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Abstract: Canopy temperature (CT) as a surrogate of stomatal conductance has been highlighted as
an essential physiological indicator for optimizing irrigation timing in potatoes. However, assessing
how this trait could help improve yield prediction will help develop future decision support tools. In
this study, the incorporation of CT minus air temperature (dT) in a simple ecophysiological model
was analyzed in three trials between 2017 and 2018, testing three water treatments under drip (DI)
and furrow (FI) irrigations. Water treatments consisted of control (irrigated until field capacity) and
two-timing irrigation based on physiological thresholds (CT and stomatal conductance). Two model
perspectives were implemented based on soil water balance (P1) and using dT as the penalizing
factor (P2), affecting the biomass dynamics and radiation use efficiency parameters. One of the trials
was used for model calibration and the other two for validation. Statistical indicators of the model
performance determined a better yield prediction at harvest for P2, especially under maximum
stress conditions. The P1 and P2 perspectives showed their highest coefficient of determination
(R2) and lowest root-mean-squared error (RMSE) under DI and FI, respectively. In the future, the
incorporation of CT combining low-cost infrared devices/sensors with spatial crop models, satellite
image information, and telemetry technologies, an adequate decision support system could be
implemented for water requirement determination and yield prediction in potatoes.

Keywords: canopy temperature; crop modeling; irrigation management; model improvement

1. Introduction

Global food demand will increase because of the rapid population growth, which
will reach around nine billion people by 2050; therefore, the agricultural sector will need
more water resources to supply this demand [1]. The increase of temperature and drought
intensity/frequency brought about by climate change will affect water availability and
accessibility [2]. On the other hand, potato is the most important noncereal food security
crop worldwide, highlighted by its high potential yield, elevated nutritional value, high
water productivity, and wide climatic adaptability [3–5]. This crop has a high water require-
ment (3500–6500 m3 ha−1; [6]), being sensitive to water stress due to its shallow-rooted
system [7,8]. Many water-saving irrigation strategies and water management practices
to optimize crop yield have been reported in the literature [9]. Thus, the maximum light-
saturated stomatal conductance (gs_max), considered the most critical physiological trait to
determine the crop water status [10], has recently been used to define optimal irrigation
thresholds (0.15 mol H2O m−2 s−1). This threshold value allows saving water without
affecting potato yield [10,11]. In addition, the crop water stress index (CWSI) is a ra-
diometric canopy temperature-based index that is closely related to gs_max [12,13]. It is
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widely used for water stress monitoring/detection for watering purposes, CWSI being a
noninvasive and more efficient measurement than gs_max [10,14]. Although crop models
are predominantly developed and calibrated under nonlimiting conditions, fundamental
advances in yield prediction under water restriction in potato are also available in the
literature [15,16]. Thus, there is the possibility to convert crop models into suitable tools
for irrigation scheduling, provided water routines do not depend solely on soil moisture
status [17]. New relationships (routines) among physiological water stress responses and
above-/below-ground biomass have been researched to improve model performance [15],
as well as remote–proximal sensing data assimilation methods for the calibration pro-
cess [18]. Canopy temperature has been tested on crop models to improve yield prediction
under stress conditions in cereals [19–21]. In potatoes, the canopy temperature’s usefulness
in irrigation scheduling has been highlighted in several studies [13,22,23]; this notwith-
standing, its application to yield prediction by using crop models has been overlooked.
Thus, crop modeling applications that include canopy temperature as a critical input vari-
able, along with advances in low-cost infrared devices/sensors, improvements in satellite
images’ temporal/spatial resolution, and the development of radio telemetry technologies
have the potential to improve irrigation scheduling and simplify the construction of water
stress and yield maps [22,24,25].

In the present study, the two perspectives of potato yield prediction potential and
water-limited conditions were analyzed by using a simple ecophysiological crop model
(SOLANUM): (i) based on the crop water stress degree determined by a routine of soil
water balance (first perspective, P1) and (ii) based on dT effect analysis on the tuber
yield’s most critical parameters from the SOLANUM model (second perspective, P2).
For P2, a reparameterization of those critical parameters, as a function of how water
stress level affects dT, was performed. The study’s aims were: (i) to incorporate canopy
temperature into the SOLANUM potato growth model under the modeling perspective
P2 and compare its performance against perspective P1 on tuber yield prediction by both
perspectives under different water stress levels and (ii) to compare the SOLANUM model’s
performance under drip (DI) and furrow (FI) irrigations. The first hypothesis was that
canopy temperature incorporation into the SOLANUM model improves potato yield
prediction (better performance under P2) because it integrates the whole plant water stress
response in different soil moisture contexts. However, since the crop physiological water
stress response is irrigation system dependent [11], the second hypothesis states that there
would be differences in the model performance of both perspectives (P1 and P2) depending
on the irrigation type.

2. Materials and Methods
2.1. Study Area and Plant Material

Three field trials were carried out at the International Potato Center (CIP) and Na-
tional Agrarian University-La Molina (UNALM) research stations from 5 July to 10 October
2017 (Trial A, at CIP), 5 October to 15 January 2017–2018 (Trial B, at CIP), and 13 June to
13 September 2017 (Trial C, at UNALM). These research stations are located in the Lima
region, central coast of Peru (12.08◦ S, 76.95◦ W, 244 m.a.s.l.), characterized by an arid
and semiwarm climate with humidity deficiency throughout the year [26]. At this site,
the average yearly precipitation, relative humidity, solar radiation, minimum tempera-
ture, and maximum temperature are 6.0 mm, 81.2 ± 1.58%, 13.6 ± 1.29 MJ m−2 day−1,
15.9 ± 0.74 ◦C, and 26.8 ± 0.99 ◦C, respectively (data for 2013–2019, CIP meteorological
station). In addition, the day temperature, night temperature, and photoperiod were in the
ranges of 12.4–32.5 ◦C, 12.0–28.0 ◦C, and 11.3–12.7 h during the trials. The potato variety
used was UNICA (CIP code: 392797.22), an early genotype well adapted to the desertic con-
ditions of the Peruvian coast, with slight tolerance to salinity and heat, moderate tolerance
to drought, and resistance to the virus PVY [27,28].
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2.2. Experimental Conditions and Crop Management

The soil in the study area had a sandy-loam texture, with a phosphorous, potassium,
and organic matter content and a cation exchange capacity in the ranges of 14.9–45.9 ppm,
197.3–273.2 ppm, 1.31–1.53%, and 9.74–10.56 Cmol(+) kg−1, respectively (Laboratorio de
Análisis de Suelo, Plantas, Agua y Fertilizantes–Universidad Nacional Agraria La Molina,
Lima, Peru). A plant density of 3.7 plants m−2 was used in all the trials. A completely
randomized block design was established under two irrigation types: DI and FI (see
the details in Table 1). Integrated management of pests and diseases, which included
ethological and pheromone traps and chemical applications, was implemented (see the
specific products and doses applied for Trial A and Trials B and C in [11,22], respectively),
together with recommended fertilization doses ([29]; see Table 1), to ensure that water
was the only limiting factor. Two-timing irrigation treatments were applied (from the
tuber initiation onset (TIO)) to submit the crop to different water stress levels and compare
against a control. These treatments were defined with the maximum light-saturated
stomatal conductance (gs_max, in Trial A) using a portable photosynthesis system (LI6400
TX, LICOR-Bioscience, Lincoln, NE, USA) and the crop water stress index (CWSI, in Trials B
and C) using a thermal camera (Model E60, FLIR Systems Inc., Täby, Sweden). The portable
photosynthesis system was configured as 1500 µmol m−2 s−1 of PAR (light saturation point),
400 ppm of CO2, 9.29 mol m−2 s−1 of boundary layer conductance, 500 µmol s−1 of airflow,
19.0–23.8 ◦C of leaf temperature, and 1.2–1.8 kPa of pressure deficit, the measurements
being recorded between 8:00 and 11:00 a.m. (see the details in [11]). Irrigation pulses (to
achieve soil moisture at field capacity) were supplied each time the crop reached the average
gs_max (0.05 and 0.15 mol H2O m−2 s−1) or CWSI (0.4 and 0.6) threshold values established
for each treatment (see Table 1). The specific methodology for leaf/plant samplings for
threshold assessments, gs_max measurement details, CWSI calculus, and meteorological
conditions for the growing season in Trial A and Trials B and C can be found in [11,22],
respectively.

Table 1. General details of the first (Trial A), second (Trial B), and third (Trial C) trial established under a completely
randomized design with N treatments repeated in M blocks (N × M) using two irrigation types: drip (DI) and furrow (FI)
irrigations. All trials had a control treatment in which the soil moisture was maintained at field capacity. gs_max: maximum
stomatal conductance at saturated light (in mol H2O m−2 s−1). CWSI: crop water stress index. TO: treatment onset. dap:
days after planting. θFC: volumetric soil moisture at field capacity.

Trial Plot Size
(m2)

# of Plants
per Plot

TO
(dap) N×M Irrigation

Indicator a
Irrigation

Thresholds b
Irrigation

Type

Fertilizer
Dose c

(kg ha −1)

θFC
(%)

A 3.6 × 12.5 120 30 3 × 4 gs_max 0.15 and 0.05 DI and FI 180:100:160 31.8
B 3.6 × 12.5 120 34 4 × 5 CWSI 0.4, 0.6 and 0.7 DI and FI 180:100:160 32.8
C 4.5 × 15.8 180 36 3 × 5 CWSI 0.4 and 0.6 DI 160:80:180 28.4

a Variable evaluated to determine the irrigation timing. b Irrigation thresholds from which the irrigation pulses were applied. c Fertilization
dose based on N:P2O5:K2O.

2.3. Crop Measurements

Six sequential biomass samplings were performed in each trial (from TIO to physio-
logical maturity). Six center plants were individually harvested and separated into leaves,
stems, and tubers. Subsamples of approximately 100 g of fresh weight of above- (leaves and
stems) and below-ground (tubers) biomass were dried at 80 °C for 3 days to estimate dry
matter percentage (DMP) and total dry matter (TDM) as in [30]. Dry tuber yield (DTY) was
then estimated by multiplying fresh tuber yield (FTY) by the DMP of belowground biomass.
In turn, the harvest index (HI) was estimated as the ratio of DTY to TDM. Canopy cover
(CC) was evaluated weekly using a digital camera (D5300, Nikon, Thailand) according to
CIP’s protocol established for potatoes [31]. The digital images were processed with the
Image-Canopy software (v3.6, CIP, 2017), which classifies the potato’s healthy green foliage
throughout a segmentation algorithm. To determine the canopy temperature, thermal
and RGB images were taken using an FLIR thermal camera (Model E60, FLIR Systems
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Inc., Täby, Sweden) around 13:00–15:00 h, according to Rinza et al.’s [13] procedure (see
Figure S1). The spatial resolution of the thermal and RGB FLIR camera’s sensors was
320 × 240 and 2048 × 1536 pixels, with an angular field-of-view of 25◦× 19◦ and 53◦× 41◦,
respectively. These evaluations were performed from TIO to physiological maturity with a
∼1-daily frequency. The thermal images were processed with the TIPCIP software (Version
3.6, CIP, 2018), which aligns the thermal and RGB images and extracts the temperature of
the crop according to the green pixels of the RGB image [22] (Figure S1). Finally, canopy
temperature depression (dT) was calculated as canopy temperature (obtained from the
thermal images) minus air temperature (measured with a HOBO meteorological station at
the same time in which the thermal images were recorded).

2.4. Potato Yield Simulation
2.4.1. Potential Yield Modeling Calibration

The SOLANUM potato potential growth model [30,32] was used. This model uses
eight crop parameters that describe light interception’s main processes, intercepted light
(radiation) conversion into biomass and biomass translocation to the tubers (see the details
in [32,33]). The parameters related to light interception and the biomass translocation
process (Table 2) were estimated by nonlinear regression fitting of CC and HI measured
data to a Beta and Gompertz function, respectively [34]. These analyses were performed
using the R software [35]. The radiation use efficiency (RUE) was calculated as the slope of
the linear regression (passing through the origin) between the total dry biomass (in g m−2)
and the intercepted and accumulated photosynthetically active radiation (in MJ m−2), as in
Condori et al. [32] and Kooman et al. [36]. Tuber dry matter concentration (DMc) was
calculated as the ratio dry–fresh tuber weight [31]. The model was calibrated with data
from Trial B’s control treatment.

2.4.2. Yield Prediction under Water-Limited Conditions

In this study, two yield prediction perspectives under water-limited conditions were
analyzed. In the first perspective (P1), the SOLANUM potato model routine of soil wa-
ter balance [37] was used. Under this perspective, the no percolation and initial water
reserve being maximum (i.e., soil moisture is at field capacity) conditions were assumed.
Potential evapotranspiration (ET0) was calculated according to the FAO-Penman–Monteith
method [38]. Potential transpiration (T0) was determined by an exponential relationship
between ET0 and CC. In contrast, actual transpiration (T) was estimated as a function of the
soil water available and two soil physical parameters (field capacity (FC) and permanent
wilting point (PWP)) (see the equations in [39]). The model determines a water stress
index based on T and T0 that penalizes RUE, HI, and CC, affecting yield. A maximum soil
depth of the UNICA potato variety root biomass (0.30 m, [13]) was considered in the water
balance to simulate water-limited conditions. FC was determined from two soil pits made
in the field (in each trial), and PWP was estimated according to Rab et al. [40]’s equation.

For the second perspective (P2), the target critical parameters (TCPs) of the SOLANUM
model were reparameterized. These TCPs were determined through a sensitivity analysis
based on the “elasticity” of the parameters associated with radiation interception and use
efficiency and the biomass translocation process, following Quiroz et al.’s [30] procedure.
Based on this analysis, the TCPs were chosen if the yield percentage variation per unit
of percentage variation of those parameters was >|0.95|. Model calibration for each
water-restricted treatment of Trial B was carried out to calculate the parameters (as in
Section 2.4.1). Empirical functions (Equation (1)) were developed to estimate the impact
that water stress, as estimated by dT, would have on reducing/increasing the TCP potential
value (Xp, obtained from the data of Trial B’s control treatment (Section 2.4.1)) according to
the water stress degree based on dT. Thus, Xp was transformed to a penalized parameter
(X̂) using the following equation:

X̂ = Xp × FR(dT1, dT2), (1)
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FR is a function that depends on the average value of dT before irrigation pulse (dT1)
and the accumulated dT from the treatment onset to physiological maturity (dT2, ∼80 days
after planting (DAP)). The FR function is defined as follows:

FR = a × dT1 + b × dT2 + c, (2)

The empirical coefficients a, b, and c were estimated by nonlinear regression anal-
ysis by fitting TCP calculated data to Equation (1), using R software (R core team).
Equations (1) and (2) were applied for each TCP to obtain the X̂ values from CC-Beta
and HI-Gompertz curve calculation. Thus, the CC, HI, and RUE curves (the latter cal-
culated directly from Equation (1)) were obtained: (i) one for optimum conditions (Ypot,
by using Xp values) and (ii) the other that includes the water stress effects based on dT
(YdT , by using X̂ values). The final daily values of the CC, HI, and RUE curves (Y) were
selected between the daily value of the YdT (if the crop is under water stress conditions)
and Ypot (if the crop is under optimum conditions) curves according to the logical process
presented in Figure 1. From planting to TIO, plants grew under well-watered conditions;
therefore, Y assumes Ypot values. From TIO to physiological maturity (∼80 DAP), a dT1
value of 2.5 ◦C was used as a decision threshold to determine the Y values; thus, Y assumes
the Ypot value when on a day “d”, dT is lower than 2.5 ◦C; otherwise, Y assumes YdT
values (Figure 1). From physiological maturity to harvest, a dT2 value of 120 ◦C was used
as a decision threshold to determine the Y values; thus, Y assumes Ypot and YdT values
when dT2 is <120 and >120 ◦C, respectively (Figure 1). These decision thresholds were
determined from the dT data of Trial B’s control treatment, coinciding (in the case of dT1)
with the reported values by Ramírez et al. [10] for well-watered conditions in potato crop.
Finally, the Y curves (CC, HI, and RUE) were used in the SOLANUM model’s biomass
assimilation/partition equations (see the equations in [33]) to simulate the potato crop
potato yield.

Figure 1. Scheme of the incorporation of canopy temperature into the SOLANUM model. Final
values (Y) of the SOLANUM model’s growth curves were determined between potential values
(Yp) and penalized valued (YdT) according to the water stress degree based on canopy temperature
depression (dT). dT1: average dT before irrigation pulse. dT2: accumulated dT from the tuber
initiation onset (TIO) to physiological maturity (FM).
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2.4.3. Evaluation of the Crop Models’ Performance

Simulated FTY (t ha−1) data were compared with observed data to evaluate the crop
model’s performance. Thus, the statistical indicators of the coefficient of determination (R2),
the slope of linear regression (m), the root-mean-squared error (RMSE), and the normalized
RMSE (NRMSE) were used. The regression to calculate R2 and m was for the 1:1 line and
forced through the origin [41]. The RMSE (Equation (3)) and NRMSE (Equation (4)) were
calculated using the following equations:

RMSE =

√
∑N

i=1 (Si − Oi)
2

N
, (3)

NRMSE =
RMSE
∑N

i=1 Oi
N

× 100, (4)

where Si is the simulated value, Oi is the observed value, and N is the number of observa-
tions. R2 measures the actual deviation between simulated and observed values, and m
quantifies a possible overestimation (m > 1) or underestimation (m < 1) by the model [42].
The RMSE was computed to provide a measure of the absolute magnitude of the error.

3. Results
3.1. Sensitivity Analysis, Model Parameters’ Calibration, and Reduction Functions’ Calculation

The accumulated thermal time at maximum CC (te), the fraction of the maximum
CC index (wmax), RUE, and the maximum HI (A) were the parameters with the highest
values in the sensitivity analysis (Table 2). Those parameters were identified as TCP to be
penalized based on dT. The Beta-adjusted curve for the CC-related parameters showed
R2 values of 0.86 (p < 0.05) and 0.91 (p < 0.05) corresponding to DI and FI, respectively.
The Gompertz-adjusted curve for the calibration of the HI dynamic parameters showed
R2 values of 0.99 (p < 0.05) and 0.99 (p < 0.05) corresponding to DI and FI, respectively.
The linear function fitted for the RUE calculus showed R2 values of 0.98 (p < 0.05) and
0.95 (p < 0.05) corresponding to DI and FI, respectively. The model parameters differed
between irrigation types, these being more favorable to the light interception (high te and
low tm value) and biomass translocation (high A and low b value) processes under FI and
DI, respectively (Table 2). R2 from the fitted functions between the TCP calculated and
penalized based on dT showed the following pattern: RUE > wmax > te > A (Table 3).

Table 2. Coefficients obtained from potential conditions (based on Trial B’s control treatment) for the calibration of the
SOLANUM model under drip irrigation (DI) and furrow (FI) irrigation and sensitivity analysis (in % %−1) expressed as a
percentage of the variation in fresh tuber yield (t ha−1) affected by a percentage of the variation in the input parameters of
the SOLANUM model. TT = thermal time (calculated as in McMaster and Wilhelm [43]). In gray, the selected parameters
with the sensitivity analysis values ≥ |0.95|.

Physiological Process Crop Parameters Symbol DI FI Sensitivity Analysis

Light
interception

Maximum canopy cover index (fraction) Wmax 1.0 1.0 0.99
TT time at the maximum canopy cover (◦C day) te 971.3 1023.0 1.70

TT at the maximum canopy cover growth rate (◦C day) tm 332.3 272.9 −0.79

Light conversion Radiation use efficiency (g MJ−1) RUE 2.47 2.80 0.99

Biomass
translocation

Maximum harvest index (fraction) A 0.76 0.73 0.99
TT at the maximum tuber partition rate (◦C day) tu 642.1 659.5 ∼0

TT just before the tuber initiation process (◦C day) b 222.2 286.6 ∼0

Dry matter concentration of tubers (fraction) DMc 0.21 0.18

3.2. Model Performances and Validation

In general, both modeling perspectives (P1 and P2) showed different underestimation
degrees of simulated DTY, depending on the growth stages and water restriction context
(Figure 2). Thus, the simulated DTY underestimated the observed data with higher in-
tensity during midstage (∼50–80 DAP), whereas during the initial stages (∼0–50 DAP),
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the simulated and observed DTY values showed a higher coincidence (Figure 2). There was
no difference in either modeling perspectives for the DTY simulation under fully irrigated
conditions during the growth stages (Figure 2a,d,g). In contrast, under maximum stress
conditions and late growing stages (∼80–100 DAP), P1 showed an average overestima-
tion of +9.3 and +16.0% for DI (only considering Trial A) and FI, respectively. On the
other hand, P2 showed an underestimation of 17.4 and 21.0% for DI and FI, respectively
(Figure 2c,f,i). Regarding the final DTY sampling (harvest), P2 showed higher R2 and a
lower RMSE and NRMSE in comparison to P1 (Table 4). In general, the final DTY was
underestimated (m = 0.97) and overestimated (m = 1.08) for P1 and P2, respectively (Table 4,
Figure 3). Considering the irrigation type, DI and FI showed an overestimation (m > 1)
and underestimation (m < 1), respectively regardless of the modeling perspective (Table 4).
The highest R2 and the lowest RMSE and NRMSE were obtained in P1 under DI and in P2
under FI (Table 4).

Table 3. Empirical coefficients (a, b, and c) of a multilinear function (FR = a × dT1 + b × dT2 +

c) that reduce/increase the potential value (Xp) of a specifically targeted crop parameter (TCP)
according to the water stress degree based on canopy temperature depression (dT). dT1 = average dT
before irrigation pulse, dT2 = accumulated dT from the treatment onset to physiological maturity,
R2 = coefficient of determination. Abbreviation (and units) of TCP in Table 2.

TCP Xp Value a (×10−2) b (×10−3) c R2

RUE 2.64 −0.81 −2.56 1.41 0.92
wmax 1.00 −3.69 −0.75 1.24 0.84

te 997.2 −1.91 −0.04 1.08 0.73
A 0.75 −4.05 0.82 1.02 0.53

Figure 2. Average values (±standard error) of observed (open circles) and simulated dry tuber yield temporal dynamics
of the UNICA potato variety for Trials A and C. Simulated values of the water-limited module (1st perspective, dotted
line) and canopy temperature module (2nd perspective, dashed line) of the SOLANUM model. The first (a–c), second
(d–f), and third (g–i) row correspond to Trial A’s drip irrigation, Trial A’s furrow irrigation, and Trial C’s drip irrigation,
respectively.
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Figure 3. Scatterplot of observed values of the final dry tuber yield (t ha−1) versus simulated data of
the water limited module (1st perspective, black triangles) and canopy temperature module (2nd
perspective, white triangles) of the SOLANUM model. Triangles facing up and down correspond to
drip and furrow irrigation, respectively.

Table 4. Metrics’ results for dry tuber yield simulations of the water-limited module (1st perspective
(P1)) and canopy temperature module (2nd perspective (P2)) of the SOLANUM model. R2: coefficient
of determination. m: slope of linear regression. RMSE: root-mean-squared error (in t ha−1). NRMSE:
normalized root-mean-squared error (in %).

Metrics Drip Irrigation Furrow Irrigation Overall
P1 P2 P1 P2 P1 P2

R2 0.94 0.97 0.91 0.99 0.93 0.98
m 1.05 1.12 0.84 0.99 0.97 1.08

RMSE 1.76 1.34 1.98 0.62 1.84 1.15
NRMSE 0.24 0.18 0.33 0.10 0.27 0.17

4. Discussion
4.1. Canopy Temperature Incorporation Improved Yield Prediction under Water Restriction

The incorporation of canopy temperature, which is closely related to stomatal conduc-
tance in potatoes [10], into the tested model improved the yield prediction. This finding
agreed with other modeling exercises tested in this crop where water stress factors related
to stomatal conductance response improved tuber yield prediction under different water re-
striction scenarios [16]. A high canopy temperature limits the assimilation of nutrientsand
the subsequent tuber growth during the early growth stage of potatoes [44], whereas
during the reproductive phase, this stressor has shown a negative and significant rela-
tionship with tuber yield [10,13,22,45]. Several studies have highlighted the usefulness of
canopy temperature in water stress detection and its relationship with crop yield [13,46,47].
Thereby, canopy temperature has successfully been used in statistical models for yield
estimation in crops such as wheat [45,48,49], sorghum [50], and potato [13,51]. P1 and
P2 showed a fair (20% < NRMSE < 30%) and good (10% < NRMSE < 20%) performance,
respectively (sensu Jamieson et al. [52]), the NRMSE values being in the reported ranges in
potato simulations (2–51%, Raymundo et al. [15]). In agreement with the study’s finding
(Figure 2), the prevalence of tuber yield underestimation against overestimation has also
been detected to run the SUBSTOR-potato model over a wide range of contrasting growth
conditions [41,53].

On the other hand, the morphophysiological features of potato plants play a critical
role in their drought stress responses; thus, small canopies reduce water loss by transpi-
ration, whereas large canopies maximize radiation interception [54]. In addition, water
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stress has a significant effect on tuber quality traits [37]. The effects of climate change
(CO2 increasing) on tuber size and dry matter concentration are considered in some crop
models (for example, LINTUL-POTATO-DSS [55]); still, water stress response on these
tuber quality traits has been overlooked. The latter and morphophysiological features
constitute important variables that could be improved in future modeling studies. It is
reported that yield is positively affect by radiation intensity [56]. In that sense, models
based on RUE such as SOLANUM can improve yield estimation, provided they have robust
calibration processes. The inclusion of canopy temperature in cereal crop models [20,21,57]
has resulted in considerable improvement compared to the same models parameterized
only with meteorological data and soil/plant characteristics [58]. Nonetheless, canopy
temperature datasets are limited because their acquisition requires trained personnel for
manual measurements and/or high expenses for the installation, maintenance, and calibra-
tion of suitable instrumentation techniques [57]. Satellite-based surface temperatures have
been successfully used for actual evapotranspiration and soil moisture estimations at the
regional scale [59,60]. However, the low temporal resolution of satellite imagery imposes a
challenge on their use to run crop models, which usually run daily [18,61]. A Gamma of em-
pirical, statistical, and probabilistic energy balance models has been developed to predict
canopy temperature in cereal crops using weather variables obtained from weather stations
and/or model predictions [19,21,62]. These efforts have allowed overcoming the difficult
canopy temperature data acquisition and open the door for crop geospatial modeling to
improve yield prediction under future water-restricted scenarios at higher spatial scales.
On the other hand, new developments in low-cost infrared devices/sensors, open-source
microcontrollers, wireless communication, and Internet of Things technologies [12,63–65]
have been implemented for a continuous monitoring of water status based on canopy tem-
perature with potential usefulness for irrigation scheduling, crop breeding/phenotyping,
and crop modeling.

4.2. Modeling Performance under Water Restriction Depends on the Irrigation Type

The best performance of both SOLANUM’s perspectives obtained in different irriga-
tion types suggests that modeling performance is irrigation system dependent, confirming
the second work’s hypothesis. It has been reported that potato physiological response
depends on the irrigation method used. Thus, whereas DI promotes early senescence onset,
FI delays senescence, improving short-term water stress memory [11]. Evapotranspiration
and soil water content are significantly lower under DI than under FI, contrary to soil
temperature, which is higher [66]. Erdem et al. [51] reported a higher relationship between
CT and potato yield under furrow irrigation (R2 = 0.98) in comparison to DI (R2 = 0.97),
which agreed with the best performance of P2 under FI. For an adequate decision sup-
port system (DSS) for irrigation scheduling, it is essential to know the timing for which
the crop must be irrigated (when) and the necessary water amount that must be applied
(how much). For that, water balance models (mainly the FAO-56 dual-crop coefficient
approach) have traditionally been adopted to determine the crop water requirements and,
therefore, the “when” and “how much” [67,68]. Regardless of the irrigation methods, these
models (one-dimensional) have been applied assuming a uniform spatial variability of
the soil moisture [69]. Nonetheless, under DI, the soil moisture is unevenly distributed,
so a two-dimensional water balance model was developed for DI scheduling with better
results (compared to traditional one-dimensional models) on shallow-rooted crops [70].
The study’s findings invite exploring future efforts to incorporate CT into a DSS through
proximal–remote sensing tools that are being used for irrigation scheduling based on plant
water stress monitoring [24,25,71]. The proposed thresholds to establish timing irriga-
tion through CWSI in potatoes [10,13] can serve as a starting point for using spaceborne
remotely-sensed information to design future DSSs. In this regards, maps of LANDSAT
satellite image-based CWSI have been used for irrigation scheduling in sugarcane fields,
but the low temporal image resolution (∼16 days) limits their operational use on crops
where the irrigation frequency is short (∼2–3 days) [72]. This deficiency could be solved
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by combining satellite imagery with water balance models, weather forecast information,
wireless sensor networks, radio telemetry technologies (Internet of Things), and big data an-
alytics. Thus, for example, some web-based DSSs such as AQUAMAN [73], IrrigWeb [74],
and/or IrrigaSys [75] have been developed and successfully implemented for irrigation
scheduling/management. Although DSS implementation allows saving water, this could
be used in a complementary way, joining other water-saving strategies such as water
harvesting, which is being used in arid and semi-arid environments [76,77].

5. Conclusions

The incorporation of canopy temperature improved a radiation use efficiency sim-
ulation model to predict tuber yield under water restriction conditions. This trait in-
tegrates the whole plant response under different soil moisture contexts, serving as a
crucial atmosphere–plant–soil indicator to consider in future simulation efforts. The model
performance depends on the growth stage and water restriction contexts, showing a
higher underestimation prevalence in the midgrowth in contrast to the late growth stage.
Because the model performance was different under drip or furrow irrigation, it is rec-
ommended to adapt the model components (canopy temperature thresholds, calibration
factors, among others) according to the irrigation system. Combining the methodology of
this preliminary study with low-cost infrared devices/sensors and radio telemetry tech-
nologies, a real-time DDS could be implemented for water requirement determination and
yield prediction with potential usefulness in precision agriculture.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11071436/s1, Figure S1. (A) Thermal and RGB images acquisition using the camera
FLIR model E60, according to Rinza et al’ [1] procedure. (B) RGB images (2048 × 1536 pixels).
(C) Thermal images (320 × 240 pixels). (D) Thermal image filtered (mask) to avoid detection of
non-plant surfaces. (E) RGB and thermal images aligned to determine canopy temperature in a
specific region of the plot. Thermal and RGB images processing was performed using the TIPCIP
software [2].
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