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Abstract: In this study, a modelling approach for the estimation/prediction of wheat yield based
on Sentinel-2 data is presented. Model development was accomplished through a two-step process:
firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters
was established through measurements in a pilot field and secondly, the results of the first step were
extended/evaluated in 31 fields, during two growing periods, to increase the applicability range
and robustness of the models. Modelling results were examined against yield data collected by a
combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation
Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined
with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index
(NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best
performing model involved the EVI integral for the 20 April–31 May period as a plant signal and
NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538).
However, model versions with a single date and maximum seasonal VIs values as a plant signal,
performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten
days of April, these model versions are suitable for yield prediction.

Keywords: durum wheat; yield modelling; Sentinel-2; NDVI; EVI; NDWI; NMDI

1. Introduction

Durum wheat (Triticum turgidum L. var. durum) is a crop used for a variety of
food products, mainly pasta. Almost 60% of the world durum wheat cultivated area,
about 7.8 million hectares, is located at the Mediterranean basin [1]. Nevertheless, pasta
consumption in the Mediterranean countries is higher than the local production, so food
industries depend on imports from other durum-wheat-producing territories, mainly North
America. Furthermore, the final production relies mainly on weather conditions, especially
during the grain-filling stage [2]. The variability of the Mediterranean climate, exacerbated
by the on-going climate change, causes great year-to-year fluctuations in durum wheat
yields. This fact causes risks and uncertainty in the industry, grain marketing agencies,
policymakers, and other involved entities, concerning the planning of their exports and
imports. Early-season prediction of durum wheat yields is of vital importance for assisting
the whole food production chain. Farmers as well, can adjust the farm inputs, such as
fertilizers and irrigation, to meet the site-specific needs of the crop by implementing
precision agriculture techniques, while the harvesting sector can plan its logistics by
managing the harvester fleet and anticipating transport and storage requirements.

So far, yield prediction for winter wheat relies on either estimates and information
gathered from experts or on outputs from a variety of crop simulation models, such as
CERES [3], WOFOST [4], CROPSYST [5], or SAFY [6]. Even though models like the CERES-
wheat have been used quite successfully for more than 30 years [7], the main drawback is
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that they require numerous data for weather, climate, soil, genotypes, and management
practices that are often difficult to obtain. Moreover, these models are poor predictors
when within-field spatial variability is considerable [8]. More recently, remotely sensed
data have been used complementarily to improve the accuracy of crop models [9–12].
Remotely sensed data retrieved from satellite observations can provide quantitative and
temporal information over large areas, through the use of vegetation indices (VIs), such as
the normalized difference vegetation index (NDVI) [13], the enhanced vegetation index
(EVI) [14], and the normalized difference red edge index (NDRE) [15]. Such VIs are closely
related to vegetation biophysical parameters, such as the canopy leaf area index (LAI) or
the fraction of absorbed photosynthetically active radiation (fAPAR) [16,17], which are
commonly used in vegetation productivity modeling.

Even though spatial variability in crop productivity is highly associated with soil
properties, water, and nutrient availability [2,18], remote-sensed data from the crop canopy
have been proved a valuable tool for yield predictions, as they directly depict most of these
effects on crop development [19]. Among the different approaches used for yield prediction,
the empirical methods based on the straightforward application of a statistical regression
between a VI and yield are the most common, because of their simplicity and limited
data requirements [20–26]. The main drawback of this approach is that the relationships
between VIs and yield are often limited to the regions for which they were calibrated and
are not globally applicable [24,27]. Bhattacharya et al. [28] attributed the site-dependent
nature of the spectral yield models on the saturation of some VIs (e.g., NDVI) at high levels
of LAI, and the insensitivity of VIs to soil moisture variation, especially at moderate to
full canopy cover conditions. Nevertheless, Becker-Reshef et al. [9] managed to develop a
winter wheat single regression model where the yield was positively and linearly correlated
to the seasonal maximum NDVI from MODIS data. The generalized model was calibrated
and applied at the state level in Kansas and was proven directly transferable and applicable
at the national level in Ukraine.

Multispectral instruments onboard several satellites (e.g., LANDSAT, MODIS, and
SPOT) have provided plenty of data used for vegetation monitoring [9,25,29–35]. However,
their utility is often compromised by their low spatial or temporal resolution or their limited
public availability. MODIS offers a spatial resolution for the NDVI-associated bands at
250 m pixel size. This corresponds to 6.25 ha and is considered too large for the average
farm size in the Mediterranean basin, which may be as small as 6.8 ha, as in the case of
Greece (Eurostat—farm structure statistics). LANDSAT provides higher spatial resolution
(30 m pixel size) but with a 16-day revisit cycle, which is rather low to produce accurate and
continuous VI time-series, especially during periods of rapid phenological/physiological
changes [9]. The more recent SPOT-7 satellite offers high spatial resolution at 6 m and is
capable of providing revisits on a daily basis, but its services are available on-demand and
are not freely accessible.

Lately, the European Space Agency (ESA) launched a pair of satellites namely Sentinel-
2 (A and B) equipped with a MultiSpectral Instrument (MSI), that deliver data at five-day
intervals, with multiple spectral bands at 10 m, 20 m, and 60 m spatial resolution [36]. These
frequently captured, high resolution, open data seem particularly suitable for effective
yield prediction at the sub-field level and for precision agricultural applications. Sentinel-
2A was launched in 2015 and Sentinel-2B in 2017, and due to the short period of their
operation, research information for specific crops and vegetation parameters are still quite
limited. Xie et al. [37] used Sentinel-2 data to estimate winter wheat LAI, leaf, and canopy
chlorophyll content and compared the results with in situ measurements. In a comparative
study, Prey and Schmidhalter [26] demonstrated that VIs extracted from Sentinel-2 MSI
sensor clearly outperformed the Lansat-8, Worldview-2, and RapidEye sensors in the
estimation of VIs related to wheat grain yield, grain N uptake, and grain N concentration.

The aim of the present study was to develop a simple yield prediction model based on
high spatial resolution Sentinel-2 data, suitable for the small-size fields of the Mediterranean
basin. Model development was accomplished through a two-step process: firstly, the
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capacity of Sentinel-2 VIs to follow plant ecophysiological parameters was established
through field measurements in a pilot field and the most suitable plant, water, and soil
signals for yield prediction were determined and secondly, the results of the first step were
extended/evaluated in 31 wheat fields with different varieties, management practices,
and soil composition, during two growing periods, to extent the applicability range and
robustness of the model. In all steps modelling results were examined against yield data
collected by a harvesting machine equipped with a yield-monitoring system.

2. Materials and Methods
2.1. Study Sites

The study sites were located in Thessaly plain, central Greece and the monitoring in-
volved the 2017–2018 and 2018–2019 growing periods (Figure 1). One field (39◦34′52.13′′ N,
22◦35′46.22′′ E) from the 2018–2019 period was selected as a pilot for field measurements
and model development. The pilot field was chosen because of the high variability of its
soil electrical conductivity, as shown in Figure 2d. Another 31 fields, 19 from the 2017–2018
growing period and 12 from the 2018–2019, were used for model evaluation. The criteria
for selecting the fields were (i) the availability of yield map data and (ii) an adequate size,
scheme, and orientation capable of providing a sufficient number of Sentinel-2, 10 × 10 m
resolution pixels. All the fields were cultivated with durum wheat of different varieties
(Iridae, Meridiano, Normano, Simeto, and Svevo) and belonged to numerous farmers
who followed their own cultivation practices. That way, the model could be evaluated
in different conditions and also, it could be ensured that it applied regardless of the
cropping practices.
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Figure 1. Satellite image of the Thessaly plain, Greece (inset), with the studied fields indicated. 

 

Figure 1. Satellite image of the Thessaly plain, Greece (inset), with the studied fields indicated.



Agronomy 2021, 11, 1486 4 of 18

Agronomy 2021, 11, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 1. Satellite image of the Thessaly plain, Greece (inset), with the studied fields indicated. 

 

Figure 2. Raw yield data as provided by the harvesting machine (a) and after noise removal, rasterization, resampling,
and collocation with Sentinel-2 pixels (b); Sentinel-2 NDVI on 29 April 2019 (c); soil ECa map spatial resolution after,
rasterization, resampling, and collocation with Sentinel-2 pixels (d).

The 4.5 ha pilot field was cultivated with Svevo variety at a seed rate of 230 kg ha−1.
Six 30 × 30 m plots were accurately determined by GPS (Garmin, eTrex, Schaffhausen,
Switzerland) to collocate with Sentinel-2 pixels (9 Senitnel-2 pixels per plot). All ecophysio-
logical measurements were performed in these plots and compared with the corresponding
Sentinel-2 data.

2.2. Field Measurements
2.2.1. Leaf Area Index

Leaf area index was measured with an AccuPAR LP-80 PAR/LAI Ceptometer (Decagon
Devices, Inc., Pullman, WA, USA) following Norman and Jarvis model [38] of radiation
transmission and scattering. Three LAI measurements were performed per plot, with
10 below and one above canopy PAR measurements per LAI measurement. PAR sampling
points were randomly selected at 3 m intervals across three transects in each plot. For the
below canopy measurements, the Ceptometer was placed at an angle of approximately 45◦

in relation to cultivation lines. All measurements were performed during clear-sky days
and around solar noon.

2.2.2. Water Potential

Water potential (Ψ) was measured using a Scholander-type pressure chamber (SKPM
1400, Skye Instruments Ltd., Liandrindrod, UK). Randomly selected whole plants across
plots were wrapped in aluminum foil and sealed in plastic bags for 10 min and then cut
and measured immediately with the pressure chamber.

2.2.3. Soil Electrical Conductivity

The soil apparent electrical conductivity (ECa) was measured using an EM38 instru-
ment (Geonics Ltd., Mississauga, ON, Canada). The whole field was scanned at 22 March
2018 by walking the field in parallel lines, about 15 m apart, with the instrument handheld
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5 cm above the ground. The instrument records ECa at time intervals of 1s providing geo-
tagged data used to create a point vector map. The vector map was initially interpolated
into a raster with a resolution of 1x1m using the ordinary kriging process in the SAGA
v.7.9.0 free open-source GIS (SAGA User Group Association, 2020, Kent, UK). Accordingly,
the raster map was resampled and collocated to the 10 × 10 m pixels of Sentinel-2. using
the QGIS v.3.16 open-source Geographic Information System.

2.2.4. Canopy Reflectance

Canopy reflectance was measured in situ with a portable JAZ spectroradiometer
(OceanOptics, Dunedin, FL, USA), with spectral range from 350 to 1000 nm and spectral
resolution approximately 0.3 nm. Measurements were taken with a 5 m length optical
fiber in combination with a home-made supporting system at a height approximately 1 m
from top of the canopy. The spectroradiometer was calibrated against a Spectralon® white
reflectance panel (Labsphere, Inc., North Sutton, NH, USA) before the measurements’ onset
and every 15 min, to track solar angle changes. All measurements were performed during
clear-sky days and around solar noon time. At each plot 30 measurements were taken at
3–4 m intervals, by walking at three random lines forming a Z scheme.

2.2.5. Yield Measurement

At the end of the growing periods (June) the fields were harvested with a John Deere
S660i combine harvester equipped with a yield mapping system providing, through the
associated MyJD software, a yield map in a point vector format at a spatial resolution of
1.75 by approximately 2.5 m (depending on the travelling speed) (Figure 2a). The initial
maps were further processed with the open-source Yield Editor software (v.2.0.7) [39]
for the removal of outliers (due to start point, end point grain flow delays, swath width
overlaps, rapid speed changes, etc.). Accordingly, the yield maps were interpolated to
rasters by the IDW process of QGIS and finally, resampled at 10× 10 m pixel size (Figure 2b)
corresponding to the Sentinel-2 image pixels (Figure 2c).

2.3. Satellite Data

A total of 61 cloud-free Sentinel-2 (A and B) images from October 2017 to June 2018
and October 2018 to June 2019 were downloaded from ESA’s Copernicus Open Access
Hub [40] (https://scihub.copernicus.eu/). The MultiSpectral Instruments (MSI), onboard
the Sentinel-2 satellites, provide information at 13 spectral bands (443–2190 nm), at a
variable spatial resolution from 10, 20, or 60 m pixel size and with a 5-day revisit time.
In the present study, Level 2A (radiometrically and atmospherically corrected) bottom of
atmosphere (BOA) reflectance products provided by ESA, were used. All images were
resampled at 10 m pixel size using the SNAP-ESA Sentinels Application Platform v.6.0.4 [41]
(http://step.esa.int) free open-source software. After data extraction for the pixels of the
studied sites (221 pixels for the pilot field used for model development and 7436 pixels for
the evaluation fields), time-series were constructed for the following vegetation indices:

Normalized difference vegetation index, NDVI =
R842 − R665

R842 + R665
(1)

Enhanced vegetation index, EVI = 2.5
R842 − R665

R842 + 6R665 − 7.5R490 + 1
(2)

Normalized difference water index, NDWI =
R842 − R2190

R842 + R2190
(3)

Normalized multiband drought index, NMDI =
R842 − (R1610 − R2190)

R842 + (R1610 − R2190)
(4)

where Rx, reflectance at wavelength x, with x denoting the center wavelength of the
corresponding Sentinel-2 band.

https://scihub.copernicus.eu/
http://step.esa.int
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Accordingly, the 221 + 7436 pixels × 4 VIs time series were linearly interpolated
producing complete daily datasets for the corresponding growing periods (October to
June). Linear interpolation and the absence of any smoothing process on the VI time series
were chosen to keep processing as simple as possible, for the whole methodology to be
easily applied in the modelling process. The interpolated daily datasets were subsequently
used for the calculation of VI integrals for varying time intervals across the growing periods.
Additionally, several soil indices were calculated for a single date before sowing (bare
ground) and their formulations are shown in Table 1.

Table 1. Correlation coefficients (R) between reflectance of Sentinel-2 bands as well as several indices with soil ECa and
final yield.

S2 Band Central λ nm R Soil ECa R Yield Index Abbreviation Formula R Soil ECa R Yield

B1 443 −0.069 0.073 Normalized difference
Water index NDWI (B8 − B12)/(B8 + B12) 0.511 −0.435

B2 490 0.016 −0.074 Color index CI (B4 − B3)/(B4 + B3) 0.188 −0.257
B3 560 0.150 −0.186 Salinity index SI B4 × B8/B3 0.099 −0.230
B4 665 0.191 −0.243 Brightness index BI

√
(B42 + B32)/2 0.177 −0.224

B5 705 0.172 −0.282 Brightness index 2 BI2
√
(B42 + B32 + B82)/3 0.118 −0.204

B6 740 0.121 −0.269 Redness index RI B42/B33 −0.029 0.024

B7 783 0.057 −0.223 Soil-adjusted vegetation
index SAVI 1.5 × (B8 − B4)/(B8 + B4 + 0.5) −0.472 0.195

B8 842 0.055 −0.180 BSI (B11+ B4)−(B8−B2)
(B11+ B4)+(B8−B2)

−0.261 0.203

B8A 865 0.005 −0.194 Normalized difference
Vegetation index NDVI (B8 − B4)/(B8 + B4) −0.504 0.290

B9 945 −0.133 0.003 Normalized multiband
Drought index NMDI B8 –(B11−B12)

B8+(B11−B12)
−0.637 0.526

B11 1610 −0.330 0.074
B12 2190 −0.518 0.258

2.4. Statistics

The relationships between VIs and field-measured parameters were examined through
correlation analyses, while the performance of estimation models was evaluated using
linear and multilinear regression analyses, from which coefficient of determination (R2) and
root-mean-square error (RMSE) were derived (p-value < 0.05). All analyses were performed
using JASP software v.0.14 [42].

3. Results
3.1. Sentinel VIs and Field Measurements

Even though it is generally established that satellite VIs are good estimators of plant
ecophysiological parameters, species- and site-specific relationships have to be well doc-
umented. To that purpose several Sentinel-2 VIs were examined against field-measured
ecophysiological parameters in the pilot field.

3.1.1. Sensor Intercomparison

Canopy reflectance was measured with two different remote sensors—the MultiSpec-
tral Instrument (MSI) onboard the Sentinel-2 satellite and the hyperspectral JAZ canopy
spectroradiometer. Even though these two sensors have differences in spectral, spatial,
and radiometric characteristics, their measurements may be used for the calculation of
several widely used vegetation indices. In this study the JAZ spectroradiometer was used
as a reference, since it has a super-fine spectral analysis (0.3 nm), it is calibrated before
each measurement against a standard reflectance panel, and it is operated very close to
the canopy avoiding any atmospheric disturbance effects. Accordingly, Sentinel-2 perfor-
mance was evaluated on the basis of vegetation indices intercomparisons. For that purpose,
the detailed spectral data of the JAZ spectroradiometer were averaged over the spectral
range of the Sentinel-2 bands used in vegetation indices calculations. For each 30 × 30 m
plot the JAZ measurements were averaged and compared to the average values of the
corresponding nine Sentinel-2 pixels.
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Vegetation indices NDVI and EVI from Sentinel-2 correlated very well with JAZ
indices, showing high correlation coefficients, as well as slopes and intercepts close to 1
and 0, respectively (Figure 3). The large error bars for JAZ data may be considered rather
reasonable due to its small measurement area (approximately 15 × 15 cm with the optical
fiber at 1 m height above the canopy) resulting in detailed monitoring of the occurring
variability, which is smoothed in the 10 × 10 m Sentinel-2 data.
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3.1.2. Leaf Area Index and Satellite VIs

Leaf area index was measured in the pilot field from February to May 2019. As shown
in Figure 4, the seasonal course of the crop is well depicted in LAI, with low values during
winter, gradually increasing until the April flowering period, followed by a rather steep
decrease during the May seed-ripening period. This pattern was also followed by the
satellite VIs (Figure 5), resulting in very good correlations between field-measured LAI and
VIs (Figure 6).
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3.1.3. Plant Signal

Vegetation indices incorporating the red part of the spectrum (NDVI and EVI), where
chlorophyll absorbs, were used as plant signal. Their performance was examined in the
pilot field against final yield maps, resampled, and collocated according to Sentinel-2
spatial resolution (10 × 10 m), to enable a pixel-to-pixel comparison basis (Figure 2). To
that purpose, VI integrals of several time spans as well as single date VIs were compared
to final yield data.
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Our initial hypothesis was that the whole growing period integral might show lower
correlation with yield data compared to the integral for the period from flowering to
harvesting, due to the fact that most of the assimilates are directed to seed formation after
flowering [43]. Indeed, as shown in Table 2 and Figure 7, there is no correlation between the
whole growing period integral (1 December–31 May) and yield (Figure 7a,b) for both NDVI
and EVI. On the contrary, strong correlations appear when the integral from flowering to
the end of the growing period (20 April–31 May, Figure 7c,d) or the best 20 days integral
after the flowering period (6–25 May) are examined. Additionally, especially for NDVI,
high correlations also appear when the single date with maximum seasonal value (max
NDVI) is considered (Table 2). In all high correlation cases NDVI seems to perform better
than EVI. According to the above, only the high correlation cases from each VI are further
considered in model configuration.

Table 2. Correlation coefficients between final yield and vegetation indices for various integration
periods and maximum VI values. Best 20 days integral concerns the 6–25 May period. Data concern
the pilot field, corresponding to 221 pixels. Bold numbers denote the highest correlations for each VI.

Integration Period NDVI EVI

1 December–31 May 0.047 0.163
20 April–31 May 0.758 0.683

best 20 days 0.719 0.659
max 0.659 0.401
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3.1.4. Water Signal

Water potential was measured in the pilot field only during April and May, since
at earlier dates plant shoots were too fragile to be inserted intact in the pressure bomb
apparatus. As shown in Figure 8, plants showed a good water status during April and
gradually lost water during the high temperature/low precipitation May. Noteworthy are
the large error bars during the last May measurement, indicating a large in-field variability.
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Subsequently, two satellite indices which incorporate water bands (NDWI and NMDI),
were examined for their efficiency in depicting the water potential fluctuations. As shown
in Figure 9, both indices showed good correlation with water potential. Even though NMDI
is generally considered an advantageous water index as it incorporates two water bands, it
showed weaker correlation with Ψ compared to NDWI.
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Accordingly, in order to examine the importance of incorporation of a satellite water
signal in the model, the correlation of the two water indices against final yield throughout
the growing period were investigated. For both indices the most significant water signal
(highest seasonal correlation) was found for 29 April (R = 0.641 and 0.550 for NDWI and
NMDI, respectively), shortly after flowering. This period is recognized as one of the most
crucial for a high final yield of winter wheat [44,45].

3.1.5. Soil Signal

As shown in Figure 2d, the pilot field exhibits a particularly wide range of soil ECa val-
ues, between 30 and 130 mS m−1, which is expected to affect final yield production [46,47].
Indeed, as shown in Figure 10, final yield is highly correlated with soil ECa; higher produc-
tivity occurs in areas of lower ECa and vice versa. In an attempt to depict this soil variability
through a remote-sensed soil signal, the correlations of Sentinel-2 bands (reflectance) as
well as several indices from a single date before the crop establishment (i.e., during bare
ground period) were examined against ECa and final yield. As shown in Table 1, among
Sentinel-2 bands, band 12 exhibits the highest correlation with ECa, followed by band 11.
This result may be ascribed to the fact that both bands incorporate water signals. Accord-
ingly, NMDI—incorporating both 11 and 12 bands—shows the highest correlation with soil
conductivity, followed by NDWI which incorporates only band 12. However, it is worth to
note that NDVI of bare ground also shows a high correlation with ECa.
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3.2. Model Configuration

The combination of the components described above, i.e., plant, water, and soil
signals, was examined against final yield by multilinear regression analysis in the pilot
field. Several combinations of VIs corresponding to the three signals were tested and are
presented in Table 3. More specifically, concerning plant signal, NDVI and EVI integrals
from flowering to the end of the growing period (20 April–31 May) or the best 20 days
period after flowering (6–25 May) and their maximum seasonal value (max) were examined.
Accordingly, for water signal, NDWI and NMDI for the date with the maximum correlation
with final yield (29 April), i.e., the most critical water period, were incorporated. Finally,
NDWI and NMDI for a single date before sowing were tested as soil signals.

As shown in Table 3, the best final yield estimation is achieved by a model version
combining the NDVI integral from 20 April to 31 May as plant signal, NDWI at 29 April
as water signal, and NDWI of bare ground as soil signal (Figure 11a). However, model
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versions with NMDI as water and/or soil signals show similar high correlations with final
yield. For EVI used as plant signal, the best estimation of final yield was also achieved by
the 20 April–31 May integral. It is also noteworthy that the performance of a model version
with a single date NDVI (Max) for all water and soil signal combinations, was remarkably
high further extending the potential for early season yield prediction.

Table 3. Coefficients of determination (R2) and root mean square error (RMSE, kg ha−1) between measured final yield and
various model versions incorporating different plant, water, and soil signals. Best 20 days integral concerns the 6–25 May
period. Data concern the pilot field, corresponding to 221 pixels. The most significant correlations are indicated in bold.

Plant Signal NDVI EVI

Integration Period Water Signal Soil Signal R2 RMSE R2 RMSE

20 April–31 May NMDI NMDI 0.584 334 0.484 371
20 April–31 May NMDI NDWI 0.607 325 0.542 351
20 April–31 May NDWI NMDI 0.604 326 0.484 371
20 April–31 May NDWI NDWI 0.619 319 0.542 350

Best 20 days NMDI NMDI 0.526 357 0.457 381
Best 20 days NMDI NDWI 0.549 348 0.504 364
Best 20 days NDWI NMDI 0.526 357 0.462 380
Best 20 days NDWI NDWI 0.549 348 0.508 363

Max NMDI NMDI 0.460 381 0.328 424
Max NMDI NDWI 0.483 372 0.364 413
Max NDWI NMDI 0.462 380 0.442 387
Max NDWI NDWI 0.491 369 0.468 378
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3.3. Model Extension/Evaluation

In order to extend/evaluate the models described in the previous step for the pilot
field, their versions were tested in 31 fields during the 2017–2018 and 2018–2019 growing
periods, with a total number of 7436 pixels. It has to be noted that the pilot field was a low
productivity field with a yield range between 1000 and 3500 kg ha−1, whereas the 31 fields
used in the extension/evaluation step covered a yield range from 2000 to 7500 kg ha−1.
Accordingly, the full equations determined through multiple linear regression analysis in
the pilot field were not used per se in the 31 fields, but only the same signal parameters
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determined previously were used in a new regression analysis. Therefore, in this step,
evaluation concerns the use of the same signal parameters, while extension concerns the
new multilinear regressions with theses parameters.

As shown in Table 4, the best-performing versions of the model concern the same
plant signals as in the previous step (NDVI and EVI integrals for the 20 April–31 May
period), but NMDI instead of NDWI as water and soil signals (R2 = 0.613, RMSE = 549 for
NDVI and R2 = 0.629, RMSE = 538 for EVI, Figure 12). However, in contrast to the previous
step where NDVI was found to perform better than EVI as plant signal, in this step EVI
performed better, even though the differences from NDVI was marginal. Accordingly, the
performance of the model version with maximum VI as plant signal (max) was very good
(R2 = 0.584, RMSE = 570 for NDVI and R2 = 0.587, RMSE = 568 for EVI), corroborating its
applicability for early and simple yield predictions.

Table 4. Coefficients of determination (R2) and root mean square error (RMSE, kg ha−1) between measured final yield
and various model versions incorporating different plant, water, and soil signals. Best 20 days integral concerns the
13 April–2 May period. Data concern 31 fields during two growing periods, corresponding to 7436 pixels. The most
significant correlations are indicated in bold.

Plant Signal NDVI EVI

Integration Period Water Signal Soil Signal R2 RMSE R2 RMSE

20 April–31 May NMDI NMDI 0.613 549 0.629 538
20 April–31 May NMDI NDWI 0.604 556 0.619 545
20 April–31 May NDWI NMDI 0.542 598 0.566 582
20 April–31 May NDWI NDWI 0.551 591 0.572 579

Best 20 days NMDI NMDI 0.587 567 0.598 560
Best 20 days NMDI NDWI 0.578 574 0.587 568
Best 20 days NDWI NMDI 0.523 610 0.542 598
Best 20 days NDWI NDWI 0.530 606 0.542 597

Max NMDI NMDI 0.584 570 0.587 568
Max NMDI NDWI 0.572 578 0.570 579
Max NDWI NMDI 0.520 612 0.521 611
Max NDWI NDWI 0.523 610 0.521 611
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4. Discussion
4.1. Plant, Water, and Soil Signals

In this study, a two-step process for the development of a single model for wheat yield
prediction based on Sentinel-2 satellite data was followed. The determination of the satellite-
derived parameters used in the modelling process was based on field ecophysiological
measurements performed in a pilot field. The plant signals obtained from NDVI and
EVI showed a high correlation with the field-measured canopy reflectance. Sentinel-2
performance was evaluated on the basis of VIs intercomparisons with the hyperspectral
JAZ canopy spectroradiometer of 0.3 nm spectral analysis, which operated very close to
the canopy avoiding any atmospheric disturbance effects (Figure 3). Additionally, both
NDVI and EVI well depicted the seasonal development of the winter wheat crop (Figure 5).
Durum wheat in south Europe is planted in late autumn, usually during November or
December, seedlings emerge shortly after, and tillering is completed during the winter
period. Flowering is considered a critical period of the crop [48,49] and usually occurs in
the middle of April in the Thessaly plain. This growth profile was closely followed by both
field-measured LAI and satellite VIs, which showed low values during winter, gradually
increasing until April flowering period, followed by a rather steep decrease during May
seed-ripening period.

In order to identify the optimum period for predicting potential yield, the daily VI data
produced by a timeseries interpolation process for each Sentinel-2 pixel were examined
against yield maps recorded by the harvester. The results showed that for both NDVI
and EVI virtually no correlation was found between the whole growing period integral
(1 December–31 May) and yield, while strong correlations appeared when the integral from
flowering to the end of the growing period, or the best 20 days integral after the flowering
period, was taken into account (Figure 7). During this particular period, plants start to lose
their chlorophylls [50], so VIs were declining (Figure 5). For the Mediterranean region, this
period is considered crucial in determining the final yield because the plants direct their
photosynthetic products to the seed [2,49]. The results are in contrast with findings from
Ren et al. [22] and Becker-Reshef et al. [9] who declared that the best correlation between
NDVI and wheat yield coincides with the period of highest LAI achieved a few days before
flowering. However, corroborating our results, Lopresti et al. [24] reported that prediction
of wheat yield is best 30 days before harvest, after the stages of heading and flowering.
Seggara et al. [51] investigated the optimum period for winter wheat yield estimation
in Spain and found that the predictions made on the heading stage outperformed the
predictions on tillering or maturing stages, but they did not make any observations during
the stage of flowering.

The water signal incorporated in our model was derived from two satellite water
indices (NDWI, NMDI), whose efficiency to monitor variations in plant water content was
examined by comparing them with field-measured plant water potential. Although NMDI
is considered more advantageous compared to NDWI as it incorporates two water bands,
it showed a weaker correlation with Ψ (R = 0.775 vs. R = 0.844, respectively, Figure 9).
Accordingly, NDWI performed better than NMDI as a water signal in the pilot field, but
NMDI outperformed NDWI in the application of the model in the second modelling step
involving 31 fields during two growing periods, i.e., covering a wider range of conditions.

Soil signal is critical in the construction of a yield prediction model, especially in the
case of remarkably variable soil properties, such as ECa. The pilot field of the present
study displayed a particularly high range of soil ECa between 30 and 130 mS m−1, which
showed a strong negative linear relationship with wheat yield (Figure 10). Therefore, to
address the challenge of capturing such a wide range of ECa through remote-sensed data,
the correlations of Sentinel-2 bands and several indices from a single date before the crop
establishment (i.e., during bare ground period) were examined against ECa and final yield.
NDWI and NMDI of bare ground presented high correlations and were selected for further
testing in the procedure of model development. As in the case of the water signal, NDWI
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performed better than NMDI in the pilot field, and NMDI better in the 31 fields step,
indicating its superiority for wide range conditions applications.

4.2. Model Development and Validation

Yield prediction of durum wheat has been of major interest both from an economical
and managerial point of view. Its accurate prediction requires identification of crop variabil-
ity even at a within-field scale [8]. The development of remote sensing technologies based
mainly on satellite observations made possible the assessment of within-field variability.
The Sentinel-2 satellites, operated by the ESA Copernicus program, introduced a new era
in open source, high spatial resolution, and frequent earth observations. This advancement
is promising not only for capturing within-field variability but also for monitoring of
small-sized fields. The latter is crucial for arable lands of the Mediterranean basin due to
the small area of farms, the monitoring of which requires high spatial resolution of the
remotely sensed data.

The evolution of yield prediction models started with laborious ecophysiological
measurements-based simulations and continued with the first generation of satellite-based
measurements incorporating low resolution data. During the last decade, complex models
have been proposed that require numerous inputs such as soil properties, crop variety in-
formation, and meteorological data. Quite often though, the availability or the accessibility
of such a broad information is limited. Therefore, there is an essential need for the con-
struction of prediction models that are minimal in inputs and incorporate variables which
are easily accessed. In countries like Greece, for example, meteorological data of arable
land are not always available or easily accessible. Additionally, between-years climate
fluctuation may be unpredictable in the Mediterranean region, especially in the framework
of the ongoing climate change. Thus, finding the balance between simplicity and accuracy
may result in advantageous next-generation models, with the following characteristics:
(i) have as few as possible inputs, without compromising accuracy, (ii) preferentially use
satellite data which are easily accessible and present a good correlation with plant function
and productivity, (iii) efficiently fit to small farms but could be extended to cover a range
of similar environments and cultivation years—high spatial and temporal analysis and
extension. In line with this, satellite-based models which utilize the VIs provided by new
generation satellites, like ESA’s Sentinel-2, are expected to be proved valuable, as they
provide information of high spatial and temporal scales.

The modeling procedure presented in this study aimed at addressing the above-
mentioned needs. The satellite-derived parameters corresponding to plant, water, and soil
signals that were determined in the pilot field were further extended/evaluated on 31 other
durum wheat fields located in the Thessaly plain throughout two different cultivation years.
As shown in Figures 7 and 12, the pilot field was a low-productivity field (yield between
1000 and 3500 kg ha−1), whereas the numerous fields used in the extension/evaluation
procedure covered a much wider yield range (2000 to 7500 kg ha−1). Accordingly, the
models developed in the pilot field were not used per se in the other fields, but new
regressions with the same signal parameters determined previously were made. Our
results show that the overall best performing model version involves the EVI integral for
the 20 April–31 May period as a plant signal and NMDI at 29 April and before sowing
as water and soil signals, respectively (R2 = 0.629, RMSE = 538). This model version may
be used for yield estimation but not for yield prediction since it incorporates data until
the end of the growing period. However, as has been shown (Table 4), the model versions
with the maximum seasonal VIs values as plant signal performed almost equally well; the
best-performing version involved the max EVI as plant signal and NMDI as water and soil
signals (R2 = 0.587, RMSE = 568). Usually, the maximum seasonal VIs values are recorded
during the last ten days of April (Figure 5), i.e., 30 to 50 days in advance before harvest.
Additionally, for this model version only one satellite image is needed for the estimation of
the plant signal parameter, significantly simplifying the application of the model.
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Future work will focus on the optimization of the proposed model through incorpo-
ration of additional fields with different soil characteristics and management practices
and/or in different areas and cultivation years. Thus, by increasing the conditions range,
the equations determined by multilinear regression analysis are expected to become fine-
tuned leading finally to a robust widely applied model. To this end, the determination of
the significant signal parameters involved in the modeling approach, which was made in
this study, is the first step of the process. Even if it is proved that this approach cannot
be applied for widely different conditions, model parameterization for relatively small
areas with similar conditions will be a rather simple process. Additionally, the estima-
tion/prediction accuracy of the models presented in this study may be further enhanced if
they are used as the basis in productivity models like the ones following the light use effi-
ciency approach, which may better account for climatic and regional variability, increasing
however the complexity of the process.

5. Conclusions

The high spatial and temporal resolution of VIs retrieved from Sentinel-2 imagery
enabled the development of several models for durum wheat yield estimation/prediction
with good accuracy. EVI was found to function marginally better from NDVI as a plant
signal, while NMDI outperformed NDWI as water and soil signals. The best performing
model version for yield estimation involved the EVI integral for the 20 April–31 May
period as a plant signal and NMDI at 29 April and before sowing as water and soil signals,
respectively (R2 = 0.629, RMSE = 538). Accordingly, the best performing single date model
for yield prediction was attained by a version involving the seasonal max EVI as plant
signal and NMDI as water and soil signals (R2 = 0.587, RMSE = 568) 30 to 50 days in
advance before harvest. The main advantages of the presented model are its simplicity, the
use of easily accessible satellite data of high spatial resolution, and its accuracy in small
farms of the Thessaly plain, as was proved in the validation process. Therefore, this durum
wheat yield prediction model can be a useful tool for stakeholders, especially dealers,
traders, and pasta food companies.
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