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Abstract: Among abiotic stresses, drought is undoubtedly one of the most severe environmen-
tal factors for a wide range of major crops, leading to considerable yield and economic losses.
The adverse effects in crop yield reflect the result of a series of morphological and physiological
changes but also changes in signaling pathways, transcriptional and post-transcriptional regulation
of stress-responsive genes, and metabolic adaptations. Despite the exhausting studies elucidating
plants’ metabolic response to drought, there is a knowledge gap in the biochemical mechanisms
governing drought tolerance in lentil (Lens culinaris Medik.). The present study aimed to determine
the fluctuations of the metabolite profiles of lentil genotypes with contrasting drought tolerance
to discover possible biomarkers for screening tolerant genotypes at early growth stages. Lentil
seedlings were subjected to osmotic drought stress, induced by polyethylene glycol, at two stress
levels (2.5% and 5.0% PEG-6000) for a period of 20 days, while untreated plants were also included
as controls. GC/EI/MS-mediated metabolic profiling was employed to monitor changes in response
to osmotic drought stress. The data was subjected to OPLS-DA and OPLS-HCA for the discrimina-
tion between treatments and the discovery of trends and corresponding biomarkers. In total, the
analysis yielded 150 metabolite features with highly reproducible patterns, of which the vast majority
belonged to carbohydrates, carboxylic acids, and amino acids. Overall, findings highlight the differ-
ential accumulation of a series of compounds, and more importantly, the variable accumulation of
certain metabolites, namely D-fructose, α,α-trehalose, myo-inositol, and L-tryptophan, in the contrast-
ing genotypes, indicating that the adaptive metabolic responses to osmotic drought stress operate
under strong genotypic dependency in lentil. Research findings provide insights into various aspects
of lentil’s metabolism under drought and further offer the possibility of applying such knowledge
towards effectively screening for drought-tolerant lentil germplasm at early growth stages.

Keywords: biomarkers; osmotic drought stress; drought tolerance; GC/EI/MS; lentil; metabolic
profiling; biomarker-assisted breeding

1. Introduction

Plants constantly face a multitude of physical or chemical stress factors, collectively
referred to as abiotic stresses, which pose severe threats to agriculture and the ecosystem.
Among abiotic stresses, drought is one of the most important environmental factors for a
wide range of major crops, accounting for substantial crop yield and economic losses world-
wide [1]. The adverse effects on crop yield are the result of a series of morphological and
physiological changes, such as inhibition of growth, reduced photosynthesis and transpira-
tion rates, but also changes in signaling pathways, transcriptional and post-transcriptional
regulation of stress-responsive genes, and metabolic adaptations mainly involving the
accumulation of osmolytes or compatible solutes [1–6]. Osmolyte accumulation acts in
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favor of cell water uptake and cell turgor maintenance; stabilization of membranes, en-
zymes, and proteins; and protection against oxidative damage through reactive oxygen
species (ROS) scavenging, thereby contributing to redox balance [1,3]. Among metabolites
with osmoprotective functions under drought stress conditions, well known examples are
proline, trehalose, fructans, glycine betaine, and polyols.

Lentil (Lens culinaris Medik.) is an important pulse crop with a moderate adaptation
to drought-prone and marginal environments as its cultivation traditionally takes place in
arid and semi-arid areas under low-input conditions. Despite its ability to survive drought,
its growth and productivity are greatly impaired under water-deficit conditions, especially
when drought stress occurs during germination, flowering, and pod filling stages [7–10].
More importantly, drought effects are aggravated by a combination of different abiotic
stresses arising in lentil cultivation zones, as drought episodes are often interlinked with
high temperatures [11,12]. Stress-attributed effects are manifested as reduced leaf area,
total dry matter, flower production, number of pods and seeds, and increased flower drop
and aborted pods [13]. Minimization of yield and quality losses under drought conditions
primarily relies on the use of tolerant germplasm, therefore, placing the emphasis on
deciphering mechanisms involved in drought tolerance and applying such knowledge for
improving relevant traits.

Given that plants’ response to environmental stimuli may be different in the post-
genomic era, the interest has been placed on practically exploiting system biology ap-
proaches for crop tolerance improvement. Plant metabolomics has undoubtedly become an
indispensable system biology tool to gain in-depth understanding into complex biological
phenomena governing growth and development in the context of adaptive metabolic
responses to abiotic stress [14–18]. Understanding the global regulatory system involved
in drought stress response through changes at the metabolome provides the possibility
to pinpoint specific metabolites playing crucial roles in drought tolerance, which can be
employed as biomarkers for future application in breeding and biotechnology [6,19,20].
Especially in view of the bottlenecks arising from assessing the performance of a large
number of genotypes under water-deficient field environments, such biomarker-based
screening is increasingly gaining credibility as an alternative approach to equip crops with
drought tolerance. Despite the knowledge that has been acquired to date in a plethora of
plant species, there is a gap in the molecular mechanisms governing drought tolerance
in lentil, a crop whose narrow genetic base undoubtedly poses serious constraints to its
stress tolerance improvement. Indeed, very few functional genomics approaches have
been reported to investigate lentil responses to drought stress. In particular, metabolomics,
along with analysis of phenotypic traits, has been employed to investigate the drought
and salinity response of lentil genotypes at early growth stages and to pinpoint ornithine
and asparagine as stress-specific indicators for drought stress [21]. In addition, recent
studies determined the leaf transcriptional profile of contrasting lentil genotypes under
drought conditions and identified genes and pathways associated with drought responses
at the seedling stage [22,23]. Given the significant role of seedling growth in drought
tolerance [24–26] and our previous findings related to the phenotypic drought responses
of lentil germplasm [27], this study aimed at investigating the metabolic adjustments in
two contrasting genotypes under drought stress at the seedling stage. The objective was
to capture the genetic variation existing at early growth stages in order to identify the
influencing metabolites to be exploited as candidate biomarkers for drought tolerance.

2. Materials and Methods
2.1. Plant Material

A comparative analysis of lentil metabolism under osmotic drought stress conditions
was performed using two genotypes that were previously assessed as drought-tolerant
(DT) and drought-sensitive (DS), based on results from laboratory evaluation [27]. Specifi-
cally, cultivar Elpida, a purebred line conventionally bred at ELGO-Demeter, Institute of
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Industrial and Fodder Plants (Larisa, Greece), served as DT genotype, while the cultivar
Flip03-24L, an improved population imported from ICARDA, was used as DS genotype.

2.2. Osmotic Drought Stress Treatment and Experimental Design

The osmotic potential of the solution was decreased by polyethylene glycol (PEG-6000)
(Sigma-Aldrich Chemie GmbH, Steinheim, Germany), a macromolecule well known for
its ability to mimic drought stress [27–30]. To ensure constant aeration in roots, a hydro-
ponic system supplemented with aquarium pumps was established. Seeds were surface-
sterilized for 5 min in 20% sodium hypochlorite (EMPLURA, Merck KGaA, Darmstadt,
Germany)/H2O solution, supplemented with Tween-20 while gently mixing and washed
4× with sterile dH2O. Sterilized seeds were allowed to germinate in plastic trays containing
three different solutions: (i) sterile dH2O (control), (ii) 2.5% PEG-6000, and (iii) 5% PEG-6000.
Trays were regularly monitored for the level of containing solution and H2O was added in
order to retain PEG concentration at constant levels, when necessary. Plants were grown
under controlled conditions (25/18 ◦C day/night temperature and 16/8 h light cycle, LED
lighting with a Photosynthetic Photon Flux Density (PPFD) of 12 µmol m−2 s−1).

The experimental layout was that of a complete random design with four replications
for each genotype-stress level combination. Each experimental plot (plastic tray) consisted
of four rows and columns, of which the two middles were used to provide material for the
analyses. Sampling was performed on lentil plants subjected to osmotic drought stress
for a period of 20 days. Plants were dabbed on a filter paper to remove excess humidity.
Leaf samples were snap frozen in liquid nitrogen and stored at −80 ◦C. All samples were
collected at the same time. Each sample, considered as an independent biological replicate,
consisted of a bulk of 4 individual plants.

2.3. Metabolite Extraction, Derivatization, and GC-MS Analysis

Leaf sample preparation and metabolite extraction was performed based on previously
described protocols [31,32] with minor modifications. Briefly, leaves (50 mg) were pulver-
ized under liquid nitrogen and homogenized tissues were transferred to Eppendorf tubes.
Twenty µL of ribitol (20 mg mL−1 in methanol) (Sigma-Aldrich Ltd.; Steinheim, Germany)
were added as an internal standard. Samples were extracted in ethyl acetate-methanol
(50:50, v/v), under continuous agitation (200 rpm, 2 h, 24 ◦C) and filtered (0.2 µm PTFE fil-
ters). Finally, the extracts were dried using a vacuum concentrator (Labconco, Kansas City,
MO, USA). For the derivatization of the dried extracts, a two-step protocol was employed:
for methoxymation, the dried samples were resuspended in 80 µL methoxylamine-HCl
(20 mg mL−1 in pyridine) under gentle agitation for 120 min at 30 ◦C. Silylation followed
by adding 80 µL of N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA), and samples
were incubated at 37 ◦C for 90 min. Derivatized samples were transferred into autosampler
vials (2 mL) and kept at room temperature in the dark for 24 h prior to analyses.

For GC/EI/MS metabolomics analysis, an Agilent 6890 MS platform (Agilent Tech-
nologies Inc.; Santa Clara, CA, USA) coupled with a 7683 inert mass selective detector
(MSD) was employed. The analyzer was equipped with a HP-5MS column (30 m, i.d.
0.25 µm) and helium was used as the carrier gas (1 mL min−1). Samples (1 µL) were
injected with a split ratio of 1/10. The temperature program was initially 70 ◦C for 5 min,
followed by a 5 ◦C min−1 increase to 295 ◦C. Mass spectra were recorded at 4 scans s−1 in
the range 50–800 Da in positive electron ionization (70 eV).

For each genotype-stress level combination, 4 pooled samples were analyzed, each
consisting of 4 individual samples. To detect possible contamination from the reagents, the
experimental protocol, or the instrument, blank samples were analyzed following the same
extraction procedure.

2.4. Statistical Analysis

For GC/EI/MS data pre-processing, the software MSDIAL was used applying the
recommended settings for GC/EI/MS data analysis [33]. Metabolite features present in less
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than 50% among replications of the same treatment were excluded from further analyses
in order to strengthen data uniformity and validity. The obtained matrix was exported
to MS excel® and further examined for inconsistencies. Data matrices were subjected to
multivariate analyses using the SIMCA-P v.13.0 software (Umetrics, Sartorius Stedim Data
Analytics AB, Umeå, Sweden) [31,34–36].

The discrimination between treatments was based on orthogonal partial least squares-
discriminant analysis (OPLS-DA, p < 0.05) [37] and OPLS-hierarchical cluster analysis
(OPLS-HCA), while the discovery of biomarkers was based on values of scaled and centered
OPLS regression coefficients (p < 0.05). The performance of models was assessed by the
cumulative fraction of the total variation of the X’s that could be predicted by the extracted
components (Q2

cum) and the fraction of the sum of squares of all X’s (R2X) and Y’s (R2Y).
The Kyoto Encyclopedia of Genes and Genomes KEGG (http://www.genome.jp/kegg/,
accessed on 22 January 2020) database was utilized to mine metabolic pathways and
construct a metabolic map of significant metabolic compounds (coefficient values ≥ 2.5
and ≤−2.5). Additionally, heatmaps were constructed for the visualization of the data set,
thus enabling biological interpretation of results [38].

3. Results
3.1. Comparative Metabolic Response of Drought-Tolerant and Drought-Sensitive Genotypes under
Stress Conditions

Leaf metabolic profiles of two lentil genotypes, differing in terms of drought toler-
ance, were assessed under PEG-induced osmotic drought stress conditions at the early
seedling stage. Changes in metabolite accumulation were expressed as a relative response
ratio of controls versus stressed plants at the level of 2.5% and 5% PEG-6000. In total,
the GC/EI/MS analyses yielded 150 metabolic features that were highly reproducible
among biological replications (n = 4) per genotype-stress level combination. Represen-
tative GC/EI/MS total ion chromatograms (Lens culinaris Medik. (PMG-02-21)) can be
found at the repository of the Pesticide Metabolomics Group of the Agricultural University
of Athens (https://www.aua.gr/pesticide-metabolomicsgroup/Resources/default.html,
accessed on 3 February 2021). Among them, 99 were identified, either absolutely or puta-
tively, while 51 were not identified. The vast majority of the identified metabolites belonged
to the group of carbohydrates (49%), carboxylic acids (18%), amino acids (17%), and fatty
acids (5%), while a portion of them were classified in other chemical groups (11%), such
as phosphoric acids, alcohols, glycerol lipids, heterocyclic compounds, quinones, and
inorganic compounds (Figure 1).
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Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed a strong
discrimination between metabolic profiles of control and stressed plants (Figure 2a) but also
between Elpida and Flip03-24L, thus suggesting the differential response of contrasting
genotypes. As evidenced by the tight clustering among biological replications, the applied
experimental protocols confirmed their suitability in terms of robustness and reproducibil-
ity. Furthermore, OPLS-DA score plots performed for each genotype separately revealed a
strong discrimination among controls and plants subjected to 2.5% and 5% PEG, indicating
the substantial effect of osmotic drought stress on lentil metabolism (Figure 2b,c).
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GC/EI/MS metabolic profiles of lentil. (a) Control and stressed plants (2.5% and 5% PEG-6000) of Elpida (DT) and
Flip03-24L (DS); (b) control and stressed plants of Elpida; (c) control and stressed plants of Flip03-24L. The ellipse represents
the Hoteling’s T2 at 95.0% confidence interval. Four pooled samples were used for each genotype-stress level combination
(n = 4) and one quality control sample (QC) (Q2

(cum); cumulative fraction of the total variation of the X’s that can be predicted
by the extracted components, R2X and R2Y; the fraction of the sum of squares of all X’s and Y’s explained by the current
component, respectively. PCs; principal components).

Complementary to OPLS-DA, hierarchical cluster analysis (HCA) was performed to
cluster samples into groups and estimate the cluster distances (Figure 3). In accordance with
findings from OPLS-DA, the dendrogram revealed the separation between the analyzed
samples both at the level of genotype and stress treatment. The plot divides samples into
two groups: Group 1: Flip03-24L and Group 2: controls and Elpida, the latter being further
divided into two subgroups. The similarity that was observed between the controls of
Elpida and Flip03-24L was indicative of the significant effect of osmotic drought stress on
lentil metabolism.

3.2. Overview of Fluctuations of Lentil Metabolome in Response to Osmotic Drought Stress

In response to osmotic drought stress, lentil’s metabolism was substantially affected
in both tolerant and sensitive genotypes, as evidenced by the observed fluctuations in
the recorded content in metabolites belonging to various chemical groups. The largest
pool of compounds with altered metabolic content belong to the chemical groups of
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carbohydrates, carboxylic acids, and amino acids and are involved in carbohydrate and
amino acid metabolism, biosynthesis of secondary metabolites, glycolysis, and the TCA
cycle. Such findings are indicative of the fact that early seedlings directly respond to
osmotic drought stress by mounting metabolic responses that involve compounds with
divergent roles in primary and secondary metabolism. Most influential metabolites for the
observed separation between the metabolomes of control and stressed plants of Elpida and
Flip03-24L are listed in Table 1. The absolute values of metabolites reflect their contribution
to the observed discrimination [36].
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Table 1. Lentil’s response to osmotic drought stress at early growth stages based on the chemical groups of the most
influential metabolites. Metabolites marked with asterisk (*) denote the most substantial metabolic fluctuations based on
values of scaled and centered OPLS regression coefficient scores (CoeffCS) (≥2.5 and ≤−2.5). Negative values of coefficients
denote metabolites with higher relative concentration in stressed plants, whereas positive values denote compounds
with higher relative concentration in control plants (C; Control, 2.5% and 5.0% correspond to PEG-induced drought
stress treatments).

Chemical Group Metabolite Elpida (DT) Flip03-24L (DS)

C vs. 2.5% C vs. 5% C vs. 2.5% C vs. 5%

Carbohydrates

D-fructose 8.3 * 6.2 * −11.1 * −3.5 *
D-glucose −22.2 * −23.9 * −22.1 * −18.7 *
α,α-trehalose 28.4 * 24.2 * 0.7 −17 *
D-myo-inositol phosphate 1.4 2.7 * 0.6 0.8
glycerol −11.4 * −3.6 * −5.0 * −7.0 *
glycerol-3-phosphate 2 3.2 * 1.9 1.3
myo-inositol −2.3 −6.7 * 2.9 * 2.3
scyllitol −7.6 * 3.4 * −11.2 * −5.5 *
xylose −9.9 * −9.6 * −2.5 * −4.0 *

Carboxylic acids

2-ketoglutaric acid −7.3 * −9.6 * −5.8 * −4.8 *
citric acid −3.8 * −4.1 * −2.6 * −2.3
malonic acid −4.6 * 6.9 * −0.6 0.3
propanoic acid 2.5 * 2.1 1.7 0.4
succinic acid 2.2 3.9 * 1 1.1
fumaric acid −1.4 0.9 −3.3 * −1.9
malic acid −1.2 −1.1 −9.7 * −4.1 *
L-lactic acid −0.8 0.9 −3.1 * −1
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Table 1. Cont.

Chemical Group Metabolite Elpida (DT) Flip03-24L (DS)

C vs. 2.5% C vs. 5% C vs. 2.5% C vs. 5%

Amino acids

4-aminobutanoic acid −7.9 * −5.2 * −6.3 * −4.2 *
L-alanine −2.6 * −2.3 −1 −1.5
L-asparagine −16.8 * −22.9 * −7.6 * −6.0 *
L-aspartic acid −3.8 * −4.6 * −2.6 * −1.7
L-isoleucine −5.3 * −4.3 * −4.5 * −5.0 *
L-phenynalanine −1.2 −4.2 * −1.9 3.5 *
L-proline −9.9 * −7.0 * −7.4 * −8.1 *
L-serine −3.8 * −4.2 * −1.2 −1.1
L-tryptophan −1.1 −2.6 * 3.9 * 4.2 *
L-valine 3.9 * 4.6 * 4.5 * −2.3

Phosphoric acids phosphate 5.9 * 0.8 −2.8 * −3.5 *
phosphoric acid 1.6 −4.8 * −5.1 * −2.2

Fatty acids threonic acid −4.0 * −6.2 * −5.5 * −3.0 *

Alcohols ethylene glycol −4.1 * −4.2 * −3.7 * 0

Glycerolipids monostearin −1.7 1.9 2.2 2.5 *

Below, lentil’s metabolic response to osmotic drought stress is described on the basis
of the chemical groups of most influential metabolites (absolutely or putatively identified)
for the observed separation between the metabolomes of control and stressed plants of
Elpida and Flip03-24L.

3.2.1. Carbohydrates

The metabolic response of carbohydrates was strongly affected by osmotic drought
stress, as well as by the genotype. In total, 43 metabolic compounds were detected, of
which 15 were identified, while substantial changes were noted in the accumulation of
nine metabolites, namely D-fructose, D-glucose, α,α-trehalose, D-myo-inositol, phosphate,
glycerol, glycerol-3-phosphate, myo-inositol, scyllitol, and xylose (Table 1). More im-
portantly, D-fructose, α,α-trehalose, and D-myo-inositol showed opposite accumulation
patterns in Elpida and Flip03-24L. In particular, the accumulation of D-fructose showed a
substantial decrease in stressed plants of Elpida, while the respective plants of Flip03-24L
showed an increasing accumulation trend which was inversely analogous to the stress
level applied. Accordingly, the accumulation of α,α-trehalose was profoundly decreased
in stressed plants of Elpida (up to ~28-fold), while Flip03-24L showed a drastic increase
at 5% PEG (up to ~17-fold). Additionally, myo-inositol accumulated differently between
the two genotypes, with Elpida showing an increased content, especially at 5% PEG, and
Flip03-24L showing a decrease upon stress. A general cumulative metabolic response to
drought was also observed in D-glucose, glycerol, and xylose. Finally, D-myo-inositol
phosphate and glycerol-3-phosphate were decreased, with the decrease being significant
only in 5% PEG-stressed plants of Elpida.

3.2.2. Carboxylic Acids

In the chemical group of carboxylic acids, 17 metabolic compounds were absolutely
identified, while 8 were substantially altered upon stress: 2-ketoglutaric acid, citric acid,
malonic acid, propanoic acid, succinic acid, malic acid, fumaric acid, and L-lactic acid
(Table 1). A general increasing accumulation trend was observed in stressed plants, yet
in several cases genotypes differed in their response to osmotic drought stress. As such,
2-ketoglutaric acid, citric acid, and malic acid were increased in both genotypes, with
the former two being mostly increased in Elpida (up to ~10-fold) and the latter showing
a drastic increase in Flip03-24L (up to ~10-fold). Accordingly, fumaric acid and L-lactic
acid followed a general increasing trend upon stress, with the increase, however, being
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significant only in 2.5% PEG-stressed plants of Flip03-24L. Interestingly, the content of
malonic acid differed at the stress level, especially in Elpida, which showed an increase at
2.5% PEG and a decrease at 5% PEG. In contrast to the abovementioned cumulative patterns,
propanoic acid and succinic acid were decreased in stressed plants of both genotypes.

3.2.3. Amino Acids

The metabolic content of amino acids was drastically altered, exhibiting a general
increasing accumulation pattern upon osmotic drought stress. In total, 17 compounds were
detected, and substantial changes were noted in 10 metabolites, namely 4-aminobutanoic
acid (GABA), L-alanine, L-asparagine, L-aspartic acid, L-isoleucine, L-phenylalanine,
L-proline, L-serine, L-tryptophan, and L-valine (Table 1). Specifically, GABA, L-alanine,
L-asparagine, L-aspartic acid, L-isoleucine, L-phenylalanine, L-proline, and L-serine were
increased in stressed plants of both genotypes, with the exception of L-phenylalanine
which showed a decrease in 5% PEG-stressed plants of Flip03-24L. It is worth noting,
however, that L-asparagine showed a remarkable increase in Elpida (up to ~23-fold), which
was analogous to the stress level applied. Accordingly, profoundly increased was the
level of proline in Elpida (up to ~10-fold), with the increase being inversely proportional
to the stress level. An exception to such a consistent increasing trend was noted for
L-tryptophan and L-valine, which showed a differential response between genotypes. As
such, L-tryptophan showed an increase and decrease in Elpida and Flip03-24L, respectively,
with changes in both cases being analogous to the stress level. L-valine was decreased
in stressed plants of both genotypes, with the exception of Flip03-24L which showed an
increase that was not significant upon stress at 5% PEG.

3.2.4. Phosphoric Acids

In the group of phosphoric acids, drought-attributed fluctuations were noted in
phosphate and phosphoric acid, whose content was genotype-specific as evidenced by
the differential accumulation patterns of Elpida and Flip03-24L (Table 1). Specifically,
phosphate was decreased in Elpida, especially at 2.5% PEG, while in Flip03-24L followed a
trend of increasing accumulation as PEG increased. On the other hand, phosphoric acid
increased at 2.5% and 5% PEG-stressed plants of Elpida and Flip03-24L, respectively.

3.2.5. Other Chemical Groups

In the group of fatty acids, five compounds were absolutely identified, of which
only threonic acid was significantly altered due to osmotic drought stress. Specifically,
threonic acid was increased in stressed plants of both genotypes, with Elpida and Flip03-
24L showing a more profound increase at 5% and 2.5% PEG, respectively. Significantly
increased content was recorded for ethylene glycol in stressed plants of both genotypes,
with Flip03-24L showing its depletion at 5% PEG. Finally, monostearin, belonging to
the group of glycerolipids, was decreased in stressed plants of both genotypes, with the
exception of a slight increase that was noted in 2.5% PEG-stressed plants of Elpida (Table 1).

Metabolites whose relative concentration was substantially altered in response to
drought were analyzed by hierarchical clustering with heat map in order to visualize the
effects of drought in Elpida and Flip03-24L (Figure 4). The heatmap did not form major
clusters with a consistent pattern of metabolite accumulation, yet it depicts the differential
accumulation of specific metabolic compounds between contrasting genotypes. As such,
myo-inositol, L-tryptophan, D-fructose, and α,α-trehalose showed opposing accumulation
patterns in Elpida and Flip03-24L, thus suggesting their differential metabolic response to
osmotic drought stress.
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metabolites to reveal trends within genotypes and stress treatments. Negative values of coefficients denote metabolites
with higher relative concentration in stressed plants, whereas positive values denote compounds with higher relative
concentration in control plants (C; Control, 2.5% and 5.0% correspond to PEG-induced drought stress treatments).

3.3. Regulatory Metabolic Networks in Osmotic Drought Stress Responses of Lentil

In order to gain a global overview of the fluctuation of lentil’s metabolome in response
to osmotic drought stress, a metabolic network was constructed, highlighting perturbations
in selected pathways and sub-networks involved in drought responses. Its construction
was based on information retrieved from the KEGG database (Figure 5). Osmotic drought
stress substantially altered the recorded lentil metabolomes, with the most important
fluctuations observed for carbohydrates, carboxylic, and amino acids. The vast majority
of metabolites were upregulated in the stressed plants of both Elpida and Flip03-24L, yet
in several cases distinct accumulation patterns between genotypes were discovered. The
majority of metabolites involved in the TCA cycle were either increased or not affected
under stress conditions.
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Figure 5. Color-coded fluctuation of lentil’s metabolic network in response to PEG-induced osmotic drought stress.
Metabolic response of Elpida and Flip03-24L at 2.5% and 5% PEG-6000 is displayed, including portions of the carbohydrate
and amino acid metabolism, biosynthesis of secondary metabolites, glycolysis, and the TCA cycle, which were detected
as important components of lentil’s drought-response mechanism. For metabolic network construction, information was
retrieved by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Fluctuations in metabolite relative concentration
are coded using a color code based on the means of scaled and centered OPLS regression coefficients (CoeffCS) from
four biological replications and a quality control sample per treatment. From left to right, blocks refer to fluctuations in
metabolite relative concentration of Elpida at 2.5% and 5% PEG-6000 and Flip03-24L at 2.5% and 5% PEG-6000. Metabolites
with green arrows denote substantial increase, while those with red ones denote substantial decrease. Grey boxes denote no
substantial change under stress conditions (p < 0.05). Dashed lines symbolize multi-step or not fully elucidated reactions,
and solid lines refer to one-step reactions.

4. Discussion
4.1. Basic Aspects of Lentil Metabolism in Response to Osmotic Drought Stress

Over the past decade, “omics” technologies have facilitated the in-depth under-
standing of complex biological phenomena and provided further possibilities to upgrade
the efficiency of relative breeding and biotechnological applications. Among “omics,”
metabolomics play a central role as metabolites are more relevant to the plant phenotype
compared to DNAs, RNAs, or proteins [39]. As such, metabolomics has dramatically
contributed to our knowledge on the biological role of metabolic compounds, which reflect
the endpoint of biological activities, as well as their implication in biochemical mechanisms
regulating the stress adaptation responses [14–18]. The emphasis is placed on secondary
metabolites which differ widely across plant species as they are burdened with the role of
maintaining a delicate balance with the environment they live in [40,41]. In the context of
exploiting the knowledge from stress metabolic responses as a foundation for improving
abiotic stress tolerance, this study aimed to decipher the complex metabolic networks
governing drought tolerance in lentil. Metabolic profiling in two lentil genotypes with
contrasting ability to cope with drought stress was pursued as a means to gain insights into
the key metabolic pathways and to pinpoint candidate metabolic biomarkers for screening
drought tolerance at early growth stages. The contrasting drought response of Elpida
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and Flip03-24L was previously evidenced at the phenotypic level, with their differential
performance particularly pertaining to the seedling growth potential [27].

From a general view, osmotic drought stress disturbed the metabolome of both DT
and DS genotypes, as evidenced by the strong discrimination between metabolic profiles of
control and stressed plants. However, genotypes differed in their response to stress, thus
suggesting that mitigation to water deficit is subjected to distinct homeostasis mechanisms.
Such findings substantiate that the stress levels applied were appropriate both in terms
of revealing the drought-attributed fluctuations of lentil’s metabolome and capturing the
genetic variation in the contrasting for tolerance genotypes.

4.2. Fluctuations in the Content of Carbohydrates in Stressed Plants

The overall fluctuation in the levels of carbohydrates in stressed plants is indicative
of a general metabolic disturbance in response to osmotic drought stress. Carbohydrates
serve as energy reserves to be exploited in periods of high energy demands or limited
energy surpass [42] and are directly involved in the transcription, post-transcription, and
post-translation processes while acting as signal molecules [43–45]. Under adverse envi-
ronmental conditions, carbohydrates play a crucial role in plant adaptation [46,47], while
under conditions of mild stress they restrict growth in favor of photosynthetic activity [48].
The observed decreased levels of α,α-trehalose in stressed plants of Elpida and its in-
creased content in Flip03-24L probably reflects the high demands of the latter to cope with
drought stress. Indeed, a similar cumulative pattern in DS genotypes has been previously
reported in lentil upon drought and salinity stress and has been attributed to their greater
need to protect the cellular structures from osmotic damage [21]. It is well known that
under abiotic stress trehalose is upregulated, owing to its multi-level role ranging from
osmoprotection to inhibition of photo-oxidation and stabilization of the cell membrane
and proteins [34,49–52]. Particularly in response to drought stress, increased levels of
α,α-trehalose have been reported in leaves of various plant species potentially due to its
activity as a water trapping rather than a signal transduction molecule [53,54]. In this
line, overexpression of TPP, which catalyzes the final step of trehalose synthesis, enhances
abiotic stress tolerance in rice [55,56], while its exogenous application conferred drought
resistance in Brassica plants [57]. Accordingly, the increased level of D-glucose in stressed
plants of both genotypes further substantiates its essential role in adaptation and acclimati-
zation mechanisms under environmental changes [58], acting as an osmoprotectant and
contributor to maintenance of phospholipids in the liquid crystalline phase to prevent
structural changes in soluble proteins [59]. It has been further evidenced that drought stress
leads to distinct accumulation patterns of sugars, including sucrose, fructose, mannose,
and tagatose, in DT and DS wheat germplasm, with tolerance being generally correlated
with markedly increased levels [60].

4.3. Fluctuations in the Content of Carboxylic Acids in Stressed Plants

Carboxylic acids are versatile in their role in plant stress responses as they maintain
cellular functions by providing energy for diverse biological activities and precursors
involved in various biosynthetic pathways [61]. Organic acids balance the excess ions in
cells and act as regulators of cellular pH and osmotic potential [62,63], while under drought
stress conditions they enhance shoot tolerance by contributing to maintenance of cell
integrity, ROS scavenging, and osmotic adjustment [64–66]. In agreement with previous
reports on the accumulation of organic acids in response to drought stress probably due
to perturbations of the TCA cycle [67–69], the majority of identified carboxylic acids
increased in stressed plants of both cultivars. However, the metabolic profiles of Elpida and
Flip03-24L differed notably, with the former showing a marked increase in 2-ketoglutaric
acid, citric acid, and malonic acid and the latter exhibiting an increased content of malic acid.
Although upregulation of these compounds has been associated with drought tolerance in
various plant species [70–72], their relation to the drought response is not well elucidated
due to the complexity of the metabolic pathways.
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4.4. Fluctuations in the Content of Amino Acids in Stressed Plants

The increase in the amino acid pool of stressed plants of both genotypes is indicative of
their important role in stress adaptation responses, although the extent of such an increase
was significantly higher in Elpida than Flip03-24L. It is well established that exposure to
abiotic stress is interlinked with increased content of specific amino acids which contribute
to tolerance by acting as osmolytes, ROS scavengers, precursors for energy-associated
metabolites as well as regulatory and signaling molecules [73–80]. The accumulation of
amino acids under drought stress conditions is associated with the decreased water poten-
tial and has been reported in a plethora of plant species, including wheat [81], soybean [82],
rice [83], maize [84], bean [85], and chickpea [86], as well as at various growth stages, thus
highlighting their contribution to osmotic adjustment [87–89].

In this study, the pattern of stress-induced amino acid accumulation in Elpida substan-
tiates that the corresponding metabolic pathways may regulate drought tolerance in lentil.
The most profound increase was noted in the levels of proline and asparagine. Upregulation
of proline under stress conditions, particularly drought, has been extensively reported and
is attributed to its osmoprotective activity via mitigation of oxidative damages, protection
of membrane integrity [90,91], radical scavenging [92], and signal transduction [93]. The
observed upregulation of proline in leaves of Elpida and Flip03-24L is concomitant with
the suggestion that its accumulation is tissue-dependent, with its increased content being
mainly located in leaf tissues [94]. In this study, L-asparagine was pointed as a prominent
metabolite in lentil leaves under drought stress, which showed a genotype-dependent
accumulation in Elpida. Such findings agree with its hyper-accumulation in leaves of the
DT genotype in wheat and sesame [67,95] but are opposed to its specific increase in the DS
genotype in lentil [21]. L-asparagine plays an important role in the storage and transport
of nitrogen, owing to its high C/N ratio in many plant species [96], while in legumes
its increased accumulation relates to N2 stabilization [97] and up-take of nitrates under
drought conditions [96,98,99]. It has been further suggested that drought stress-induced
upregulation of asparagine in leaves allows its catabolism by asparaginase to supply ni-
trogen for the synthesis of other amino acids [100]. The metabolic response of amino
acids to osmotic drought stress in our study, marked with an increased accumulation of
asparagine and proline in Elpida, resembles the increased amino acid profiles of DT pearl
millet genotype, further reinforcing the suggestion that at early stress such amino acids
contribute to drought tolerance [101]. Finally, GABA showed a cumulative trend in stressed
plants of both genotypes, which is consistent with its proposed involvement in the chain
of events from perception of abiotic stress and signal transduction to timely adaptation
responses [102,103]. Although several studies demonstrated a rapid upregulation of GABA
in the occurrence of environmental stimuli, its precise role in stress mitigation still remains
not well elucidated [104].

4.5. Genotypic-Dependent Metabolic Response to Osmotic Drought Stress: Opportunities for
Biomarkers in Selection

Comparative leaf metabolite profiling of contrasting genotypes in relation to drought
tolerance is viewed as a well-suited model to unravel the metabolic networks governing
drought tolerance [105,106] and further provides possibilities of exploiting such knowledge
as a foundation for the design of biomarkers to be employed in metabolomics-assisted
breeding approaches [107–109]. Collectively, our analysis revealed a clear discrimination
between stressed and non-stressed plants as well as a genotype-specific adaptive metabolic
response. Such findings are further substantiated by recent reports related to the fact that
transcriptional regulation, signal transduction, and secondary metabolism under drought
stress exhibit strong genotypic dependency in lentil seedlings [22,23]. In this context, it
was evidenced that upregulation of genes involved in TCA cycle, oxidation-reduction
process, organ senescence, and reduction of stomatal conductance is more profound in DT
genotypes, while genes involved in transcription binding, GABA synthesis, synthesis of cell
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wall protein and negative regulation of absicisic acid show a more drastic downregulation
in DT than DS genotypes [22].

In our study, the genotype specificity was notably reflected by the opposite accumu-
lation trend of D-fructose, α,α-trehalose, myo-inositol, and L-tryptophan. Interestingly,
D-fructose and α,α-trehalose were substantially decreased in stressed plants of Elpida
and exhibited an opposite accumulation pattern in Flip03-24L. Although these findings
are opposed to the widely accepted role of soluble sugars as osmoregulation molecules,
by contributing to regulation of water potential, ROS scavenging, protein stabilization,
and cell membrane protection [89], they are in line with the genotype-dependent accu-
mulation of sugars in sorghum, with the DT and DS showing high content constitutively
and stress-induced accumulation, respectively [110]. Accordingly, the findings that up-
regulation of α,α-trehalose in DS genotypes compensates for their increased need for
protection against cell osmotic damage structures are relative [21], while upregulation of
fructose acts in favor of maintenance of photosynthesis and effective water management
during drought [49,71,111].

The genotype-specific accumulation of myo-inositol, whose content increased in Elp-
ida and decreased in Flip03-24L, is well fitted to the general upregulation of myo-inositol
in DT genotypes, as well as its drastic decrease in DS soybean genotype subjected to
drought stress at early growth stages [82]. Myo-inositol, concomitant with other cyclitols,
acts as a multifunctional compound, thus playing a crucial role in signal transduction,
stress response, cell wall formation, regulation of tissue growth, osmotic adjustment, and
membrane transport [112–115]. As such, it has been evidenced that exogenous applica-
tion as well as endogenous upregulation of myo-inositol, through ectopic expression of
MIPS (myo-inositol phosphate synthase), provides amenable routes to improved stress
adaptation responses [116,117]. Finally, the differential response between DT and DS
genotypes was reflected in L-tryptophan, which showed an increasing and decreasing
accumulation trend in Elpida and Flip03-24L, respectively. These observations are in line
with its increased content in DS lentil genotype [21], yet they are opposed to the general
hyper-accumulation trend of amino acids as a conserved biochemical process governing
plant stress responses [77]; the latter being partly attributed to inhibition of protein synthe-
sis and/or enhanced protein degradation as a result of stress-induced restriction of plant
growth. Despite the genotype-specific stress response of certain compounds, the regulation
of osmoprotectants, including amino acids and soluble sugars, is largely dependent on
growth stage. In this context, the findings that soybean seedlings subjected to drought stress
did not accumulate soluble sugars in the leaves of both DT and DS genotypes are relative,
indicating that their osmoprotective role may not be active at early growth stages [82].

The challenging goal of practically exploiting the knowledge from stress metabolic
responses in tolerance improvement routinely relies on identifying the pool of metabolites
that are subjected to environmental fluctuations and, in particular, those that are associated
with tolerance responses. In this context, it has been previously suggested that ornithine
and asparagine may be employed as markers of drought stress in lentil [21]. In our study,
the genotype-dependent accumulation of D-fructose, α,α-trehalose, myo-inositol, and
L-tryptophan provides the ground for their exploitation as candidate biomarkers for
incorporation into relative breeding and biotechnological approaches.

5. Conclusions

The analysis revealed an overall metabolic disturbance in lentil’s metabolome in
response to osmotic drought stress and further provided the possibility to pinpoint the
pool of most influential metabolites, as well as the pathways and metabolic networks
involved in drought responses. The metabolic response of contrasting genotypes was
marked by a genotype-specific accumulation of D-fructose, α,α-trehalose, myo-inositol,
and L-tryptophan, thus providing evidence for their crucial role in drought response and
their potential use as biomarkers for effectively selecting drought-tolerant germplasm. The
role of metabolomics in lentil crop improvement will be progressively strengthened as
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the robustness of biomarkers, as they become available, is validated. Such a prospect is
anticipated to significantly accelerate and upgrade the efficacy of selection procedures for
drought tolerance, and more importantly, to enable early selection of tolerant germplasm
to be directly released for cultivation or integrated into breeding programs as valuable
germplasm material.
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