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Abstract: Among the various abiotic stresses, drought is the major factor limiting crop productivity
worldwide. Citrus has been recognized as a fruit tree crop group of great importance to the global
agricultural sector since there are 140 citrus-producing countries worldwide. The majority of citrus-
producing areas are subjected to dry and hot summer weather, limited availability of water resources
with parallel low-quality irrigation water due to increased salinity regimes. Citrus trees are generally
classified as “salt-intolerant” with high water needs, especially during summer. Water scarcity
negatively affects plant growth and impairs cell metabolism, affecting the overall tree growth and
the quality of produced fruit. Key factors that overall attempt to sustain and withstand the negative
effect of salinity and drought stress are the extensive use of rootstocks in citriculture as well as
the appropriate agronomical and irrigation practices applied. This review paper emphasizes and
summarizes the crucial role of the above factors in the sustainability of citriculture.
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1. Introduction

Citrus has been recognized as a group of fruit tree crops of great importance for
the global agricultural sector. The majority of the cultivated areas of citrus are located
in the subtropical region, in the so-called citrus belt, defined by the 40◦ north–south
latitudes, where the temperature rarely drops below severe freezing temperatures [1].
The majority of the citrus-producing areas are subjected to dry and hot summer weather,
limited availability of water resources with parallel low-quality irrigation water due to
increased salinity regimes. These factors negatively affect citrus tree productivity and fruit
quality. Furthermore, the negative effect of climate change in citrus-producing areas should
not be neglected since it augments the detrimental effect of salinity and drought stress [2].

Climate change, combined with the resulting desertification and overexploitation of
water resources, due to overpopulation and intensification of agriculture, will be a challenge
for the survival, growth, and sufficient yield of agricultural commodities [3]. Especially in
citrus crops, water scarcity negatively affects plant growth and impairs cell metabolism,
affecting the overall tree growth and produced fruit quality. Drought stress is also affecting
the post-harvest handling of citrus fruit since it reduces significantly the reed thickness,
rendering the fruit more prone to damage during handling and transportation [4].

Salinity and drought stress demonstrate similar physiological disorders to plants when
they occur. Under the effect of salinity and drought stress, interlinked molecular responses
are activated in order to provide an acclimation effect to the plant and initiate signaling
cascades so as to facilitate the alleviation of the occurred stress syndromes [5]. There are
several molecular interactions between salinity and drought stress that are impossible to
separate in the field. Additionally, overall plant responses to simultaneous stress factors
are complex and can be different in terms of response to each individual stress factor,
depending also upon the duration and intensity of each stress syndrome [2].
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Citrus are generally classified as “salt-intolerant” crops since irrigation with salinized
water immediately arrests tree growth and negatively affects fruit quality, more than in
many other crops [6]. Citrus at cellular and organism level can cope with salt and water
deficit via the implementation of stress avoidance and stress tolerance mechanisms that
block ion accumulation and tissue dehydration or maintain the integrity of cell structures
and functionality of crucial biomolecules [7].

A key factor to the overall attempt to sustain and withstand the negative effect of
salinity and drought stress is the extensive use of rootstocks in citriculture. Extensive work
has been conducted upon citrus trees showing that rootstocks are a key component to
the ability of the tree to withstand water scarcity since they modulate the physiological
performance of the tree via variations in plant hydraulic conductance, leaf water potential,
and stomatal conductivity [8,9].

Several reports indicate that citrus growers worldwide encounter several cultivational
problems due to drought and salinity stress, which cause the decline in citrus yield and
fruit quality. Thus, it is of paramount importance to provide the necessary means and
insight that would guide farmers into the implementation of novel agricultural practices
that would increase their income and minimize the negative impact of salt and water stress.
Towards this goal, several traditional breeding programs are active and have produced
several improved varieties of citrus plants [10]. The deleterious effect of water-related
abiotic stresses such as salinity and drought stress can be minimized via the precise and
sophisticated agricultural practices that take into account the actual tree needs and the
availability of natural resources. The scope of the current review is to harness useful
scientific data that could be utilized and guide the successful implementation of agronomic
practices that improve citrus tolerance against stress factors.

2. Citrus Salinity Stress and Responsive Mechanisms

Citrus are cultivated into areas that are characterized by low levels of precipitation,
and in most cases additional irrigation is a necessity. The usage of poor-quality irrigation
water combined with the extensive dry and hot climates within the citrus cultivation belt
exposes citrus to salinization regimes, a deleterious environmental constraint [2]. When the
concentration of Na+ ions in the soil solution exceeds 1500 ppm or 25 mM, which is the
critical concentration for the growth of cultivated crops, plants are stressed by salinity.
In citriculture, values of electrical conductivity (EC) over 3 dS m−1 and sodium adsorption
ratio (SAR) over 9 in saturated soil extract are characterized as critical for the survival of
the cultivation. In addition, chlorine concentration values above 355 ppm are prohibited
for growing citrus [11]. Moreover, citrus growth and fruit yield have been reported to
be negativity affected under soil salinity of 2 dS m−1, while a decrease of 13% fruit yield
has been observed per each 1 dS m−1 salinity increase above 1.4 dS m−1, which is the
threshold value of electrical conductivity for saturated soil extract [12]. Furthermore,
the threshold levels of salinity in the rhizosphere of orange trees cv. Valencia were reported
at ECs of 2.5 to 3.5 dS m−1 [13]. In lemon trees of cv. Verna, the toxic threshold for
salinity stress syndromes is varied with the used rootstock, whereas for sour orange,
Cleopatra mandarin, and macrophylla, the threshold values for response were 1.53, 2.08,
and 1.02 dS m−1, respectively [14].

2.1. Response to Salinity Stress

When plants are exposed to salinity, several changes, driven by osmotic factors, occur
in plant physiology. These changes are sudden and temporarily modify plant water
status and gradually cause toxic syndromes, due to the gradient accumulation of ions [15].
According to Garcia-Sanchez and Syvertsen [16], the presence of salt in the soil solution
inhibits the growth of leaves and roots of citrus, due to the decrease of the osmotic potential,
which limits water availability to the plant. Initially, as an early response to the occurring
stress, there is a rapid decrease in the growth rate of leaves and roots, but after the activation
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of various physiological and biochemical mechanisms, a very rapid partial recovery of the
leaf growth rate or complete recovery sometimes, in the case of the roots, can occur [17].

In contrast to halophytes, citrus plants were supposedly characterized by an inefficient
ability to allocate saline ions into intercellular cell structures, causing a weak osmotic
adjustment and the manifestation of drought stress [18]. Recent data demonstrate that
cell osmotic adjustment is a crucial response towards plant survival under salinity stress
conditions, even when toxic ions are not efficiently excluded [19]. This means that plants
under salinity stress tend to promote root Na+ and Cl− uptake and accumulate these ions
to plant parts, so as to achieve proper osmotic adjustment, with the deleterious possibility
of long-term toxicity [20]. It has been observed that citrus plants subjected to salinity stress
demonstrate an osmotic pressure that is less deleterious to the plant compared with that
caused by drought stress via the use of polyethylene glycol (PEG). This fact leads to the
assumption that citrus plants use salt ions, which are accumulated mainly into the vacuole,
for their osmotic adjustment in order to avoid water stress [18].

2.2. Ion Toxicity Interplay under Salinity Stress

During salinity stress, Na+ and Cl− ions tend to accumulate inside the plant cells at
toxic levels. It is not an easy task to set the limits of toxicity levels for these ions, since
several factors need to be taken into account, such as the type of salts (accompanying ions)
and the established rootstock/scion combination [21].

A concentration of 10–30 mM Na+ in the root cell solution has been characterized as
toxic because it inhibits enzyme activity, while in the leaves it is up to 100 mM for some
cases [22]. Regarding the Cl− ions, levels in citrus plants leaves required to cause toxicity
start from 0.7% dry matter [18].

According to Al-Yassin [13], for most plants, Na+ is the main cause of toxicity where
Na+ tends to accumulate, in the woody roots and trunk, while Cl− accumulates mainly
in young shoots and leaves, causing necrotic lesions. Citrus plants grown under mild
salinity stress demonstrate a mostly osmotic-driven decrease in fruit yield, without any
visual severe toxicity symptom due to the accumulation of Na+ or Cl− ions. Under intense
salinity stress, citrus plants accumulate excessive levels of Na+ and Cl− ions into the canopy,
reaching toxicity levels and severely deregulating the photosynthetic apparatus and tree
growth [23].

One of the most crucial factors that needs attention is the ability of ion exclusion
from shoot tissues, which is orchestrated by the rootstock. It needs to be clarified that
Cl− is not considered more metabolically toxic than Na+ for citrus plants. Citrus plants,
like the majority of woody perennial plants, possess the ability to store Na+ in the woody
root-sphere and basal stem parts and exclude it from the leaves via xylem retrieval [24].
Thus, the remaining Cl− ions that cannot be excluded become the most harmful and toxic
element of the saline solution [15]. Therefore, the physiological frame that needs to be
established in order to examine citrus resistance to salinity stress is interlinked with the
ability of the plant to restrict the transportation of Cl− ions from the root to the scion, a
mechanism that is tightly controlled by the rootstock [25]. A typical example is the fact
that the ability of Swingle citrumelo rootstock to maintain lower levels of Na+ in leaves,
compared with rough lemon, is due to the ability of the former to sequestrate Na+ in root
tissue vacuoles and immobilize them into the cell wall [26].

Scientific results justify the fact that in citrus, Cl− ions are involved in the deleterious
effect of leaf necrosis, growth arrest, and leaf abscission [27]. Leaf abscission is driven by
the endogenous levels of phytohormone abscisic acid (ABA) and 1-aminocycloprpane-
1-carboxylic acid (ACC), which demonstrated a gradual increase after the establishment
of the salinity stress factor [28]. Moreover, other molecules such as polyamines have
been proposed as signaling molecules during the adjustment of citrus plants to salinity
stress [29].
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2.3. Salinity Avoidance Mechanisms

Plants employ multiple strategies in order to endure salt stress. These include adjust-
ment mechanism, which is exerted via the accumulation of hormones such as ABA, osmotic
adjustment, preferential accumulation of ions into the vacuole, maintenance of photosyn-
thesis via the activation of the water–water cycle [30], the activation of the antioxidant
machinery [31], photorespiration, and glycolate oxidase and salt exclusion [17]. These salt
stress responses are tightly genotype-specific and influenced greatly by the growth stage of
the plant, the rootstock, and the implemented agricultural practices [32].

In citrus plants, salt stress via the accumulation of Cl− ions trigger the biosynthesis
of ethylene precursor (ACC). The prolonged exposure of citrus plants to salinity regimes
accelerates ethylene-driven leaf abscission. As an outcome, salinized citrus plants exert
ABA accumulation in order to counteract ethylene upsurge. It has been established that
citrus plants pretreatment with ABA reduces ethylene release and leaf abscission via the
prevention of Cl− accumulation in leaves [27].

In addition, citrus plants as glycophytes achieve osmotic adjustment via the synthesis
of compatible solutes such as proline, sugars, and organic acids. The dominant employed
strategy depends upon the genotype (species—cultivar), growth conditions, and imple-
mented agronomic practices. Proline is considered among the most important osmolyte
in salt-stressed plants. Experimental data state that the use of exogenous proline (5 mM)
significantly minimized the negative impact of sanity stress in salt-sensitive orange cv.
Valencia cell lines when exposed to 100 mM sodium chloride (NaCl) [33]. Additionally,
sucrose, glucose, and fructose concentrations declined in leaves of Cleopatra mandarin,
and in both leaves and roots of Troyer cintrages under continuously increased levels of
salinity stress (0–80 mM), suggesting that sugar levels tend to increase in salt-sensitive
genotypes rather than in the resistant ones [34].

Furthermore, citrus plants exert their ability to cope with salinity stress via the prefer-
ential accumulation of K+ in leaf and stem tissues. It has been documented that regardless
of the used rootstock, grafted lemon trees of cv. Fino 49 exhibited lower leaf Cl− but higher
K+ when 10 mM potassium chloride was added to the 50 mM NaCl salinity-induced solu-
tion [35]. Moreover, the crucial role of K+, proline, and monosaccharides in osmoregulation
under salinity stress syndromes (100 mM NaCl) was suggested due to the significant lower
leaf Na+ and Ca2+ levels but higher K+, glucose, fructose, and proline concentrations when
Trifoliate orange seedlings were inoculated with two mycorrhizal fungi [36].

In citrus plants salinity resistance is also implemented via ion exclusion procedures.
Salt exclusion describes the ability of the roots and/or basal stem tissues to translocate
low portions of deleterious salts to the photosynthetic active leaves. Genetic ploidy level
influences the relative salt resistance of rootstocks, and tetraploid citrus seedlings demon-
strate greater salt resistance than that of diploid genotype [37]. In-depth molecular analysis
revealed that in citrus plants, the Na+ and Cl− exclusion mechanism is a heritable charac-
teristic, a fact that led to the establishment of several development programs that focused
upon the production of citrus hybrids that exclude salinity ions efficiently and perform
even better than the parent genotypes [38].

2.4. Tolerance Mechanisms

Salt stress is also linked to the hazardous effect of salt ions absorption, which can harm
numerous subcellular organelles, primarily mitochondria and chloroplasts, when they
accumulate to high levels in the cells. These ions can also have a deleterious impact on
several enzyme processes. In salt stress, tolerance mechanisms are thus techniques for in-
cluding and excluding harmful ions and protecting crucial metabolic pathways. According
to Zhang et al. [39], at the level of the photosynthetic mechanism, salinity decreases the
activity of phosphoenolpyruvate carboxylase (PEPC), while the inhibition of the activity of
enzymes linked with the Calvin–Benson cycle (ribulose 1,5-diphosphate carboxylase, ribu-
lose 5-phosphate kinase, ribulose 5-phosphate isomerase, and glyceraldehyde 3-phosphate
dehydrogenase) has been also documented [40]. Scientific data demonstrate that damage
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to the photosynthetic apparatus, under salinity conditions, leads to impairment of the elec-
tron transport chain, which leads to an increased rate of free radical production—reactive
oxygen species (ROS) and reactive nitrogen species (RNS) [41–43]. It is well established
that citrus plants under salinity stress do respond in a positive manner towards the estab-
lishment of a sufficient antioxidant defense arsenal in order to cope with the deleterious
effect of ROS- and RNS-mediated attacks [44–46].

Plants under salinity stress induce the biosynthesis of specific protein groups, hy-
drophilins, and heat shock proteins (HSPs), which protect cell compartments and contribute
to the overall plant cell protection of vegetative tissues. In vegetative tissues, under op-
timal growth conditions, these two groups of proteins are in most cases untraceable, but
under the effect of salinity stress, ABA-dependent signaling cascades trigger their accu-
mulation [47]. The late embryogenensis abundant proteins (LEA proteins) belong to the
functional group of hydrophilins that facilitate cell survival under severe deprivation of
water from salinity, even to plants such as citrus [48].

In plants under salt stress, the coordinated action of the Na+ transporters HKT1 and
SOS1 regulates Na+ and K+ homeostasis [49]. Shi et al. [50] found that SOS1 enhances
Na+ exclusion by extruding the cation from root tip epidermal cells. SOS1 loads Na+ into
the xylem sap in xylem parenchyma cells, allowing for effective osmotic adjustment of
shoot tissues via vacuolar compartmentalization, whereas HKT1 mediates the reverse flux,
unloading Na+ from xylem vessels to prevent Na+ overaccumulation in photosynthetic
organs [51]. The coordination of both the HKT1 and SOS1 Na+ transporters allow for
proper cation partitioning between organs. HKT1 can transfer sodium recovered from
xylem sap into the phloem for shoot-to-root transfer. The excess Na+ recovered by HKT1
from the root and stem xylem sap may eventually represent a significant component of the
Na+ trapped in woody tissues in woody perennial plants like citrus. The expression of the
SOS1 and HKT1 genes has been linked to the ability of two genotypes, Cleopatra mandarin
and trifoliate orange, to exclude Na+ [52].

2.5. Genetic Approaches to Improve Salinity Stress

Genetic improvement toward salinity in citrus plants can be implemented either
via the identification of natural variations by direct selection or by quantitative trait loci
(QTL) mapping. Due to the limited success of direct selection in open field conditions, the
interest of breeders has focused upon the identification of genes and gene products that
can be transferred, in order to create cultivars via marker-assisted breeding and genetic
transformation [32]. QTLs are genomic stretches (section of DNA) that correlate with a
variation of a quantitative trait in the phenotype of a population of organisms [53]. In plants,
such quantitative variations could be the result of the combined action of multiple different
genes and environmental stimuli. QTL analysis involves crossing two parents differing in
one or more quantitative traits, so as to identify candidate genes underlying the desired
trait [54]. A total of 98 QTLs putatively linked to salinity resistance were determined in
a hybrid citrus population (Cleopatra mandarin (salt-tolerant) × Trifoliate Orange (salt-
sensitive)). A specific cluster of QTLs controlling plant vigor and leaf boron concentration
pointed to a genomic region in linkage group 3 as the most relevant one that could be
used in order to improve salinity tolerance using Cleopatra mandarin as a donor [55].
Additionally, QTL mapping revealed 70 potent QTLs in a BC1 population (Citrus grandis
× (Citrus grandis × Poncirus trifoliata)), of which 69% were related to salinity. In-depth
analysis of 16 regions of the citrus genome revealed that six of them were linked with both
plant growth and dry mass production under salinity stress [56].

3. Citrus Drought Stress and Responsive Mechanisms

Considering the impact of abiotic stresses upon tree physiology and productivity at a
global scale, drought stress is characterized as one of the most deleterious stress factors.
Drought impairs normal growth, disturbs water relations, and reduces water use efficiency
in plants. Plants, however, have a variety of physiological and biochemical responses at
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cellular and whole-organism levels, making it a more complex phenomenon. The rate of
photosynthesis is reduced mainly by stomatal closure, membrane damage, and disturbed
activity of various enzymes, especially those involved in ATP synthesis [51].

Citrus trees under drought stress demonstrate a significant reduction of growth
and cellular metabolic processes, with a concomitant reduction in crop yield and fruit
quality [57]. Under the effect of drought stress, citrus reduces physiological parameters
such as stomatal conductance (gs) and net assimilation of CO2 (ACO2) and leaf transpiration
(Eleaf) [2]. The ability of citrus to cope with the negative impact of water deprivation is also
related to the genotype of the plant, resulting in the following order of drought resistance:
good resistance—mandarins (Citrus reticulata spp.) > rangpur lime > rough lemon > sour
orange > Citrus macrophylla; medium resistance: lemon > trifoliate orange > citrange hybrid
> Citrus chuana; poor tolerance: sweet orange > Citrus verrucose > grapefruit [9,58].

3.1. Drought Stress Resistance Mechanisms

Plants manage to deal with drought stress conditions through physiological, biochem-
ical, anatomical, and morphological modifications. The plant’s first response to drought is
to minimize stress, which prevents the accumulation of fluids or harmful ions in sensitive
leaf tissues. Avoidance mechanisms alone may be adequate to maintain plant performance
in the case of mild stress or stress of short duration [59]. The mechanisms that allow the
plant to maintain tissue water potential (Ψw) and water content near to the unstressed
level by enhancing water intake or restricting water loss are referred to as whole-plant
water dehydration avoidance. Stomatal closure regulation is a fundamental avoidance
mechanism that works in the short term. In the long run, leaf rolling flexibility, increasing
the root/shoot ratio by creating a deeper and thicker root system, reducing leaf biomass,
increasing cuticular resistance, and regulating root water conductivity may be the most
important factors for crop plants [60,61]. Cell dehydration avoidance mechanisms are asso-
ciated with osmotic adjustment and cell wall hardening responses. Osmotic adjustment by
the regulation of leaf osmolites appears to be different from many other plant species since
heterogeneous responses indicate that osmolytes accumulation can depend on genotype,
intensity, and duration of the stress [62]. Osmoregulation is achieved by the biosynthesis
of compatible osmolytes such as proline and other betaines, with the exception of glycine
betaine [63]. Among the mechanisms of drought avoidance, citrus has the ability to modify
the elasticity of the cell wall. By increasing the elasticity of the cell wall, a reduction of
the pressure potential is achieved, contributing to the reduction of the water potential,
while maintaining the cell’s turgor as the cell shrinks around its contents [64]. In citrus,
leaf age affects the plant’s response to drought, as older leaves have characteristics that
allow them to cope with drought more effectively than younger leaves can [64]. When
citrus trees are under the effect of drought stress, the control of stomatal opening is the
most crucial factor for their survival. Under water stress conditions, reduced stomatal
conductivity (gs), decreased respiration rate (E), and reduced net anabolic rate (ACO2)
are observed [65]. In the presence of intense water stress, stomatal closure is immediate,
with complete inhibition of gas exchange within two hours [66], and inhibition of the as-
similation rate of CO2 [63]. Under the influence of water stress, the leaf area is significantly
reduced, in relation to the root rhizosphere, resulting in an increase in root/shoot ratio,
with parallel growth allocation of the roots to deeper soil layers [67].

Stress tolerance mechanisms become critical for plant survival or efficient recovery
from stressful situations if the stress gets more severe and the plant is no longer able to
maintain enough water (decrease of Ψw) or ion homeostasis. Cell dehydration tolerance
mechanisms are characterized by the accumulation of osmoprotectants, antioxidants, and
reactive oxygen species (ROS) scavengers, as well as the biosynthesis of cell-protecting
proteins, such as HSPs and hydrophilins. Plants respond by overproducing antioxidant en-
zymes such as superoxide dismutase, catalase, and peroxidase, as well as metabolites such
as ascorbate and glutathione, to reduce ROS toxicity. The ROS response correlates favorably
with the degree of resistance of citrus plants [68,69]. It is commonly acknowledged that
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antioxidant defenses are essential for abiotic stress tolerance. The accumulation of proteins
that play distinct functions in cell defense, such as hydrophilins and HSPs, is another major
mechanism of plant cell tolerance caused in vegetative tissues subjected to water stress.
Hydrophilins and HSPs are normally undetectable or very tiny in vegetative tissues, but in
response to osmotic stress, a strong ABA-dependent transcriptional activation is produced,
resulting in a significant accumulation of these proteins [70,71]. Hydrophilins, such as late
embryogenesis abundant (LEA) proteins, help cells survive protoplasmic water depletion.
Several studies have shown that hydrophilins and HSP protection proteins have a role in
citrus plants’ responses to water stress [48,72,73].

3.2. Intercellular Signaling Cascade and Control of Gene Expression under Drought Stress

Under conditions of drought, an increase in the concentration of abscisic acid (ABA)
in roots and leaves is recorded [74]. The accumulation of ABA is due to the increased
rate of its biosynthesis or the arrest of its cleavage reactions. Recent studies have revealed
the existence of different receptors that recognize the presence of ABA intracellularly and
extracellularly [75]. The sesquiterpene plant hormone binds to PYR/PYL/RCAR receptors
in leaves to cause rapid ABA-mediated stomatal closure [76]. PP2C phosphatases (ABI1 and
ABI2) suppress autophosphorylation of the Ca2+-independent and Ca2+-dependent kinases
SnRK2.6/OST1 and CPKs, respectively, in the absence of ABA, making them inactive.
When RCAR/PYR/PYL receptors in guard cells detect ABA, ABI1 and ABI2 phosphatases
bind to the ABA–receptor complex and inactivate, releasing SnRK2.6/OST1 and causing
CPK inhibition. The kinases then phosphorylate and activate the anion channels SLAC1
and SLAH3 (the same anion channels involved in root-to-shoot xylem translocation),
depolarizing the guard cell membrane potential and triggering the cascade of events that
lead to guard cell turgor pressure loss and stomatal closure. The role of PP2C as a bona
fide coreceptor required to boost ABA-binding affinity has been hypothesized as a result of
structural studies performed with Citrus sinensis (sweet orange) and Solanum lycopersicum
(tomato) ABA receptors [77].

The ABA slow response modulates signaling pathways that lead to transcriptional
control of many genes, including dehydration tolerance mechanisms. These signaling
cascades trigger the synthesis of a series of metabolites involved in the stabilization of
enzyme complexes, plasma membrane protection, and regulation of osmotic potential in
order to preserve the cell turgor [78]. Plant responses to drought are aimed at reducing cell
water loss, protecting intracellular structures and molecules, and repairing damage caused
by free radicals [79]. Under drought conditions, the ability of the cell to minimize water
loss is achieved by regulating the water potential within the cell structure. In drought
conditions, the regulation of water potential is considered a vital component to the survival
of the plant, as it allows it to maintain its metabolic activities [80]. Dehydration has a
minimal effect on the transcriptional regulation of the CsRCAR/PYR/PYL ABA receptors
and the CsSnRK2 activating kinases in citrus leaves, although water shortage induces the
genes encoding for the clade-A PP2C phosphatases CsABI1, CsAHG1, and CsAHG3 [81].

In citrus plants under severe drought stress, several plant organs are abscised, includ-
ing leaves, stems, or even fruits. This detrimental effect is driven by the evoked production
of the plant hormone ethylene that participates in the fruit and leaf abscission processes
with the parallel accumulation of ABA [82–84]. In addition, recent scientific data pinpoint
the novel role of jasmonic acid (JA) as a key regulator of water stress alleviation to citrus
plants. In citrus plants under drought stress, scientific data reveal an interplay among JA
and ABA accumulation, since JA acts upstream towards ABA biosynthesis, thus facilitating
the orchestration of physiological responses [85,86]. Furthermore, recent data highlight the
role of a novel gasotransmitter molecule, hydrogen sulfide, acting upstream towards the
expression of genes and protein synthesis related to the adaptation of citrus plants to forth-
coming drought stress syndromes [45]. The crucial role of several ROS, RNS, and chemical
agents as priming agents that can potentially trigger intercellular metabolic reactions to-



Agronomy 2021, 11, 1283 8 of 16

wards the adaptation of citrus to drought stress has been well established [87]. Table 1
summarizes the main findings/information provided by the above-presented sections.

Table 1. Citriculture and salinity/drought stress highlights.

Salinity Stress Reference

Citriculture and salinization limits
Values of electrical conductivity (EC) over 3 dS m−1 and sodium adsorption ratio (SAR) over 9 in saturated soil
extract are characterized as critical for the survival of the cultivation

[11]

Chlorine concentration values above 355 ppm are prohibited for growing citrus [11]
The Cl− ion levels in citrus plants leaves required to cause toxicity start from 0.7% dry matter [18]
Response to Salinity Stress
Inefficient ability to allocate saline ions into intercellular cell structures [18]
Promote root Na+ and Cl− uptake and accumulate these ions to plant parts, so as to achieve proper
osmotic adjustment [20]

Use salt ions for their osmotic adjustment in order to avoid water deficit [18]
Ion toxicity interplay
Under mild salinity stress, a mostly osmotic-driven decrease in fruit yield is demonstrated, without any visual severe
toxicity symptom due to the accumulation of Na+ or Cl− ions [23]

Under intense salinity stress, citrus plants accumulate excessive levels of Na+ and Cl− ions into the canopy, reaching
toxicity levels and severely deregulating the photosynthetic apparatus and tree growth [23]

Leaf abscission is driven by the endogenous levels of phyto-hormone abscisic acid (ABA) and
1-aminocycloprpane-1-carboxylic acid (ACC) [28]

Polyamines have been proposed as signaling molecules during the adjustment of citrus plants towards salinity stress [29]
Store Na+ in the woody root-sphere and basal stem parts and exclude it from the leaves via xylem retrieval [24]
Sequestrate Na+ in root tissue vacuoles and immobilize them into the cell wall [26]
Amelioration mechanisms
Pretreatment with ABA reduces ethylene release and leaf abscission via the prevention of Cl− accumulation in leaves [27]
Use of exogenous proline (5 mM) significantly minimized the negative impact of sanity stress in salt-sensitive orange
cv. Valencia Late [33]

Genetic ploid level influences the relative salt tolerance of rootstocks, and tetraploid citrus seedlings demonstrate
greater salt resistance than shown by diploid genotypes [37]

The Na+ and Cl− exclusion mechanism is a heritable characteristic—production of citrus hybrids that exclude salinity
ions efficiently and perform even better than the parent genotypes [38]

Enzyme activity and protein synthesis
Citrus plants under salinity stress do respond in a positive manner towards the establishment of a sufficient
antioxidant defense arsenal [44–46]

Induce the biosynthesis of specific protein groups, hydrophilins and heat shock proteins (HSPs), that protect cell
compartments and contribute to the overall plant cell protection [48]

Genetic approaches
Identification of natural variations by direct selection or by quantitative trait loci—QTL mapping [55]
Drought Stress
Reduces physiological parameters such as stomatal conductance (gs) and net assimilation of CO2 (ACO2) and leaf
transpiration (Eleaf)

[2]

Drought resistance: good resistance—mandarins (Citrus reticulata spp.) > rangpur lime > rough lemon > sour orange >
Citrus macrophylla; medium resistance: lemon > trifoliate orange > citrange hybrid > Citrus chuana; poor resistance:
Sweet orange > Citrus verrucose > grapefruit

[9,58]

Mitigation mechanisms
Osmolyte accumulation depends upon genotype, and intensity and duration of the stress [62]
Citrus have the ability to modify the elasticity of the cell wall [64]
Leaf area is reduced, with parallel increase of root/shoot ratio and allocation of roots to deeper soil layers [67]
Biosynthesis of compatible osmolytes such as proline and other betaines, with the exception of glycine betaine [63]
Accumulation of osmoprotectants, antioxidants, ROS scavengers, and cell-protective proteins, such as HSP
and hydrophilins [68,69]

Intercellular signaling cascade and control of gene expression
ABA modulates signaling pathways that lead to transcriptional control of many genes that control the synthesis of
metabolites involved in the stabilization of enzyme complexes, plasma membrane protection, and osmotic
potential regulation

[78]
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Table 1. Cont.

Salinity Stress Reference

Under severe drought stress, several plant organs are abscised, including leaves, stems, or even fruits, due to the
production of ethylene that participates in the fruit and leaf abscission processes with the parallel accumulation
of ABA

[82–84]

There is an active interplay between JA and ABA accumulation, since JA act upstream towards ABA biosynthesis,
thus facilitating the orchestration of physiological responses [85]

Hydrogen sulfide, acting upstream towards the expression of genes and protein synthesis related with the adaptation
of citrus plants [45]

ROS, RNS, and chemical agents as priming agents that can potentially trigger intercellular metabolic reactions
towards the adaptation of citrus to drought stress [88]

4. Agricultural and Irrigation Practices That Cope with Salinity and Drought in Citrus

Figure 1 depicts specific agricultural practices in citriculture that could significantly
alleviate the negative effects either from salinity or from drought stress. All these practices
are analyzed in the following parts of this section. Citrus trees’ need for water depends on
tree age, tree size, citrus species, climate, and soil type. As a general guide, research studies
suggest that mature citrus (orange) trees need about 4000–5000 m3 of water per hectare
and year [89]. Water use for grapefruit and lemon trees is about 20% higher than that of
oranges, while water use for mandarins is about 10% less. Additionally, regarding the
appropriate irrigation frequency, this depends on the season and soil type and ranges from
7 to 25 interval days [4,87]. There are three main irrigation systems used in citriculture:
micro-sprinkler and sprinkler irrigation, which give good results mainly on sandy soils,
and drip irrigation, one of the best techniques from a technical point of view, due to water
economy. The irrigation schedule should start according to the soil moisture, which can
be determined by soil samples with an auger or soil moisture sensors/tensiometers. The
installation of tensiometers following the irrigation line in the middle point between two
emitters (0.20 m from the emitter, 1 m from the trunk) is recommended for mature citrus
trees. In the case of a micro-sprinkler, the installation of tensiometers at a distance of
0.5 m from the mini sprinkler or 1 m from the sprinkler is recommended [90]. Citrus has a
relatively shallow root system. Thus, it is important to apply irrigation at the effective root
zone, minimizing the deep percolation of water. For citrus, the effective root zone is usually
up to 30 cm soil depth (depending on the soil type). At that depth, there is a minimum
threshold of critical matric potential, which needs to be maintained. Typical thresholds are
20 kPa for sandy soils and 100 kPa for clayey soils [89,91].

Citrus is moderately resistant of salty water, but salts can accumulate in the soil or on
the foliage and can cause root dieback or leaf loss. Salinity will always be more of a problem
on poorly drained clay or silt soils than on permeable sandy or gravelly soils. In the case
that citrus trees are irrigated by drip or micro-sprinkler method, which is the most common
one, care should be taken so that water will not contact the leaves, since salt may burn
citrus foliage. Salts may also plug emitter orifices. Frequent or shallow irrigations will lead
to salt accumulation on the soil surface (in the form of a white crust), and accumulation
in the root zone. Salt may be moved from the root zone through the process of leaching.
To leach salty soil, apply large amounts of water to the soil once or twice a year [11].

In citrus, the choice of the rootstock plays a crucial role in the water relations of the tree
with the soil and determines its overall response to abiotic stresses [38,64,92]. The genetic
characteristics of the rootstock determine the robustness of the scion and its survival under
water stress [53]. Studies have shown that orange trees, of cv. Lane Late, grafted on
Cleopatra’s mandarin rootstock demonstrated in their foliage higher water use efficiency
(WUE) and osmotic adjustment and kept this parameter at high levels under drought
conditions, compared to plants crafted upon Carrizo citrange hybrid rootstock [58,63].
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Different relieving methods have been assessed to increase yield under salt stress
and water deficit conditions. First, wise control of irrigation and fertilizer applications
is considered essential to tackle this problem in a commercial orchard. Other horticul-
tural practices such as the use of orange varieties as interstocks, the use of hydrogels,
shading, treatments with persistent analogs of phytohormone abscisic acid (ABA), and
polyamines [93] improved citrus performance under drought and/or salt stress conditions,
as well. Various practices have dealt with the effect of increasing calcium or nitrates in
the nutritional solution as well as treatments in order to relieve salt stress. In the presence
of an adequate concentration of calcium (Ca2+), plants exclude Na+ more efficiently and
avoid their accumulation in cells [94]. It has been repeatedly shown that nitrate and other
nitrogen-derived compounds such as urea or ammonium have had positive effects on
the growth response of citrus [19]. Moreover, nitrate seems to have two separate effects
that can improve the performance of citrus seedlings under saline conditions. First, it has
been observed that nitrate supplementation stimulated photosynthesis and growth as
well as reduced leaf abscission. Second, the nitrogen-induced increase in leaf biomass
has resulted in chloride dilution, the critical factor for salt damage [95]. In addition, fo-
liar potassium nitrate application can improve the endurance of citrus seedlings to drought
conditions [93].

Using compost is one of the best ways to conserve irrigation water by retaining soil
moisture within the root zone. Apply two to four inches of compost under the plant canopy.
Compost can consist of pine needles, leaves, bark, wood chips, straw, or any other organic
materials. The compost should not directly contact the trunk and should be expanded as
the plant grows. A good cover of compost will help to control weeds under the tree canopy,
as well as reduce water evaporation. Trees that are enhanced with compost can be irrigated
less frequently than those that are not. Composting can also lower soil temperature, thus
allowing for better root growth, and will eventually decompose and add significant organic
matter to the soil [96,97].

Moreover, chemical priming has been suggested as a promising method in the field
of plant stress physiology and crop stress management. Plants are apparently capable of
causing stress “memory” or “stress imprinting” following a first stress exposure, which
leads to adjustment to later biotic or abiotic stress. Through priming (also known as
hardening), plants are able to trigger responses to a range of stresses, providing low-cost
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protection in relatively high-stress/pressure conditions [98]. Reactive oxygen species (ROS)
in the form of hydrogen peroxide (H2O2) and reactive nitrogen species (RNS) in the form
of nitric oxide (NO•) induce priming toward salinity and drought in citrus plants [89].
These chemical agents, also including sodium nitroprusside, sodium hydrosulfide, mela-
tonin, and polyamines, can potentially result in enhanced resistance in the field against
multiple abiotic stresses [29,99,100].

Furthermore, the use of biostimulants has become a common agricultural practice
by many farmers. The use of these compounds provides protective effects against abiotic
stress factors and contributes positively to overall plant growth [101]. These alleviating
effects are exerted via the orchestrated activity of plant hormones, proline, sugars, amino
acids, etc. whose production is stimulated by the applied biostimulant [102]. The recent
scientific data highlight that the usage of biostimulants facilitates citrus root development or
regulates the osmoregulatory mechanisms in plant cells [103]. Orange trees (Citrus sinensis
L.), when spayed with commercial extract of Ascophyllum nodosum, exerted improved water
relations and better water use efficiency (WUE) when irrigated with 50% restitution of
evapotranspired water [104]. The use of biostimulants is considered an agricultural practice
that could contribute positively to the alleviation of drought stress and increase WUE in
citrus crops, especially in drought-prone regions where citrus trees are agronomically
important but water resources are limited due to urban use and climate change [101].

A novel and promising agricultural practice is the use of compounds enriched with
plant-growth-promoting microbes (PGPM). The extended use of chemical fertilizers and
pesticides has caused a severe decline in soil quality, hence there is an urgent need to
establish and implement agricultural techniques that will sustain agricultural production.
Towards this goal, several novel products have been released that engulf the technology of
the application of plant-growth-promoting microbes (PGPM) along with mycorrhizal fungi
in the root system of the plant, enhancing plant growth and plant protection against abiotic
stress conditions [105]. Specifically, it has been reported that Arbuscular Mycorrhizal
induced water deficit tolerance of roots of Trifoliate orange by regulating polyamine
homeostasis [106], whereas in another study, drought stress conditions stimulated H+-
ATPase activity and PtAHA2 gene expression, resulting in nutrient uptake, increased root
growth, and lower soil pH microenvironment [107].

Apart from the above, the hydrogel polymer compound seems to be particularly
effective to be used as a soil conditioner in citriculture, increasing crop tolerance and
growth in drought conditions. Abobatta and Khalifa [108] highlight that medium or high
dose of hydrogel composite (1000 to 1500 g/tree) enhances total yield, fruit weight, and fruit
quality (fruit content of total soluble solids and total sugars). This may be due to the crucial
role of applied longtime hydrogels in increasing water availability and nutrients for citrus
trees. Additionally, research studies indicate that hydrogels may minimize the adverse
effects of salinity by reducing the levels of salt ions in citrus tissues [109,110]. Specifically,
hydrogel composite releases water and nutrient to the trees when the soil surrounding the
root zone starts to dry up. Hydrogel materials cause a reduction in irrigation amount as well
as intervals by 50%. In addition, it has been proved that hydrogels can increase soil’s water-
holding capacity up to four times, ensuring safe soil moisture levels as well as nutrients
under drought conditions. There are three forms of hydrogel composites containing
natural polymers (polysaccharide derivatives), semisynthetic polymers (cellulosic primitive
derivatives), and synthetic polymers. Synthetic polymers indicate higher stability under
different environmental conditions than shown by natural ones [111]. Table 2 highlights
in a strict matter all the above-mentioned practices and their role to alleviate salinity and
water stress in citrus
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Table 2. Summarizing the main agricultural practices to alleviate drought/salinity stress.

Agricultural Practice Alleviate Drought Stress Alleviate Salinity Stress Reference

Proper irrigation (amount and frequency) based on tree
age, tree species, climate, soil type, and/or
saline irrigation

P P [4,87]

Appropriate fertilizer applications (calcium or nitrates
in the nutritional solution) P P [94]

Foliar potassium nitrate application P NP [93]
Use of Cleopatra’s mandarin rootstock and
hybrids—orange varieties as interstocks P P [38,63,92]

Compost application P NP [96,97]
Chemical priming (use of sodium nitroprusside,
sodium hydrosulfide, melatonin, and polyamines) P NP [29,99,100]

The use of biostimulants P P [103,104]
Use of plant-growth-promoting microbes (arbuscular
mycorrhizal fungi) P P [107,109]

The use of hydrogels P P [111]

P: positive effect; NP: no positive effect.

5. Conclusions

In citriculture, water scarcity and salinity negatively affect plant growth and im-
pair cell metabolism, affecting the overall tree growth and the quality of produced fruit.
Relevant factors related to plant response to water deficit and salinity stress have been
identified in citrus plants. Under salinity stress, salt ions contribute significantly to osmotic
adjustment, so that leaf ion toxicity becomes the main problem. Moreover, resistance to salt
stress is mainly associated with the rootstock’s ability to exclude chloride. Physiological
and molecular approaches, recently supported with omics technologies, have identified
different stress resistance mechanisms in various citrus genotypes. A characteristic example
of adequate tolerance to salt and drought stress is Cleopatra mandarin citrus rootstocks.
High priority should be given to rootstocks that effectively combine stress avoidance and
tolerance mechanisms to optimize both plant production under adverse environmental
conditions and efficient crop recovery after stress. The recent advance of next-generation
sequencing tools and the implementation of omics-oriented technologies could contribute
towards the establishment of functional genomics and the in-depth exploration of the gene
code of the agricultural important citrus cultivars. Future work should focus upon the
in-depth exploration of the impact of optimal agricultural practices towards the alleviation
of abiotic stress factors via omic approaches, so as to understand the alleviation strategy
that is encoded in each citrus species. The fact that the application of a stress-tolerant
microbial consortium of PGPM strains, mycorrhizal fungi, biostimulant compounds, and
hydrogels enhances plant growth under abiotic stress conditions pinpoints them as key
factors that can solve future food security problems and also maintain soil fertility and
plant health.
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