the
method carried out for the phenolic compounds analyzed.

Levels (mg kg−1) Repeatability Intermediate Precision

(+)-Catechin 453.2 3.5 2.8
(−)-Epicatechin 306.3 4.7 3.6
Caftaric acid 1 22.37 3.0 2.8

Dihydrokaempferol-glycoside 2 11.13 4.8 3.4
Quercetin-3-glucuronide 2 18.28 6.6 6.5
Quercetin-3- glucoside 2 20.09 3.6 6.6

Kaempferol-3
-Glucoside 2 11.10 4.6 4.8

1 As caffeic acid equivalents; 2 As rutin equivalents.

4. Conclusions

The extraction method developed enables extracts to be obtained from grape skin
and seeds in a faster (15 min) and more reproducible manner for determination of phe-
nolic compounds by means of HPLC. The use of methanol–water mixtures (65%) for the
extraction of phenolic compounds has proven to be the best option in terms of solvents
for MAE. Relevant interactions between the extraction variables analyzed were not found
and, as such, the method can be adapted to new sample types with adjustments made
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independently of each of these variables. After the optimization step, the final values for
the extraction variables were 50 mg mL−1 for ratio, 500 watts for microwave power, and
100% stirring speed. Finally, the intermediate precision of the method was determined for
individual phenolics, and values of RSD below 7% were found for all compounds.
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