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Abstract: The performance of fruit surface defect detection is easily affected by factors such as noisy
background and foliage occlusion. In this study, we choose lychee as a fruit type to investigate its
surface quality. Lychees are hard to preserve and have to be stored at low temperatures to keep fresh.
Additionally, the surface of lychees is subject to scratches and cracks during harvesting/processing.
To explore the feasibility of the automation of defective surface detection for lychees, we build
a dataset with 3743 samples divided into three categories, namely, mature, defects, and rot. The
original dataset suffers an imbalanced distribution issue. To address it, we adopt a transformer-based
generative adversarial network (GAN) as a means of data augmentation that can effectively enhance
the original training set with more and diverse samples to rebalance the three categories. In addition,
we investigate three deep convolutional neural network (DCNN) models, including SSD-MobileNet
V2, Faster RCNN-ResNet50, and Faster RCNN-Inception-ResNet V2, trained under different settings
for an extensive comparison study. The results show that all three models demonstrate consistent
performance gains in mean average precision (mAP), with the application of GAN-based augmenta-
tion. The rebalanced dataset also reduces the inter-category discrepancy, allowing a DCNN model to
be trained equally across categories. In addition, the qualitative results show that models trained
under the augmented setting can better identify the critical regions and the object boundary, leading
to gains in mAP. Lastly, we conclude that the most cost-effective model, SSD-MobileNet V2, presents
a comparable mAP (91.81%) and a superior inference speed (102 FPS), suitable for real-time detection
in industrial-level applications.

Keywords: lychee; deep convolutional neural network; generative adversarial network; surface
defect detection; SSD; Faster RCNN; object detection

1. Introduction

The surface defects of fruits are one of the critical factors affecting their quality. Quickly
and accurately identifying defective parts on a fruit’s surface remains a challenging problem.
Traditional fruit defect detection is carried out manually, which is costly, slow, and error
prone. Additionally, the efficiency and accuracy of manual detection are affected by
human fatigue. Therefore, there is an urgent need to develop an automated detection
technology to boost fruit production and processing automation. At present, mechanical
vision-based fruit surface defect detection and grading methods have been extensively
studied. The commonly used methods are the region growing method, minimum outer
rectangle method, threshold segmentation, edge detection, k-mean clustering segmentation,
and contour finding [1–5]. However, the grayscale distribution of fruit surface damage
is exceptionally irregular. The location, size, shape, and color of the damaged area are
unpredictable. Uneven illumination and occlusion by obstacles also bring challenges to
defect detection. Moreover, traditional image processing methods are limited by application
types. In other words, a method suitable for one type of defect detection may not apply to
a different type of defect.
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Recent advances in deep learning have demonstrated the superiority of deep con-
volutional neural networks (DCNNs) in a broad spectrum of computer vision tasks such
as object detection [6,7], image classification [8], segmentation [9], pose estimation [10],
and autonomous driving [11], etc. A DCNN aims to learn and extract features from a raw
image automatically, eliminating the step of feature design, which is usually carried out
manually by someone with domain knowledge. In addition, the deep neural structure and
the convolutional layers allow a model to extract high-quality and representative features
efficiently, boosting model performance [12].

DCNN-based surface defect detection has gained extensive attention in recent years.
Use cases have been mainly seen in manufacturing [13,14]. In the food/fruit industry,
several prior efforts have employed DCNN models for surface defect and disease detection.
Since the defects on different fruit/food present different features, most existing studies
focus on building a detector for one type of fruit/food [15–22]. Zhu et al. developed
an improved dense capsule network model for carrot grading [18]. Xie et al. conducted
a comparative study on defective carrots detection using five DCNN models including
Densenet-121, ResNet-50, Inception-V3, VGG-16, and VGG-19 [19]. A custom DCNN model
was designed to detect defective mangosteen [20]. Tian et al. [23] employed a YOLOV3-
Dense model with Cycle-Consistent GAN-based data augmentation for anthracnose lesion
detection on the surface of apples. Da Costa et al. [21] investigated several DCNN models
to detect external defects of tomatoes. Zhou et al. compared the VGG, and the ResNet18
models for a surface defects detection task of green plums [22]. To our best knowledge,
research on lychee surface defect detection has not been explored.

Another challenge faced by DCNN-based surface defect detection is the lack of training
samples, which are time-consuming and costly to obtain. A GAN, proposed by Ian
Goodfellow in [24], is a class of neural network that is designed to generate data with
the same distribution as the training samples. A GAN consists of two neural networks,
including a generator and a discriminator. The former takes as input a random vector
sampled from a latent space and generates a fake sample with the same dimension as a
real sample. The latter is trained with the mixing of real and fake samples and predicts a
binary value that indicates whether the input is real. The generator and the discriminator
are trained alternatively to solve a MinMax game until both networks converge. Due to the
strong ability of generative modeling, GANs are used for generative data augmentation,
which can enhance the sample size and diversity of the dataset used for training, especially
in the case of low resource and domain adaptations [25,26], where sufficient training
data are unavailable. A notable effort is AugGAN [26], an image-to-image translation
network consisting of encoders, generators, discriminators, and parsing nets for cross-
domain adaptation. GANs are also extensively used in the biomedical field to generate
high-quality medical images to train deep learning models. Use cases include skin [27]
and liver [28] lesion classification, radiation therapy planning [29], and multi-contrast MRI
generation [30,31]. A review of GANs in medical imaging is given in [32]. A review of
GAN’s application in manufacturing is given in [33]. Despite the numerous applications of
GANs in data augmentation in fruit surface defect detection, the potential of GANs has
not been fully explored. The only related study we have found is [23], in which the authors
adopted CycleGAN to generate apple samples with anthracnose lesion.

In this paper, we aim to expand the study of fruit surface defect detection to lychees, a
popular fruit type in south Asia. Lychees have high requirements for freshness preservation,
so they are generally transported at low temperatures. Additionally, the surface of lychees
is soft and subject to scratches and cracks during harvesting and processing. We build an
image dataset with three classes of lychees, namely mature, defects, and rot. The dataset is
annotated with ground truth bounding boxes for a supervised learning task. In addition,
we train a transformer-based generative adversarial network (GAN) to generate synthetic
samples that can effectively enrich the size and diversity of the original training set. We
explore two design choices of DCNN-based object detection, namely one-stage vs. two-
stage designs. Three DCNN models, including SSD-MobileNet V2, Faster RCNN-ResNet50,
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and Faster RCNN-Inception-ResNet V2, are trained and evaluated on the self-created
dataset. A set of extensive experiments show that GAN-based augmentation can help
rebalance the training set with more diverse samples, which allows the DCNN models to
capture better semantic features, resulting in notable performance gains. A performance
comparison shows that SSD-MobileNet V2, trained on the augmented dataset, is on a par
with the other two models in mean average precision (mAP) and significantly outperforms
the other two in inference speed.

2. Materials and Methods
2.1. Dataset
2.1.1. Lychee Samples

The black leaf lychee samples were purchased in two batches from the Jiangbei fruit
wholesale market in Huzhou city, Guangdong Province, China. The first batch had 2042
mature lychees, in which a total of 1216 samples were with cracks but not rotten. We placed
625 cracked lychee samples in a dry environment at room temperature for nature rot; the
remaining 495 samples were exposed to sunlight until dried and rotten. The second batch
consisted of 865 lychees that were used for the follow-up out-of-sample (OOS) testing.
For both batches, the samples were placed in foam boxes with ice packs for freshness and
shipped back directly to the laboratory once purchased.

2.1.2. Image Acquisition

To increase data diversity, lychee images were collected at six locations on the Huizhou
College campus on 2 July 2019 (overcast) from 8:00 a.m. to 11:30 a.m. and from 5:00 p.m. to
7:30 p.m. The acquisition device was an iPhone 7 plus, the image format was JPEG, and
the image resolution was 3024 by 3024 pixels. The camera was about 10–20 cm away from
each lychee, and the images were acquired in different directions. A total of 5014 images of
lychee were collected.

2.1.3. Dataset Creation

To reduce the computational load during training, we downscaled the images to
640 by 640 pixels. We manually labeled the dataset using LabelImg (available at https:
//github.com/tzutalin/labelImg accessed on 20 September 2020), which can generate an
XML file with a 4-tuple parameter list specifying the four coordinate pairs of the bounding
box of a labeled object. Figure 1 shows lychee samples of different categories labeled
by labelImg.

(a) (b) (c)
Figure 1. Lychee samples with annotated bounding boxes: (a) mature, (b) defects, and (c) rot.

2.1.4. Dataset Augmentation

Training a neural network needs many parameters, which generally require a large
amount of labeled training data. To improve the generalization ability of the model
and avoid overfitting, we augmented the original training set using GAN-based data
augmentation. Before augmentation, the training set has a class imbalance problem,

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
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where the three categories account for 44.03%, 25.75%, and 30.22%, respectively. The class
imbalance problem usually leads to poor performance [34]. The GAN can be trained
on the original training set and generate synthetic images for all categories, especially
underrepresented ones. For our case, we obtain 1400 samples, including original and
synthetic ones, for each category, as shown in the last column of Table 1.

Table 1. The lychee surface defect dataset.

Category Original Original % Training Test Generated Aug. Training

Mature 1648 44.03% 1298 350 102 1400
Defects 964 25.75% 800 164 600 1400

Rot 1331 30.22% 896 235 504 1400
Total 3743 100.00% 2994 749 1206 4200

2.2. The Proposed Learning Framework

Figure 2 describes the overall learning framework for lychee surface defect detection.
The first and the second batch of lychee samples were used to create the original training
and test sets, respectively. The original training set was fed into a GAN-based augmentation
module to generate more training samples. The augmented training set was used to train
the DCNN models, which were validated on the test set for a performance comparison.

Original
training

set

GAN-based data
augmentation Augmented

training set

Original
test 
set

Candidate
models

Model
training

Model
validation and

selection

Final
model

1st Batch 2nd Batch

Figure 2. Learning Framework.

2.3. GAN-Based Data Augmentation
2.3.1. Training GAN

As a rising generative model, GAN can learn the distribution of a population of
samples to generate realistic samples similar to the original ones. Due to the strong
capability of generative modeling, GAN has been extensively used for data augmentation,
especially in a low-resource scenario. The samples generated by GAN can be added to
the training set to enhance the quantity and diversity of training data as well as boost
the model performance. Figure 3 displays a diagram of the GAN utilized in this study.
A typical GAN consists of two neural networks, a generator and a discriminator. The
generator takes as input a random vector and aims to generate a fake sample that looks
like a real one from the original dataset. On the other hand, the discriminator is trained
with both real and fake samples and predicts whether or not a given sample is real. This
prediction result is back-propagated through both networks to optimize the parameters.
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Formally, let G and D denote the generator and the discriminator, respectively; let
z denote the random vector; let G(z) be the generated fake sample, which has the same
dimension as a real sample x; let {(xi, 1)}m

i=1 and {(G(zi), 0)}m
i=1 be the sets of labeled

real and fake samples, respectively, each with m samples that are utilized to jointly train
the discriminator, which outputs a binary value D(x), i.e., being real (D(x) = 1) or fake
(D(x) = 0). During training, the discriminator aims to maximize the chance to distinguish
real and fake samples. In other words, if an input sample x is real, D strives to push D(x)
towards 1, resulting in a positive prediction, and vice versa. The maximization problem for
D is formulated in Equation (1). Similarly, the generator G aims to minimize the chance that
G(z) is detected by D as fake; the minimization problem for G is provided in Equation (2).
Combining the two problems, we obtain a MinMax game, formulated in Equation (3). The
goal of a GAN is to solve the MinMax game with an equilibrium, which describes a state
when both G and D are sufficiently optimized and converge.

max
D

V(D) = Ex∼Pdata(x)[log D(x)] +Ez∼noise[log(1− D(G(z)))] (1)

min
G

V(G) = Ez∼noise[log(1− D(G(z)))] (2)

min
G

max
D

V(G, D) = Ex∼Pdata(x)[log D(x)] +Ez∼noise[log(1− D(G(z)))] (3)

The training process is briefly described as follows. The training undergoes multiple
epochs, each of which is divided into multiple time steps. For each time step, we first
sample a batch of random vectors {zi}m

i=1 from the noise prior and sample a batch of
real samples {xi}m

i=1 from the training set; we then update D by ascending its stochastic
gradient ∆Θd

1
m ∑m

i=1[log D(xi) + log(1− D(G(zi)))]. After k time steps, we sample an-
other batch of random vectors {zi}m

i=1, and update G by descending its stochastic gradient
∆Θg

1
m ∑m

i=1 log(1− D(G(zi))). This way, D and G are optimized alternatively until conver-
gence. Once the GAN is trained, the generator can produce samples that are similar to the
real ones in our dataset. We can then create new training samples to obtain an augmented
training set. The efficacy of the GAN-based data augmentation is validated in Section 3.

2.3.2. TransGAN

TransGAN [35], is an effort to build a GAN based on pure Transformers, without the
use of convolutions. A transformer encoder [36] consists of a multi-head self-attention
module stacked by a feed-forward multilayer perceptron (MLP) to capture long-term
dependency and contextual semantic information among words in a sentence. Although
created for NLP applications, transformer has been adopted in computer vision [37], where
an image is partitioned into multiple patches. In TransGAN, both the generator and
discriminator are built with transformer encoder blocks, as shown in Figure 3. To reduce
memory consumption resulting from a large amount of patches, TransGAN adopts a
multi-stage mechanism that progressively upscale/downscale the image resolution. In
addition, a grid self-attention module is developed to first partition a full feature map
into non-overlapping grids and then replace the global token-wise attention with a local
attention within a grid, greatly reducing the computation load. Both design tricks have
been validated in [35] and demonstrated superior performances in generative modeling,
compared with the state of the art, in several well-known datasets. Therefore, we adopted
TransGAN as a building block of the proposed learning framework.
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Figure 3. TransGAN architecture.

2.4. DCNN Models

This section gives a brief description of the three DCNN-based object detection mod-
els, including SSD-MobileNet V2, Faster RCNN-ResNet50, and Faster RCNN-Inception-
ResNet V2.

2.4.1. Model 1: SSD-MobileNet V2

SSD makes it possible to perform object localization and classification in a single
forward pass of the network. SSD adopts the VGG-16 architecture as a backbone network
and adds a set of auxiliary convolutional layers that allow feature extraction at multiple
scales and progressively decrease the size of the input to each subsequent layer. SSD
uses multi-scale feature mapping, that is, to simulate the process of seeing things in the
human eye. The algorithm uses the combination of multi-level feature maps as the basis
of classification and regression. The purpose of this is to accurately detect object features
on various scales. In the low-level feature map, the receptive field is relatively small, and
the high-level receptive field is rather large. In SSD, default boxes with different sizes and
aspect ratios are used for feature maps of different scales. At the same time, SSD adopts
the default box mechanism and takes several different aspect ratios for the feature units on
the same feature layer.

MobileNet [38] is a lightweight and efficient deep neural network. MobileNet v1
consists of an input layer, 13 convolution layers, an average pooling layer, and a fully
connected layer. Additionally, a Batch Normalization (BN) layer and a ReLU activation
are added after each convolution layer. Two hyper-parameters, a width multiplier and
resolution multiplier, were introduced to allow model developers to trade off latency or
accuracy for speed and small size depending on the application requirements. The former
reduces the number of feature maps to control the thickness of the model, and the latter
reduces the size of feature maps to alleviate the amount of computation. MobileNet uses a
deep separable convolution (Depthwise Separable Convolution) to decompose and calcu-
late the standard convolution kernel, which reduces the amount of calculation. Depthwise
separable convolution divides a standard convolution into a depthwise convolution and a
1× 1 convolution (pointwise convolution). Each input channel is spatially convolved sepa-
rately by the depth-wise convolution; then, the resulting outputs are mixed via pointwise
convolutions.

On top of v1, two new features are introduced in MobileNet V2 [39], including a linear
bottleneck between the layers and a shortcut connection between the bottlenecks. A linear
bottleneck aims to encode intermediate inputs and outputs that facilitate the inner layers to
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learn transforming pixel-level concepts to higher-level descriptors. Additionally, a shortcut
connection enables more efficient training for a deep network.

Replacing the VGG-16 backbone of SSD with the MobileNet V2, we obtain SSD-
MobileNet V2, which combines the pros of SSD and MobileNet V2 models to reduce
the computational load. Figure 4 shows the neural architecture of SSD-MobileNet V2,
which employs MobileNet V2 as a feature extractor, followed by a set of extra layers for
multi-scale learning.

D
et

ec
tio

n 
H

ea
d

Depthwise
Separable

Convolution

Pointwise 
convolution
(1x1 conv)

Input

MobileNet v2 Backbone

Extra feature layers

Figure 4. Neural architecture of SSD-MobileNet V2.

2.4.2. Model 2: Faster RCNN-ResNet50

Girshick et al. [40] proposed Regions with CNN features (RCNN) that performs
a selective search to extract 2000 regions from an image, called region proposals. Each
candidate region proposal is warped into a square and fed into a CNN that generates a
4096-dimensional feature vector as output, which is passed to a support vector machine
(SVM) for classification. RCNN started a new direction for object detection. However, it
took about 47 s to process one image, which was not suitable for real-time detection.

To speed up RCNN, the same research group proposed Fast RCNN [7]. Rather than
feeding the region proposals to the CNN, Fast RCNN feeds the input image to the CNN to
produce a convolutional feature map, from which region of proposals are identified and
warped into squares to form a feature vector. Fast RCNN is faster because the CNN does
not process 2000 region proposals every time. Instead, the convolution operation is carried
out only once per image and a feature map is generated from it.

Both RCNN and Fast RCNN employ a selective search algorithm to propose regions,
which is time-consuming. Ren et al. [6] propose Faster RCNN, which eliminates the
selective search and lets the network learn region proposals. Faster RCNN introduces a
region proposal network (RPN) that takes an image (of any size) as input and outputs a
set of rectangular object proposals, each with an objectness score and uses non-maximal
suppression for region scores. The RPN outputs its TOP-N scored region suggestions to the
region of interest (ROI) pooling layer, which generates a fixed-size proposal feature map,
then feeds the map into the subsequent classification regression network through a fully
connected layer. The classification layer predicts the category of a proposed frame and
performs the bounding box regression to obtain the final accurate location of the detected
object, as shown in Figure 5.
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Figure 5. Faster RCNN.

Simply stacking layers together to deepen a neural network suffers the notorious
vanishing gradient problem—namely, as gradients are back-propagated to earlier layers,
repeated multiplication may make the gradient infinitely small, leading to rapid perfor-
mance degradation. ResNet [41] allows training a neural network with up to hundreds or
even thousands of layers and still achieves compelling performance. ResNet introduces an
identity shortcut connection that skips one or more layers. The network transforms a resid-
ual mapping function F(x) = H(x)− x via an identity mapping function H(x) = F(x) + x
(H (x) is an ideal mapping, which is the final mapping output). If F(x) = 0, it forms an
identity mapping H(x) = x, and it is easier to fit the residual. Figure 6a shows a typical
residual block with a shortcut (or skip connection).

ResNet50 is a 50-layer residual network, which consists of two basic structures, an
identity block and a convolutional block. The main difference between these two is whether
the convolution operation is performed on the shortcut connection. The use of Faster RCNN
combined with a ResNet50 network can deepen the neural network as much as possible
while maintaining the optimal state of a DCNN during training.

2.4.3. Model 3: Faster RCNN-Inception-ResNet V2

An Inception module [42] offers superior local topology for a neural network. Specif-
ically, the module, as shown in Figure 6b, performs multiple convolutional or pooling
operations on the input image in parallel and stitches all the results into a deep feature
map. It uses different filters to perform convolution operations on the input to obtain
different information about the input image. Processing these operations in parallel and
combining all the feature maps would result in a better image representation. Common
versions of Inception networks are Inception V1, Inception V2, Inception V3, Inception V4,
and Inception ResNet V1/V2.

Conv

Batch Norm

ReLu

Conv

Batch Norm

skip
connection

x

+

H(x)

(a)

Previous
layer

1x1
conv

1x1
conv

1x1
conv

3x3 
max 

pooling

3x3
conv

1x1
conv

5x5
conv

Channel
concatenation

(b)
Figure 6. (a) Res block; (b) inception module.
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The Inception-ResNet V2 model [43] incorporates numerous ResNet blocks into the
Inception V4 network to allow training a deeper neural network.

3. Results and Discussion
3.1. Experimental Platform

The experiments were carried out on a computer with a 16 GB RAM, an Intel Core
i7-8700 CPU, and a Windows 10 operating system. To train a DCNN model, we employed
the TensorFlow framework, along with an Nvidia GeForce RTX 2070 GPU. The program
was written in Python 3.6.7.

3.2. Training Setting

To train TransGAN, we followed the settings in [35]. We adopted a learning rate of
0.0001, an Adam optimizer, a batch size of 64, for both generator and discriminator. The
TransGAN was trained with 220 epochs.

We trained the SSD-MobileNet V2, Faster RCNN-ResNet50, and Faster RCNN-Inception-
ResNet V2 models on the original and augmented training set shown in Table 1, respectively,
generating six models for comparison. Each trained model takes an image as input and
can output a bounding box for each detected lychee object in the image with a predicted
category and a confidence score. For the hyper-parameter setting, we used a weight decay
of 0.0005, a momentum of 0.8, a verification period of 5000, a batch size of 32, a learning
rate of 0.005, and performed 1500 epochs of training.

3.3. Generated Samples

The trained TransGAN model does not always generate high-quality image samples.
For the mature/defects/rot categories, the ratios of kept and total generated samples are
102/200, 600/1000, and 504/800. Figure 7 shows a set of lychee samples generated by
the trained TransGAN. For each category, we select two samples with good and moderate
quality. The samples with good quality, Figure 7a–c, present realistic and clear texture
features appearing in the real samples. For examples, the dark red and uncracked surface
for the mature ones, the exposing sarcocarp in the crack for the defective ones, and the
mildew spots on the rot ones have been well generated. Compared to Figure 7d–f, the
samples Figure 7a–c present more realistic looking in texture, shape, color, and size, which
are the criteria used to determine which generated samples are added to the training set.

Mature Defects Rot

(a) (b) (c)

(d) (e) (f)

Figure 7. Samples generated by GAN. (a–c) are three generate samples with good quality, and (d–f)
are three generated ones with poor quality.
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3.4. Evaluation Metrics

We employed the mean average precision (mAP) and the detection speed as the
two performance metrics, which are commonly used in object detection. The mAP is
calculated based on Intersection over Union (IoU), which is defined by the ratio of the
area of intersection and area of union of the predicted and ground truth bounding boxes.
Typically, a true positive (TP) is identified if IoU > 0.5; otherwise, a false positive (FP) is
counted. Additionally, a false negative (FN) is counted if (1) there is no detection at all or
(2) the detection has an IoU > 0.5 but misclassifies an object. Precision (Pre) is given as
the ratio of true positive (TP) and the total number of predicted positives. Recall (Rec) is
defined as the ratio of TP and total of ground truth positives. The interpolated precision is
calculated at each recall level by taking the maximum precision measured for that level.
The average precision (AP) is then calculated by taking the area under the precision-recall
curve. The mAP is the average of the AP calculated for all the classes across all images in
the test set. In general, a higher mAP indicates a better model. In addition, we measured
the inference speed using frames per second to evaluate whether a model can satisfy the
requirement of real-time detection.

In addition to mAP, which is usually utilized in object detection, we also considered
four metrics widely adopted in classification, including Accuracy (Acc), Recall (Rec),
Specificity (Spe), and F1-score (F1). These four metrics are defined as follows.

Acc =
TP + FN

TP + FP + TN + FN
(4)

Rec =
TP

TP + FN
(5)

Spe =
TN

TN + FP
(6)

F1 = 2× Pre× Rec
Pre + Rec

(7)

3.5. Overall Performance

Figure 8 show a performance comparison of the three models trained with and without
GAN-based augmentation on the test set. We provide the observations as follows.

• It is observed that before augmentation, the mAPs of SSD-MobileNet V2, Faster
RCNN-ResNet50, and Faster RCNN-Inception-ResNet V2 were 88.95%, 91.57%, and
91.25%, respectively. Training on the GAN-augmented data, the performance gains
are 2.86%, 1%, and 0.58% for SSD-MobileNet V2, Faster RCNN-ResNet50, and RCNN-
Inception-ResNet V2, respectively. SSD-MobileNet V2 underwent the largest gain,
becoming comparable to the other two models.

• Before augmentation, the performance gap between individual classes is large, caused
by imbalanced sample distribution in the original dataset. For all three models, the
mature and the defects classes received the highest and lowest mAP, presenting a
gap of 9.45%, 6.12%, and 7.77% for SSD-MobileNet V2, Faster RCNN-ResNet50, and
Faster RCNN-Inception-ResNet V2, respectively. After augmentation, the training set
was rebalanced, and the corresponding gaps were reduced to 1.78%, 4.45%, 2.35%,
respectively, indicating that the models are trained to optimize the mAP for three
classes more equally. The resulting models are therefore more practical because more
defective and rotten samples can be detected.

• Faster RCNN-ResNet50 shows the best overall mAP among the three models, with
the highest mAP for two individual classes, namely, mature and defects. Faster
RCNN-Inception-ResNet V2, on the other hand, performs the best on rotten samples.



Agronomy 2021, 11, 1500 11 of 17

Figure 8. MAP comparison of the three models for the three lychee categories.

Figure 9 shows the inference speed for the three models. We observed that all three
meet the real-time detection requirement, with an average detection speed of 102 FPS,
68 FPS, and 23 FPS for SSD-MobileNet V2, Faster RCNN-ResNet50, and Faster RCNN-
Inception-ResNet V2, respectively. Being 1.5 times faster than Faster RCNN-ResNet50 and
4.4 times faster than RCNN-Inception-ResNet V2, SSD-MobileNet V2 presents a superior
inference speed owing to its lightweight architecture, which was originally designed for
mobile devices. The efficiency advantage brought by SSD-MobileNet V2 is mainly due
to its nature of being a one-stage object detection method, and the Faster RCNN family
operates in two stages, including RoI proposal/selection and classification, which adds
computational load to the network. SSD, on the other hand, was trained to run detection
directly over a dense sampling of anchors without the stage of RoI selection.
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Figure 9. Comparison of the three models in detection speed.

In our task, SSD-MobileNet V2 was worse than both Faster RCNN-ResNet50 and
Faster RCNN-Inception-ResNet V2 by 3%–4%. However, with a more balanced and diverse
training set augmented by TransGAN, SSD-MobileNet V2 was able to achieve a comparable
mAP, with a significant gain in the defects and rot categories.

From a classification perspective, we report the confusion matrices in Figure 10 and
derive the model performance in Acc, Rec, Spe, and F1 in Table 2 for the three investigated
models before and after augmentation. It was observed that all three models present
consistent performance gains with the GAN-based augmentation method applied. Similar
to the mAP results, SSD-MobileNet V2 had the largest gains of around 2% in all four metrics
(shown in Table 2), making it comparable with the other two. Combining the results of all
models in mAP, Acc, Rec, Spe, F1, and inference speed, we conclude that SSD-MobileNet
V2 is the most cost-effective model. Faster RCNN-ResNet50 is the second-best overall, with
the highest detection and classification performance and the second highest speed.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Confusion matrices. (a) SSD-MobileNet V2 w/ base setting. (b) SSD-MobileNet V2
w/ GAN augmentation. (c) Faster RCNN-ResNet50 w/ base setting. (d) Faster RCNN-ResNet50
w/ GAN augmentation. (e) Faster RCNN-Inception-ResNet V2 w/ base setting. (f) Faster RCNN-
Inception-ResNet V2 w/ GAN augmentation.
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Table 2. Classification performance. Abbreviations: SSD-MobileNet V2 (S.M. V2); Faster RCNN-
ResNet50 (F.R.R50); Faster RCNN-Inception-ResNet V2 (F.R.I.R. V2).

Acc Rec Spe F1

S.M. V2 w/base setting 89.81% 90.08% 89.89% 89.46%
w/GAN augmentation 91.96% 92.06% 91.99% 91.92%

F.R.R50 w/base setting 91.82% 92.23% 91.95% 91.72%
w/GAN augmentation 92.76% 92.96% 92.80% 92.55%

F.R.I.R. V2 w/base setting 91.96% 92.07% 91.98% 91.54%
w/GAN augmentation 92.36% 91.74% 92.22% 91.86%

3.6. Qualitative Results

To obtain an impression on the detection effect before and after augmentation, we took
an image with seven samples hand-picked from the test set, including two mature ones
(samples 2 and 7), three with defects (samples 1, 4, and 6), and two rotten ones (samples 3
and 5). We applied the SSD-MobileNet V2 model, trained with and without augmentation,
to the image. The detection results are in Figure 11. It was observed that, with the base
setting (i.e., no augmentation), SSD-MobileNet V2 misclassified a rotten lychee (sample 3)
as mature and a defective one (sample 4) as rotten; additionally, the confidence scores for
samples 1, 6, and 7 were low, indicating the model’s weak ability to distinguish lychees of
different categories. After GAN-based augmentation, SSD-MobileNet V2 presented notable
improvements in both bounding box accuracy (samples 2 and 5) and confidence score (as
seen in samples 1, 5, 7, and 6); most importantly, the two classification errors (3 and 4) were
fixed.

(a) (b)
Figure 11. Detection by (a) SSD-MobileNet V2 w/base setting and (b) SSD-MobileNet V2 w/GAN-based augmentation.

To further investigate the effect of GAN-based augmentation on feature extraction, we
hand-picked three samples, with one from each class, and tested SSD-MobileNet V2 and
Faster RCNN-ResNet50 on the three samples. To visualize the learned features, we plotted
the feature map activation via a heatmap, as shown in Figure 12, where the critical regions
with rich pattern information are highlighted. The figure contains an image matrix, where
the three rows represent the three classes, and the five columns consist of the original image
set (column 1) and the images with activation heatmaps, generated by the two models
trained under two settings (columns 2–5). We list some notable findings as follows.

• For SSD-MobileNet V2, we compared columns two and three and found that for the
mature sample (images b and c), fewer regions on the sample surface were activated
after augmentation, indicating a potential confidence drop; for the defective sample
(images g and h), a stronger activation spot appears at the left side of the crack on the
surface, shown in image h, which could result in confidence gain; lastly, for the rotten
sample (images i and m), there is no apparent activation change observed.
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• For Faster RCNN-ResNet50, we compared columns four and five and observe the
following activation differences: for the mature sample (images d and e), more regions
of the sample surface have been activated with the augmented setting, but the signals
are weaker, which could lead to mixed effect; a similar observation can be found for
the defective sample (from image i to j) and the rotten sample (from image n to o).
Additionally, another important finding is that for all three samples, the activation
regions have expanded and are more centralized, which would result in more accurate
bounding box localization.

• For both SSD-MobileNet V2 and Faster RCNN-ResNet50 under the augmented set-
ting, the activation contours of all samples have shrunken and fit better to the sample
boundary, meaning that the models have learned to improve the bounding box regres-
sion, which yields a better IoU score.

Mature

Defects

Rot

(a) (b) (c) (d) (e) 

(f) 

(k) 

(g) (h) (i) (j) 

(l) (m) (n) (o) 

Original image SSD-MobileNet V2
w/ base setting

Faster RCNN-ResNet50 
w/ base setting

SSD-MobileNet V2
w/ GAN augmentation

Faster RCNN-ResNet50 
w/ GAN augmentation

Figure 12. Activation heatmap. (a,f,k) are the original samples; (b,g,l) are the heatmaps for SSD-
MobileNet V2 w/ base setting; (c,h,m) are the heatmaps for SSD-MobileNet V2 w/ GAN augmenta-
tion; (d,i,n) are the heatmaps for Faster RCNN-ResNet50 w/ base setting; (e,j,o) are the heatmaps for
Faster RCNN-ResNet50 w/ GAN augmentation.

4. Conclusions

The surface of lychees is subject to scratches and cracks during harvesting/processing.
Additionally, lychees are hard to preserve and have to be stored in low temperatures to
keep fresh. To explore the automation of defective surface detection for lychees, we have
built an image dataset with three classes of lychees, namely mature, defects, and rot. In
addition, we trained a transformer-based GAN to generate synthetic samples that can
effectively enrich the size and diversity of the original training set. Three DCNN models,
including SSD-MobileNet V2, Faster RCNN-ResNet50, and Faster RCNN-Inception-ResNet
V2, were trained and evaluated on the self-created dataset. A set of extensive experiments
show that GAN-based augmentation can help rebalance the training set with more diverse
samples, which allows the DCNN models to capture better semantic features, resulting
in notable performance gains. The results show that SSD-MobileNet V2, trained on the
augmented dataset, presents a mAP of 91.81% with an inference speed of 102 FPS, making
it the most cost-effective model among the three.
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This study has the following limitations that will be addressed in future work. First,
GAN-based data augmentation can be combined with classic image processing-based
augmentation to quickly enhance the dataset in both quantity and diversity. It would be
interesting to explore the individual and joint effects of these two types of augmentations
and how well they can complement each other to maximize the benefit of augmentation.
Second, this study only investigated one possible GAN architecture due to its validated
performance to generate high-quality synthetic images. At the same time, numerous GAN
options that can also be evaluated. Third, samples created by GAN-based augmentation
require manual selection and annotation before they can be used for training, which is
time-consuming. It would be worthwhile developing additional supporting algorithms for
automated image quality scanning and bounding box annotation.
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