
agronomy

Article

Deep Learning-Based Estimation of Crop Biophysical
Parameters Using Multi-Source and Multi-Temporal Remote
Sensing Observations

Hazhir Bahrami 1,* , Saeid Homayouni 2 , Abdolreza Safari 1, Sayeh Mirzaei 3 , Masoud Mahdianpari 4,5

and Omid Reisi-Gahrouei 6

����������
�������

Citation: Bahrami, H.; Homayouni,

S.; Safari, A.; Mirzaei, S.;

Mahdianpari, M.; Reisi-Gahrouei, O.

Deep Learning-Based Estimation of

Crop Biophysical Parameters Using

Multi-Source and Multi-Temporal

Remote Sensing Observations.

Agronomy 2021, 11, 1363. https://

doi.org/10.3390/agronomy11071363

Academic Editor: Stefano Amaducci

Received: 21 May 2021

Accepted: 30 June 2021

Published: 3 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Surveying and Geospatial Engineering, University of Tehran, Tehran 6791986363, Iran;
asafari@ut.ac.ir

2 Centre Eau Terre Environnement, Institut National de la Recherche Scientifique,
Québec, QC G1K 9A9, Canada; saeid.homayouni@ete.inrs.ca

3 School of Engineering Science, College of Engineering, University of Tehran, Tehran 6215845762, Iran;
s.mirzaei@ut.ac.ir

4 C-CORE, St. John’s, NL A1B 3X5, Canada; masoud.mahdianpari@c-core.ca
5 Department of Electrical and Computer Engineering, Memorial University of Newfoundland,

St. John’s, NL A1C 3S7, Canada
6 Department of Geomatics Science, Laval University, Québec, QC G1V 0A6, Canada;

Omid.reisi-gahrouei.1@ulaval.ca
* Correspondence: bahramihazhir@ut.ac.ir

Abstract: Remote sensing data are considered as one of the primary data sources for precise agricul-
ture. Several studies have demonstrated the excellent capability of radar and optical imagery for crop
mapping and biophysical parameter estimation. This paper aims at modeling the crop biophysical
parameters, e.g., Leaf Area Index (LAI) and biomass, using a combination of radar and optical
Earth observations. We extracted several radar features from polarimetric Synthetic Aperture Radar
(SAR) data and Vegetation Indices (VIs) from optical images to model crops’ LAI and dry biomass.
Then, the mutual correlations between these features and Random Forest feature importance were
calculated. We considered two scenarios to estimate crop parameters. First, Machine Learning (ML)
algorithms, e.g., Support Vector Regression (SVR), Random Forest (RF), Gradient Boosting (GB), and
Extreme Gradient Boosting (XGB), were utilized to estimate two crop biophysical parameters. To
this end, crops’ dry biomass and LAI were estimated using three input data; (1) SAR polarimetric
features; (2) spectral VIs; (3) integrating both SAR and optical features. Second, a deep artificial
neural network was created. These input data were fed to the mentioned algorithms and evaluated
using the in-situ measurements. These observations of three cash crops, including soybean, corn,
and canola, have been collected over Manitoba, Canada, during the Soil Moisture Active Validation
Experimental 2012 (SMAPVEX-12) campaign. The results showed that GB and XGB have great
potential in parameter estimation and remarkably improved accuracy. Our results also demonstrated
a significant improvement in the dry biomass and LAI estimation compared to the previous studies.
For LAI, the validation Root Mean Square Error (RMSE) was reported as 0.557 m2/m2 for canola
using GB, and 0.298 m2/m2 for corn using GB, 0.233 m2/m2 for soybean using XGB. RMSE was
reported for dry biomass as 26.29 g/m2 for canola utilizing SVR, 57.97 g/m2 for corn using RF, and
5.00 g/m2 for soybean using GB. The results revealed that the deep artificial neural network had a
better potential to estimate crop parameters than the ML algorithms.

Keywords: crop biomass; Leaf Area Index; Earth observations; Synthetic Aperture Radar; optical
images; machine learning algorithms; SMAPVEX-12
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1. Introduction

Due to rapid population growth and climate changes, global food security and agricul-
ture production risks have been increased [1]. Information about annual crop production
is vital for global and local food security. In particular, measuring and monitoring crop
biophysical parameters, including dry biomass, crop height, crop density, and LAI, during
the crop growing season are essential for improving crop growth models and yield esti-
mation [1,2]. Biomass and LAI are two widely used crop parameters in crop monitoring
and growth models [3,4]. As the input data in crop models, crop biophysical parameters
are estimated using direct and indirect methods. The direct method consists of a ground
measuring of the plant’s parameters. These methods are usually destructive, costly, time-
consuming, and complicated [5]. The information extracted from remote sensing data is
non-destructive and significantly reduces time and cost. Remote sensing provides vital
information on crop growth conditions over agricultural areas due to its extensive coverage
and spatio-temporal resolution [6]. To this end, remote sensing imagery could be suitable
for accurate crop monitoring.

Both SAR and optical data have been used to estimate crop parameters. Substantial
studies have been carried out to investigate satellite optical data’s potential to estimate various
crop parameters. VIs extracted from optic bands are widely used to estimate crop parameters
and monitor crop conditions. However, when the crop canopy is dense, optical data tend
to be saturated [7]. In addition, since optical data in cloudy conditions are not helpful, SAR
sensors use microwave wavelengths that can penetrate clouds and haze [1,8–13].

SAR sensors can also provide data in day and night without considering sun illumina-
tion, with suitable temporal coverage and sufficient spatial resolution [12,13]. Furthermore,
soil and surface parameters and the crop canopy state can easily affect radar backscatter-
ing [14]. Moreover, the SAR backscattering coefficient is affected by crop and soil parameters.
However, these effects have changed by various sensor parameters (i.e., wavelength, inci-
dence angles, and polarization), different target parameters (i.e., canopy structure, water
content, soil moisture, and soil roughness), and crop type and growth stage [1,11,15–18].
Thus, the combination of optical and SAR data has a great ability in crop monitoring.

Considerable researches have been conducted to estimate various crop parameters using
satellite Earth observations, including RADARSAT-2 [1,17,19–21], RapidEye [5,19,20,22,23],
Sentinel-1 [7,17,24–28], Sentinel-2 [7,25,29–32], Landsat-5 Thematic Mapper (TM) [33,34],
Landsat-7 Enhanced Thematic Mapper Plus (ETM+) [34–36], Landsat-8 Operational Land
Imager (OLI) [7,17,31,32,35–37], Worldview-2/3 [17,27,28,38,39], and MODIS [40,41].

The crop parameters estimation methods in the literature can be generally categorized
into three groups: (1) parametric models, (2) non-parametric models, and (3) physically-
based models [42]. Parametric models assume a clear relationship between input and
output variables. In contrast, there is no assumption for the statistical distribution of input
data in non-parametric models. Finally, physically-based models use physical laws, and
model variables are frequently obtained from Radiative Transfer Models (RTMs) [42].

The new generation of satellite sensors coupled with an increasing need for big
data mining has increased the essential need to use artificial intelligence (AI) for Earth
observation data analysis. Machine learning (ML), a subset of AI, is learning algorithms
by using training data. ML algorithms rapidly process a large amount of data and give
helpful insight into the information leads to astonishing output. Another advantage
of ML algorithms is that any apriori assumption is needed about data distribution [43].
Non-parametric MLAs, without any assumption for the statistical distribution of input
data, have successfully been applied to remote sensing data to retrieve crop biophysical
parameters, yield estimation, and crop mapping. Reisi Gahrouei, et al. [22] used an artificial
neural network (ANN) and SVR to estimate LAI and dry biomass of three crops, including
soybean, corn, and canola high-resolution RapidEye data. Reisi-Gahrouei, et al. [44]
also used MLR and ANN to estimate crop biomass using UAVSAR data. Sharifi and
Hosseingholizadeh [45] have investigated the potential of MLR, relevance vector regression
(RVR), and SVR to estimate cereal height and biomass. Zhu, et al. [46] utilized unmanned



Agronomy 2021, 11, 1363 3 of 22

aerial vehicles (UAV) data to assess the ability of four MLAs, including MLR, RF, ANN, and
SVR, to estimate the above-ground biomass (AGB). Luo, et al. [7] utilized MLR and SVR to
estimate corn LAI and biomass. Deb, et al. [37] used parametric regression models and SVR
to estimate agro-pastoral AGB. The excellent generalize capability of ML methods and their
robustness to the noise in the case of low samples data makes them excellent tools to process
remote sensing data and provide smart solutions in the field of precision agriculture.

In this study, we considered two scenarios to estimate crop parameters. First, we used
four MLAs, including SVR, RF, GB, and XGB, in estimating two crop biophysical parameters.
GB and XGB are the novel machine learning algorithms that received less attention in the crop
parameters estimation method. This scenario was performed through three steps: (1) using
polarimetric SAR features, (2) using optical VIs, and (3) using the integration of SAR and VIs
features. These three steps could clearly show that the radar or optical remote sensing data
or their combination in estimating crop parameters has excellent potential. Also, we used
a deep artificial neural network to model the crop’s LAI and dry biomass in the following
scenario. In addition, the deep neural network received less attention in crop parameters
estimation. Therefore, we tried to utilize the best performance from these algorithms using
feature engineering and suitable parameters tuning. Several features counting VIs extracted
from RapidEye spectral reflectance and polarimetric SAR decomposition feature extracted
from UAVSAR data were selected to utilize as the input of mentioned algorithms. Moreover,
the importance of each feature is investigated attentively. The results were compared, and
the best method for estimating crop parameters was determined.

2. Materials and Methods
2.1. Study Area

The SMAPVEX12 campaign has been planned to support the calibration and validation
of NASA’s Soil Moisture Active Passive (SMAP) satellite mission products. This campaign
was conducted over an agricultural area near Winnipeg, MB, Canada (Figure 1). The study
area covers about 12.8 km by 70 km [47]. Five forested sites and 55 agriculture fields were
selected for measuring dynamic and static crop (e.g., dry and wet biomass, LAI, crop
height, crop density, etc.) and soil parameters (e.g., soil moisture, soil roughness, etc.),
including 19 soybeans, eight corn and seven canola fields.Agronomy 2021, 11, x 4 of 23 
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2.2. Sampling Strategy

In situ measurements from crop and soil parameters were collected over six weeks,
from 7 June 2012 to 19 July 2012. The selected fields are relatively large, often 800 m × 800 m
in size. In each field, 16 sampling sites were designed for sampling. However, crop
parameters were measured only at three of these 16 sampling points. For canola, soybean,
and corn, ground data collection was done through five plants along two rows (a total of
ten plants). The wet biomass weight was immediately determined using a portable scale.
Following wet weighing, wet biomass samples are placed in drying facilities for one week
at 30 ◦C. After that, the weight of dry samples was determined. Crop’s LAI was measured
through the processing of hemispherical digital photos. Along two transacts in each field,
seven photos were captured (a total of 14 photos). The CanEye software was then used to
process these photos. The complete information about sampling strategy and collecting
ground observations can be found in [47].

2.3. SAR Earth Observations

UAVSAR is a NASA L-band sensor that acquires SAR data in quad polarization mode.
During SMAPVEX12, UAVSAR collected multitemporal high-resolution image data over
the whole study area of the campaign. The detail of the UAVSAR sensor configurations
and the acquisition date are shown in Table 1.

Table 1. UAVSAR sensor configuration and acquisition date.

Data Characteristics UAVSAR

Frequency L-band (1.26 GHz)
Polarizations Quad-Pol (HH, HV, VH, VV)

Spatial Resolution 1.66 m range × 0.8 m azimuth SLC
Incident angle 25 to 65 degrees (relevant: 35 to 45 degrees)

Acquisition dates 17, 19, 22, 23, 25, 27, 29 June and 5, 8, 10, 13, 14, 17 July

UAVSAR is a fully polarimetric SAR system that can collect a single-look complex
(SLC) with 0.6 m × 1.6 m pixel spacing. Near to far range incidence angles are between
21.01◦ and 64.11◦. UAVSAR is typically flown at 41,000 altitudes over the cross-track with a
swath of approximately 20 km. The data were calibrated to complex cross-product format,
multi-looked, and projected to ground range in simple geographic coordinates by NASA
JPL and publicly available [44]. A 3 × 3 boxcar filter was applied to the data for speckle
noise reduction. In addition to linear intensities (e.g., VV, HH, and HV), several polari-
metric features were extracted from SAR data, including Cloude–Pottier decomposition
components, i.e., entropy (H), anisotropy (A), and alfa angle (α) [48,49], Freeman-Durden
decomposition components [50], i.e., Surface (OF), Double (DF), and Volume (VF) Scatter-
ing, and Yamaguchi decomposition components [51], Surface (OY), Double (DY), Volume
(VY), and Helix (HY) Scattering. Besides, Radar Vegetation Index (RVI) was extracted and
used as another model-based radar vegetation index using Equation (1):

RVI =
8σ
◦
HV

σ
◦
HH + σ

◦
HV + σ

◦
VV

(1)

2.4. Optical Earth Observations

Multi-temporal and multispectral RapidEye images were also used to estimate crop
parameters. RapidEye constellation of five identical satellites acquires data in five bands,
including blue, green, red, red-edge, and Near-Infrared. Each sensor’s swath width is
77 km, and the ground sampling distance (GSD) at nadir is 6.5 m. The RapidEye images
were atmospherically and geometrically corrected using PCI Geomatica’s ATCOR2 and
PCI Geomatica’s OrthoEngine, respectively. The geometric correction was done using a
rational function, satellite orbital information, ground control points (GCPs) collected from
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Canada’s National Road Network vector data, and the Canadian Digital Elevation Data
(CDED). Several VIs were extracted from RapidEye images. The detail of the 11 VIs used
in this study is shown in Table 2.

Table 2. Detail of the VIs extracted from RapidEye optic sensor used in this study.

Index (Abbreviation) Formula Ref.

Normalized Difference Vegetation Index (NDVI) RNIR − RR
RNIR + RR

[52]

Green NDVI (GNDVI) RNIR − RG
RNIR + RG

[53]

Simple Ratio (SR) RNIR
RR

[54]

Red-Edge Normalized Difference Vegetation Index
(NDVI-RE)

RNIR − RRE
RNIR + RRE

[55]

Red-Edge Simple Ratio(SR-RE) RNIR
RRE

[55]

Modified Triangular Vegetation Index (MTVI2) 1.5{1.2(RNIR − RG) − 2.5(RR − RG)}√
(2RNIR + 1)2 − (6RNIR − 5

√
RR) − 0.5

[56]

Enhanced Vegetation Index (EVI) 2.5(RNIR − RR)
1 + RNIR + 6RR − 7.5RB

[57]

Green Chlorophyll Index (CL-G) RNIR − RG − 1 [58–60]

Red-Edge Chlorophyll Index (CL-RE) RNIR − RRE − 1 [58–60]

MERIS Trrestrial Chlorophyll Index (MTCI) RNIR − RRE
RR + RRE

[61]

Soil-Adjusted Vegetation Index (SAVI) (1 + 0.5)(RNIR − RR)
RNIR + RR + 0.5

[62]

3. Methodology

MLAs are recently used in classification and regression problems in many areas. In
this study, regression models, e.g., RF, GB, XGB, and SVR, were used to estimate crop’s
LAI and dry biomass. MLAs were implemented using the open-source Python Scikit-learn
package. Besides, deep ANN was implemented using the Keras package. The data were
divided into train and test data. Two-thirds (i.e., ~66.7%) of the data were selected to train
the models, and the remaining data (i.e., ~33.3%) were used as test data. In this study, first,
we calculate the correlation between SAR and optical VIs.

Then, RF feature importance was calculated for each crop and crop parameter sep-
arately. The less important features were removed by considering the absolute value of
feature importance greater than 0.9 between features. Finally, the remaining features were
combined to estimate crop parameters. The selected SAR and VIs features were separately
fed into the model as the input data in the first and second steps. Then, the combining of
SAR and VIs features was used for modeling. The results of the three separate input data
were compared to each other. Furthermore, a deep artificial neural network based on the se-
lected feature was designed and implemented. Furthermore, Grid Search Cross-Validation
(GridSearchCV) was used to tune the hyper-parameters of all the ML algorithms.

3.1. Random Forest Regression

RF is a robust ensemble learning method, which is widely used in classification
and regression problems. Ensemble learning is the process in which multiple models
are produced and combined to solve a particular task. Two common types of ensemble
learning are boosting and bagging. Bagging is made up of fitting several models that
train independently to reduce variance to avoid overfitting while improving combined
models’ stability and accuracy [63]. RF is a successful bagging approach made up of a
substantial number of individual decision trees. Each tree makes its prediction. Finally,
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the model combines all predictions to obtain a better performance [64]. Each tree grows
independently using a bootstrap sampling of the training data [29].

In contrast to the linear regression model, an RF regressor model cannot predict outlier
data, e,g, predicting the data from training samples. Various researches have used RF regres-
sion and classification models to estimate crop parameters or map croplands [31,40,46,65].
The GridSearchCV parameters used in the RF are shown in Table 3.

Table 3. Grid Search parameters used in the RF model.

Parameters Description Grid Search Values

n_estimators No. of trees in the forest 5, 10, 25, 50, 100

max_depth Maximum depth of the trees 2, 3, 5, 8, 10

min_samples_split Minimum number of samples
required to split an internal node 2, 3, 5, 10

min_samples_leaf Minimum number of samples
required to be at a leaf node 1, 2, 3, 5, 10

3.2. Support Vector Regression

The support vector machines (SVMs) algorithm, developed by Vapnik and his col-
leagues [66], is one of the most widely used kernel-based machine learning algorithms,
which is used in a variety of problems, especially in classification tasks [63]. Maintaining
all the algorithm’s main features, like maximal margin, SVM can also be used in regression
problems. SVR, firstly introduced by Drucker, et al. [67], has several minor differences
from SVM. The regression model’s output has infinite numbers, but in SVM, the output is
finite numbers.

In regression models, a margin of tolerance (epsilon) is set in approximation. There
will be various reasons that make regression models more complicated than the SVM
model. SVR gives us the flexibility to define how much error is acceptable in our model
and find an appropriate line (or hyperplane in higher dimensions) to fit the data. In
this manner, the tube’s points, the points outside the tube, receive penalization; how-
ever, the prediction function receives no penalization either above or below. SVR and
SVM are widely used in recent researches to estimate crop parameters and cropland map-
ping [7,26,31,37,45,46,65,68,69]. The Grid Search parameters used for the SVR model are
shown in Table 4.

Table 4. GridSearchCV parameters for SVR.

Parameters Description Grid Search Values

Kernel Specifies the kernel type to be used in the
algorithm ‘linear’, ‘rbf’, ‘poly’

Gamma Kernel coefficient for ‘rbf’, ‘poly’ and
‘sigmoid’ 0.001, 0.01, 0.1, 0.5, 0.8, 1, 3

Degree degree of polynomial 2, 3

C Penalty parameter 5, 10, 20, 50, 100, 200, 500, 1000

3.3. Gradient Boosting and Extreme Gradient Boosting

GB regression algorithms were subsequently developed by Friedman [70,71]. As we
said in part2, two common types of ensemble learning are boosting and bagging. GB, a
machine learning method, is an extension of the boosting method. GB, like RF, is used in
regression and classification tasks. GB method is based on minimizing a loss function, and
various types of loss functions can be used. The regularization techniques are customarily
used to reduce overfitting effects. GB negligibly has been used in crop biomass estima-
tion [31,65]. One of the most attractive gradients boosting implementations is XGB [72],
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first started by Tianqi Chen (Tianqi Chen on http://datascience.la/xgboost-workshop-
and-meetup-talk-with-tianqi-chen/, accessed on 3 July 2021) as a research project. It is
an ensemble machine learning algorithm that uses a gradient boosting framework. XGB
is designed to enhance a machine learning model’s performance, speed, flexibility, and
efficiency. The Grid Search parameters used for the GB and XGB algorithms are shown in
Table 5.

Table 5. GridSearchCV parameters for the GB and XGB algorithms.

Parameters Description Grid Search Values

learning_rate Shrinks the contribution of each tree 0.001, 0.005, 0.01, 0.05, 0.1,
0.15, 0.3

n_estimators The number of boosting stages to
conduct. 10, 25, 50, 70, 100

max_depth Limits the number of nodes in the tree. 2, 3, 5, 7, 10

max_features The number of features to consider
when searching for the best split. ‘auto’, ‘sqrt’, ‘log2’

3.4. Deep Artificial Neural Network Regression

ANNs are popular machine learning algorithms inspired by the human brain [64].
A simplified model of the brain shows a considerable number of primary computing
devices called neurons. Through these substantially connected neurons, highly complex
computations can be carried out. ANN consists of interconnected neurons that learn by
adopting and modifying the weights [29]. This model typically includes one input layer,
more than two hidden layers, and one output layer. In the ANN model, neurons of one
layer can be connected to all other layers’ neurons but not to the same layer’s neurons.
Each neuron is connected to all neurons in the previous and following layers in a fully
connected ANN [73].

In this study, we used a dense, deep ANN. The primary considerations for tuning
hyper-parameters of ANN are the number of neurons and hidden layers. Several empirical
methods can determine the number of neurons in each layer [74,75]. In this study, we have
determined the number of the neurons using Equation (2) [74]:

Nn =
√
(m + 2)N + 2

√
N

m + 2
(2)

In this equation, Nn is the number of neurons in each layer, N is the number of input
neurons, and m is the number of layers. We examined various activation functions for
the deep ANN model, including ReLU, Tanh, Sigmoid, and Linear. Adam’s optimization
method, an extension of Stochastic Gradient Descent (SGD), was used to update the
network’s weight iteratively. The early stopping approach was used to avoid overfitting.
Furthermore, 20% of the training sample was selected as the validation data.

3.5. Evaluation Criteria

Several criteria were used to evaluate prediction performance, including RMSE, mean
absolute error (MAE), and Pearson correlation coefficient (R). The formula of the RMSE is
as follows:

RMSE =

√
∑N

i=1(ŷi − yi)
2

N
(3)

where N is the number of data.

http://datascience.la/xgboost-workshop-and-meetup-talk-with-tianqi-chen/
http://datascience.la/xgboost-workshop-and-meetup-talk-with-tianqi-chen/
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In addition, the normalized RMSE (nRMSE) ( RMSE
related crop parameter′ average ) is presented

in one figure for better and accurate visualization. MAE is calculated as the following
equation:

MAE =
∑N

i=1|ŷi − yi|
N

(4)

R is used in statistics problems to measure how the relationship between predicted
and observed data is robust:

R =

(
N ∑N

i=1(ŷiyi)
)
−
(

∑N
i=1 ŷi

)(
∑N

i=1 yi

)
√(

N ∑N
i=1 ŷi

2 −
(

∑N
i=1 ŷi

)2
)(

N ∑N
i=1 yi

2 −
(

∑N
i=1 yi

)2
) (5)

4. Results and Discussion

Several optical VIs and polarimetric SAR data were extracted from RapidEye and
UAVSAR data to explore satellite data’s potential to evaluate and estimate crop parameters.
The results showed acceptable agreement with the researches had done before by Hosseini,
et al. [9] and Reisi Gahrouei, et al. [22]. The impact of optical VIs, UAVSAR polarimetric
features, and integrating them on the accuracy of retrieving dry biomass and LAI using
four machine learning regression models is assessed in the following sections.

4.1. Time Series Analysis of Radar Backscattering

Figure 2 presents the temporal profiles of the three crops. The left axes represent
three SAR backscattering, including VV, HH, and HV. The right axes in the left images
are regarding dry biomass, while the right images are regarding LAI. For canola, all three
intensities, including VV, HH, and HV, generally decrease from 17 June to 14 July 2012.
As expected, the amount of dry biomass during the campaign increased, while the LAI
reduced from start to middle of the campaign. Generally, all three SAR backscattering
coefficients from 17 June to 14 July 2012, are rising for corn. Also, the amount of dry
biomass and LAI increased during the campaign. For soybean, in total, the HV and HH
backscattering coefficient is rising, but the VV behavior is irregular. For soybean, similar to
corn, the amount of dry biomass and LAI increased during the campaign.

4.2. Correlation and Features Importance

Correlation coefficients between all features extracted for each crop have shown in
Figure 3. For canola, the correlation between DF and DY, OF and OY, and VF and VY is
high. The absolute correlation between DF and most of the other radar features is generally
higher than 0.9. Overall, the correlation between OF and OY with other decompositions is
relatively low. The correlation between DF and DY with the other radar features is also high.
As well, the correlation between radar features with VIs is low. Between VIs, approximately
in most cases, correlation is high. Apart from A, H, and Alpha, the correlation between
other SAR features is relatively high for corn. However, the number of radar features with
an absolute correlation exceeded 0.9 is negligible. The correlation between DF and DY, OF
and OY, and VF and VY is higher than 0.9. Besides, a high correlation can be seen between
VIs. Compared to corn and canola, the correlation between SAR features is relatively low.

For corn’s dry biomass, the higher importance is related to MCTI VI. However, be-
tween 5 high important features, four of them are SAR parametric features. For corn
LAI, similar to dry corn biomass, the higher feature importance is MCTI. Nevertheless, in
contrast to corn’s dry biomass, from 5 higher importance features, four of them are related
to spectral VI. For canola’s dry biomass, the higher importance is related to DF.
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Of five higher importances, three are related to SAR parameters, and the remaining
are regarding spectral VIs. For canola LAI, the higher importance is related to RVI. Also,
between five high importance features, four of them are regarding SAR parameters. For
soybean’s dry biomass, the higher importance is related to CL-EDGE. Besides, four out
of five higher importance are related to spectral VIs. Finally, for soybean LAI, similar to
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soybean’s dry biomass, CL-EDGE has higher importance. In addition, between 5 higher
importance, four of them are related to spectral VIs.
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The details of the RF feature importance are listed in Table 6. The color of the feature
cell with higher importance tends to be green, and the low important feature’s color tend
to be yellow. Details of the features used in each crop parameter can be seen in Table 7.

Table 6. RF feature importance results.

Dry Biomass LAI

Corn Canola Soybean Corn Canola Soybean

HH 0.235 0.032 0.024 0.191 0.013 0.006

HV 0.006 0.009 0.005 0.038 0.005 0.004

VV 0.004 0.009 0.005 0.002 0.355 0.004

ALPHA 0.020 0.088 0.037 0.038 0.230 0.012

A 0.011 0.052 0.015 0.007 0.011 0.005

H 0.009 0.057 0.008 0.007 0.019 0.025

F_ODD 0.012 0.028 0.007 0.002 0.017 0.010

F_DBL 0.007 0.086 0.005 0.007 0.084 0.005

F_VOL 0.041 0.011 0.004 0.043 0.008 0.007

Y_ODD 0.003 0.008 0.003 0.002 0.009 0.007

Y_DBL 0.002 0.006 0.012 0.003 0.015 0.007

Y_VO 0.015 0.022 0.021 0.035 0.013 0.013

Y_HIX 0.010 0.019 0.011 0.013 0.013 0.004

RVI 0.009 0.057 0.007 0.004 0.021 0.008

NDVI 0.009 0.003 0.092 0.025 0.013 0.083

GNDVI 0.020 0.005 0.043 0.009 0.020 0.009

SR 0.005 0.018 0.017 0.058 0.001 0.007

NDVI_EDGE 0.005 0.102 0.218 0.051 0.005 0.288

SR_EDGE 0.010 0.103 0.012 0.034 0.007 0.038

MTVI2 0.007 0.026 0.011 0.017 0.026 0.005

EVI 0.005 0.005 0.011 0.006 0.015 0.007

CL_G 0.004 0.005 0.035 0.008 0.002 0.009

CL_EDGE 0.018 0.127 0.296 0.096 0.033 0.409

MCTI 0.523 0.081 0.085 0.289 0.010 0.024

SAVI 0.010 0.040 0.017 0.017 0.004 0.004

Table 7. SAR and Optical features used for different crop parameter modeling.

Dry Biomass LAI

Corn Canola Soybean Corn Canola Soybean

HH 3 3 3 3 3 3

HV 8 3 3 8 3 3

VV 3 3 3 3 3 3

ALPHA 3 3 3 3 3 3

A 3 3 3 3 3 3
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Table 7. Cont.

Dry Biomass LAI

Corn Canola Soybean Corn Canola Soybean

H 3 3 3 3 3 3

F_ODD 3 8 8 3 8 8

F_DBL 8 8 8 8 8 8

F_VOL 3 8 8 3 8 8

Y_ODD 8 3 3 8 3 3

Y_DBL 3 3 3 3 3 3

Y_VO 8 3 3 8 3 3

Y_HIX 3 3 3 3 3 3

RVI 3 3 3 3 3 3

NDVI 8 3 3 3 3 3

GNDVI 8 8 8 8 8 8

SR 3 3 3 3 3 3

NDVI_EDGE 8 8 8 8 8 8

SR_EDGE 8 3 3 8 3 3

MTVI2 8 3 3 8 3 3

EVI 8 8 8 3 8 8

CL_G 3 3 3 3 3 3

CL_EDGE 8 3 3 8 3 3

MCTI 3 3 3 3 3 3

SAVI 3 8 8 8 8 8

4.3. Sensitivity Analysis

Complete information over validation and calibration accuracies for retrieving dry
biomass and LAI for each crop is shown in Tables 8 and 9, respectively. The following
details are for validation data. As maturity methods, canola builds up appreciable plant
material and vegetation water. This considerable water volume might lead to a greater
tendency towards saturation of signals from canola canopies, especially for SAR backscatter.
For canola’ dry biomass, generally, the accuracy of integrated input data was better than
the SAR parameters or spectral VIs, separately. The prediction performance of optical VIs
was slightly better than the SAR features using. The best performance was related to SVR
MLA with RMSE = 26.29 g/m2, MAE = 20.72 g/m2, and R = 0.95 using a combination of
SAR and optical data (Figure 4a). A low amount of overestimated value can be seen in the
early growth stage. Moreover, SVR underestimated dry biomass for canola at advanced
development stages. Low error among dry biomass estimation using VIs spectral data
provided by GB method with RMSE of 38.87 g/m2 and MAE of 28.34 g/m2, considerably
higher than integrated estimation error. Using SAR polarimetric features, high accuracy
was delivered by RF algorithms (RMSE = 46.67 g/m2, 33.45 g/m2, and R = 0.83). The
results showed no saturation in the high and low amount of dry biomass prediction using
a combination of optic and SAR data.
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Table 8. Results of four MLAs in estimating dry biomass.

Dry Biomass

Canola Corn Soybean

R RMSE MAE R RMSE MAE R RMSE MAE

RF

Calibration

Optical 0.94 29.49 21.33 0.92 78.68 49.87 0.92 6.18 4.25

SAR 0.92 33.137 23.58 0.92 94.25 58.6 0.94 5.05 3.75

Integrated 0.97 24.19 18.14 0.96 63.73 39.15 0.96 4.35 3.15

Validation

Optical 0.85 43.35 35.56 0.94 77.5 49.19 0.88 7.07 4.69

SAR 0.83 46.67 33.45 0.91 98.04 60.83 0.9 6.79 4.87

Integrated 0.91 36.74 30.02 0.96 57.97 41.15 0.94 5.5 3.7

SVR

Calibration

Optical 0.93 31.26 18.55 0.94 72.53 42.56 0.85 8.01 5.04

SAR 0.91 34.54 18.61 0.9 96.84 60.89 0.87 7.73 5.02

Integrated 0.97 21.36 10.78 0.94 76.53 47.68 0.96 4.4 2.18

Validation

Optical 0.86 42.03 32.53 0.91 76.55 51.75 0.85 7.76 5.2

SAR 0.8 49.46 34.46 0.95 60.2 46.94 0.89 6.88 4.43

Integrated 0.95 26.29 20.72 0.96 58.62 42.34 0.92 5.79 3.75

GB

Calibration

Optical 0.93 28.61 18.31 0.94 71.28 44.97 0.92 6.12 4.17

SAR 0.91 34.14 18.25 0.87 93.58 61.2 0.93 5.4 3.81

Integrated 0.95 24.61 11.84 0.94 75.25 45.23 0.96 3.56 2.19

Validation

Optical 0.88 38.87 28.34 0.94 69.85 44.37 0.79 8.64 6.13

SAR 0.81 47.86 32.19 0.92 96.4 63.95 0.86 7.22 4.87

Integrated 0.93 30.77 24.3 0.96 63.02 40.28 0.94 5 3.5

XGB

Calibration

Optical 0.91 30.25 19.56 0.94 72.38 45.76 0.94 5.22 3.46

SAR 0.91 34.84 18.49 0.89 91.15 61.68 0.93 5.6 3.97

Integrated 0.95 24.687 12.15 0.94 72.02 45.01 0.97 3.67 2.41

Validation

Optical 0.86 40.53 30.38 0.93 77.87 48.03 0.84 7.41 4.93

SAR 0.79 50.26 33.62 0.91 92.14 62.39 0.89 6.98 4.99

Integrated 0.93 31.79 23.18 0.95 68.73 42.1 0.94 5.25 3.58

Table 9. Results of four MLAs in estimating LAI.

LAI

Canola Corn Soybean

R RMSE MAE R RMSE MAE R RMSE MAE

RF

Calibration

Optical 0.95 0.602 0.4 0.92 0.396 0.252 0.89 0.351 0.258

SAR 0.89 0.856 0.55 0.94 0.339 0.238 0.95 0.236 0.18

Integrated 0.96 0.555 0.368 0.96 0.302 0.203 0.97 0.174 0.115

Validation

Optical 0.92 0.771 0.577 0.9 0.442 0.287 0.83 0.368 0.262

SAR 0.71 1.204 0.798 0.94 0.355 0.253 0.9 0.292 0.218

Integrated 0.93 0.699 0.515 0.95 0.321 0.204 0.93 0.239 0.167

SVR

Calibration

Optical 0.97 0.432 0.276 0.95 0.414 0.249 0.88 0.345 0.228

SAR 0.88 0.891 0.565 0.94 0.358 0.206 0.92 0.295 0.209

Integrated 0.97 0.371 0.241 0.96 0.306 0.179 0.96 0.194 0.129

Validation

Optical 0.93 0.674 0.562 0.89 0.454 0.283 0.84 0.364 0.254

SAR 0.78 1.244 0.797 0.91 0.399 0.234 0.9 0.291 0.209

Integrated 0.94 0.579 0.459 0.95 0.316 0.224 0.92 0.261 0.183
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Table 9. Cont.

LAI

Canola Corn Soybean

R RMSE MAE R RMSE MAE R RMSE MAE

GB

Calibration

Optical 0.96 0.451 0.292 0.93 0.457 0.286 0.92 0.279 0.199

SAR 0.89 0.83 0.464 0.93 0.361 0.212 0.94 0.236 0.167

Integrated 0.95 0.564 0.25 0.95 0.329 0.219 0.96 0.196 0.131

Validation

Optical 0.93 0.645 0.542 0.92 0.424 0.302 0.84 0.384 0.283

SAR 0.78 1.082 0.641 0.94 0.371 0.266 0.89 0.322 0.222

Integrated 0.95 0.557 0.399 0.96 0.298 0.219 0.94 0.233 0.167

XGB

Calibration

Optical 0.97 0.405 0.273 0.93 0.38 0.268 0.9 0.318 0.222

SAR 0.89 0.812 0.456 0.97 0.251 0.173 0.94 0.268 0.202

Integrated 0.92 0.591 0.343 0.95 0.31 0.208 0.98 0.133 0.055

Validation

Optical 0.93 0.646 0.527 0.92 0.399 0.273 0.84 0.36 0.247

SAR 0.78 1.093 0.645 0.95 0.321 0.224 0.9 0.293 0.213

Integrated 0.93 0.635 0.499 0.95 0.315 0.222 0.94 0.233 0.164

LAI is indicative of the crop structure and affects both reflectance and backscatter at
canopy scales. For canola LAI, the integration of SAR polarimetric data and spectral VIs in
GB and XGB improved performance. However, optical VIs outperforms the integration
of SAR and optical features in SVR and RF. Besides, the accuracy of LAI estimation with
VIs spectral data was better than SAR polarimetric data. As demonstrated by Figure 4b,
LAI for canola estimated by GB using both SAR and VIs feature was highly correlated with
in situ measured LAI (0.557 m2/m2, 0.399 m2/m2, and R = 0.95). However, GB slightly
underestimates the LAI in the mid-growth stage. The higher accuracy with spectral VIs
regarded to GB and XGB, with approximately the same RMSE, but better MAE in XGB. A
minimal amount of saturation could be seen in high values of LAI.

For corn’s dry biomass, like canola’s dry biomass, integrated features have higher
accuracy. The performance of optical VIs data was better than SAR polarimetric parameters
in RF, GB, and XGB, while in SVR, the accuracy of SAR polarimetric features is higher
than VIs spectral data. The prediction accuracy delivered by RF, SVR, and GB has the
same R, but RF has a lower error than SVR and GB. The higher accuracy was related
to the RF regression model with RMSE = 57.97 g/m2, MAE = 41.15 g/m2, and R = 0.96
(Figure 4c). Although a few ground measurements are available at high dry biomass,
observed and estimated, dry biomass values are well distributed about the 1:1 line. The
best performance of optical VIs regarded to GB regression model with RMSE = 69.85 g/m2,
MAE = 44.37 g/m2, R = 0.94. The higher accuracy with SAR polarimetric data was related
to the SVR model with RMSE = 60.2 g/m2, MAE = 46.94 g/m2, and R = 0.94. The result of
RF show low saturation in the high amount of corn’s dry biomass.

For corn’s LAI, the best performance was related to integrating SAR polarimetric data
and spectral VIs. Besides, the estimation accuracy of spectral VIs is slightly worse than
SAR polarimetric data. The best accuracy was regarding the GB regression method with
RMSE = 0.298 m2/m2, MAE = 0.219 m2/m2, and R = 0.96 using a combination of SAR
and optical VIs features (Figure 4d). Early in the season, the GB overestimates LAI. This
may be due to a more open canopy in the early growth stages, leaving more soil exposed
to soil properties, contributing significantly to reflectance and backscatter. The RMSE of
SVR, RF, and XGB is nearly equal. The best performance for spectral VIs was provided by
the XGB model with RMSE = 0.399 m2/m2, MAE = 0.273 m2/m2, and R = 0.92. The best
performance for SAR data was delivered by the XGB model with RMSE = 0.321 m2/m2,
MAE = 0.221 m2/m2, and R = 0.95.
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For soybean’s dry biomass, generally, the integration of SAR and optical data had
better performance. The estimation performance of SAR polarimetric data was slightly
better than optic data in all cases. The best performance among MLAs was related to GB
regression model with RMSE = 5.00 g/m2, MAE = 3.5 g/m2, and R = 0.94 (Figure 4e). SVR
had the lower MAE among all algorithms; however, RF has the lower RMSE comparison to
SVR. Also, RF and GB had a similar MAE, but RF had the lower RMSE. ML algorithms had
a significant saturation in the high value of dry biomass (higher than 60 g/m2).
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For soybean’s LAI, like corn and canola, the best performance belongs to integrating
SAR and optic data. Also, the accuracy of SAR polarimetric data, compared to spectral
VIs, was better. The XGB and GB had the same RMSE, however, XGB had a better MAE
(RMSE = 0.233 m2/m2, MAE = 0.164 m2/m2, and R = 0.94 (Figure 4f). The higher accuracy
using SAR data was related to SVR with RMSE = 0.291 m2/m2, MAE = 0.209 m2/m2, and
R = 0.9. Using optical VIs data XGB provided better results with RMSE = 0.36 m2/m2,
MAE = 0.247 m2/m2, and R = 0.84. The best performance in estimating dry biomass and
LAI for each crop is shown in Figure 4.

Figure 5 shows the results of four MLAs’ nRMSE for three crops shown in the boxplot.
The quartile of distribution shows in the box. The rest of the dataset showed whiskers.
Each boxplot’s data consisted of each method’s calibration and validation data, including
three various input data (SAR polarimetric features, VIs spectral data, and integration of
SAR and optical features). The results showed that MLAs performed better in canola rather
than corn and soybean. For corn’s dry biomass, SVR has better accuracy rather than the
other methods. In addition, the median for XGB in corn dry biomass and LAI are lower,
which means better accuracy.
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4.4. The Results of Deep Neural Network

The results of Deep ANN can be seen in Figure 6. The results showed that Deep ANN,
in all cases, improved the accuracy of estimation. For canola dry biomass and LAI, the
model delivered the RMSE of 25.8 g/m2 and 0.525 m2/m2, respectively (Figure 6a,b). The
results of deep ANN clearly showed improved canola dry biomass and LAI. For corn dry
biomass and LAI, the deep ANN provided the RMSE of 54.43 g/m2 and 0.273 m2/m2,
respectively (Figure 6c,d). For both corn LAI and dry biomass, deep ANN improved the
retrieval accuracy. Finally, for soybean dry biomass and LAI, the deep ANN provided
the RMSE of 4.95 g/m2 and 0.211 m2/m2, respectively (Figure 6e,f). Besides, the deep
ANN slightly improved the estimation’s accuracy for both LAI and dry biomass. A
minimal amount of saturation can be seen in the high biomass for soybean’ dry biomass
(approximately higher than 60 g/m2).

4.5. Discussion

For the last decades, remote sensing satellite SAR and optic data’s progress provides an
environment for further research on crop biophysical parameters. MLAs showed significant
potential in broad areas; utilizing these methods recently has grown to solve remote sensing
problems. Crop biophysical parameters are vital parameters for crop monitoring, crop
stress assessments, crop growth model, to name but a few. Identify the number of train
and test samples, the best value for each parameter in tuning MLAs’ hyperparameters, and
many other things that are not mentioned here, are the reasons that we need to compare
several MLAs to determine the best approach to estimate target parameters. In this study,
we focused on the potential of four MLAs to assess two crop biophysical parameters. XGB
is a new method that is used in the fields related to crop parameter estimation. Information
during crop growth duration is available from UAVSAR data. In general, for all three crops,
a combination of UAVSAR polarimetric features and spectral VIs have a better performance
to estimate crop biomass and LAI. the estimation accuracy of regression models UAVSAR
L-band polarimetric features showed great potential in retrieving soybean dry biomass
and LAI. For canola and corn LAI and dry biomass, generally, the accuracy of estimation
using optical VIs was better than SAR polarimetric features in each regression model.

Considering other research works, Reisi-Gahrouei, et al. [44] achieved RMSE of
56.55 g/m2 and R = 0.72 for canola’s dry biomass using decomposition UAVSAR L-band
data. Besides, they achieved an RMSE of 13.48 g/m2 and R = 0.82 for soybean’s dry biomass.
In another study, Reisi Gahrouei, et al. [22] achieved 25.22 g/m2 for canola, 88.13 g/m2 for
corn, 5.91 g/m2 for soybean using spectral VIs extracted from RapidEye optical data. Their
model delivered RMSE of 0.59 m2/m2 for canola, 0.27 m2/m2 for corn and 0.21 m2/m2 for
soybean, a combination of UAVSAR L-band data and spectral VIs improved the soybean
and canola dry biomass estimation in our study. Mandal, et al. [76] used various methods
to estimate wet biomass and PAI of soybean and wheat. They achieved RMSE between 0.73
to 1.21 g/m2 for wheat’s wet biomass. As well, their results for wheat PAI were between
0.83 to 1.48 m2/m2. The best soybean wet biomass and PAI results were 0.34 g/m2 and
0.72 m2/m2, respectively. We achieved the RMSE of 4.95 g/m2 and 25.80 g/m2 for soybean
and canola dry biomass, respectively. Our model also provided the RMSE of 0.211 m2/m2

for soybean LAI, 0.273 m2/m2 for corn LAI, and 0.525 m2/m2 for canola LAI. Our model
amazingly improved the accuracy of LAI estimation, especially for corn.
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5. Conclusions

Biomass and LAI are two critical parameters in the crop growth model and crop
monitoring. This paper assessed four MLAs’ potential to estimate dry biomass and LAI
of three crops, including soybean, corn, and canola. In situ measurements have been
collected during the SMAPVEX-12 campaign over Manitoba, Canada. Several polarimetric
features were extracted from UAVSAR data. Besides, various spectral VIs were extracted
from RapidEye optical data. Correlation for all features was calculated; also, RF feature
importance for each feature was obtained. Finally, the correlation with an absolute value
of 0.9 was considered, and the feature with low importance and high correlation was
removed. The remaining features were incorporated into machine learning regression
models. The results showed that the integration of SAR polarimetric and spectral VIs
better estimate dry biomass and LAI. Besides, XGB showed great potential in assessing
crop biophysical parameters. For LAI, RMSE was reported as 0.557 m2/m2 for canola,
0.298 m2/m2 for corn, and 0.233 m2/m2 for soybean. Also, RMSE was reported for dry
biomass as 29.45 g/m2 for canola, 26.29 g/m2 for corn, 5.00 g/m2 for soybean. In addition,
the results of deep neural networks were 0.525 m2/m2, 0.273 m2/m2, and 0.211 m2/m2

for canola, corn, and soybean LAI, respectively. The results of deep neural networks were
25.80 g/m2, 57.97 g/m2, 5.00 g/m2 for canola, corn, and soybean dry biomass, respectively.
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