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Abstract: This study compares simplified and advanced precision nitrogen (N) fertilization ap-
proaches for winter wheat relying on Sentinel-2 NDVI, grain yield maps, and protein content. Five N
fertilization treatments were compared: (1) a standard rate, calculated by a typical N balance (Flat-
N); (2) a variable rate calculated using a simplified linear model, adopting a proportional strategy
(NDVI directly related) (Var-N-dir); (3) a variable rate calculated using a simplified linear model,
adopting a compensative strategy (NDVI inversely related) (Var-N-inv); (4) a variable rate calculated
using the AgroSat model (Var-N-Agrosat); and (5) a variable rate calculated applying the Agricolus
model (Var-N-Agricolus). The study was carried out in four fields over two cropping seasons with a
randomized blocks design. Results indicate that the weather remains the main factor influencing
yield, as it typically happens in a rainfed crop. No substantial differences in crop yield were observed
among the N fertilization models within each year and experimental location. However, in the more
favorable season, the low-input direct model (Var-N-dir) resulted as the best choice, providing the
higher NUE (nitrogen use efficiency) value. In the less favorable season, results showed a better
performance of the advanced models (Var-N-Agricolus and Var-N-Agrosat), which limited yield
losses and reduced intra-field variability, with relevant importance given to the increasing frequency
of abnormal climate phenomena. In general, all these VRT approaches allowed reduction of the
excess of fertilizers, preservation of the environment, and saving money.

Keywords: Sentinel-2; precision agriculture; AgroSat; Agricolus; prescription map; variable-rate
technology; yield mapping; protein content; soil sampling; NUE

1. Introduction

Reducing inputs like irrigation water, fertilizers, pesticides, and herbicides, while
increasing the efficiency of their use, represents modern agriculture’s primary challenge
in terms of limiting environmental impact [1] and keeping pace with world population
growth [2]. This can be pursued by applying precision agriculture (PA) approaches [3],
which aim at providing the various inputs where they are necessary, at the correct rate
(limiting growth deficiencies, yield loss, surpluses, money loss, and pollution) and at the
right time (synchronizing application with crop needs).

On a field scale, PA measures require monitoring of the crop with remote sensing.
The European Space Agency (ESA)’s Sentinel-2 satellites, aimed at Earth observation and
monitoring land surface variability, can be a powerful tool to provide relevant information
in support of PA [4–7]. The Sentinel-2 satellites are equipped with multispectral sensors
(MSIs), including 13 spectral bands, with a spatial resolution ranging from 10 m to 60 m.
Images provided by Sentinel-2 satellites are publicly available for free through Copernicus
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Open Access Hub with 2–5 days average temporal resolution, which makes them very
helpful for PA applications [5,8]. However, persistent cloud cover may considerably reduce
the availability of these images.

Remote sensing of vegetation is mainly based on the green, red, red-edge, and near-
and mid-infrared regions of the spectrum. The corresponding satellite bands are often
combined with a range of algebraic formulas in order to obtain several vegetation indices
with which to assess various parameters of the crops, such as vegetation status and chloro-
phyll content [9–13]. The normalized difference vegetation index (NDVI), a normalized
difference between reflectance of red and near-infrared (NIR) spectral bands [14], is one of
the most used indicators worldwide related to soil cover, LAI (leaf area index), chlorophyll
content, and plant N-nutritional status [15–21]. The NDVI has been widely tested to assess
the N-nutritional status of wheat, with encouraging results [22–24]. Nitrogen (N) is one
of the main inputs for wheat cultivation [25]. Increasing the N rate in wheat generally
increases yield, since it increases the number and size of grains [26], but on the other hand,
it also reduces the N uptake efficiency, increasing the amount of residual N in the soil,
which is exposed to leaching risks [15,27–29].

Several studies are available on precision N fertilization approaches in wheat. Bourdin
et al. [30] proposed a complex model starting from LAI (estimated by remote sensing) and
yields from previous years; Basso et al. [31] used a crop simulation model (SALUS) based
on weather and yield data from previous years. Another approach, proposed by Diacono
et al. [32], consisted of assessing spatial variability in order to delineate management zones
overlapping various thematic spatial maps, such as yield and soil properties. In this context,
Song et al. [33] delineated management zones based on soil, yield data, and remote sensing
information derived from QuickBird imagery. However, most of these approaches are
quite complex, and as such are not widely adaptable without a support of a PA specialist.
Thus, various simplified approaches based on the NDVI have also been developed through
user-friendly web interfaces, e.g., CropSAT [34], AgroSat [35] (which is also adopted in the
present work), OneSoil [36], and others.

AgroSat is an open and free platform for precision agriculture applications in Italian
agricultural areas (cereals/pasture/horticulture), and is a Copernicus use case. Based
on the data–information–knowledge paradigm, it was created in 2017 by the National
Research Council, free of charge, in order to redistribute all of the data necessary for farmers
to adopt precision farming techniques. It is also used to redistribute a plethora of satellite
and modeling products resulting from research activities [37–40]. AgroSat is currently
based on Sentinel-2, MODIS, LSA SAF, open and private weather station networks, and
ERA-5 data. It is available in two versions: a completely open version that requires no user
input other than the field draw and access to satellite data and derived products, and a
version reserved for registered users who can enter information about the sown crop and
agronomic techniques. This latter version allows access to a growing number of products,
and enables the implementation of phenological models, water balance, and models for
some of the most relevant crop diseases. The concept is to acquire knowledge by sharing
data and information between scientists and farmers or technicians.

The Agricolus model, applied in the present work, uses remote sensing from Sentinel-2
satellites, yield data, weather, and soil information in order to define N fertilization doses.
The current version of the software includes two tools dedicated to creating prescription
maps: The first tool is a model for elaborating the crop’s nitrogen needs, based on [41].
This tool integrates user inputs related to soil and crop characteristics, data from weather
stations and climate data, and crop operation. The resulting nitrogen need is related to
the whole crop cycle, and is based on the balance between estimated nitrogen losses (e.g.,
crop uptake, denitrification, volatilization, leaching, etc.) and estimated N supplies (e.g.,
nitrogen from crop residuals, mineralization of the soil’s organic matter, rain, etc.). The
second tool is dedicated to the spatialization of the nitrogen needs. The user, in this tool,
can compare vigor, chlorophyll, and water stress indices calculated from the Sentinel-2
satellite data. An algorithm produces the homogeneous areas using distances from the
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mean value expressed as integers of standard deviations as a classification criterion per
pixel. The user should input the algorithm by selecting the appropriate index, the number
of homogeneous zones, and the distribution method. The selection of these inputs is
strongly dependent on the user’s experience and field-by-field evaluation.

The use of spreaders equipped with variable-rate technology (VRT) is one of the most
important aspects of precision agriculture technology, allowing the modification of the
distribution rate during the fertilization operation as needed, unlike traditional flat-rate
spreaders that often imply over- or under-application of fertilizers. VRT spreaders can be
map-based or proximal-sensor-based (on-the-go technology) [42], but the first approach is
the most used, because on-the-go sensors are usually either too expensive, insufficiently
accurate, or unavailable [43]. Several studies have investigated VRT technology’s accuracy
with encouraging results, reporting a very good match between the prescription map and
the as-applied map [6,44].

Another widely used PA technique is based on grain yield mapping systems. This
technology, useful for increasing knowledge about the spatial heterogeneity of yields,
is based on the recording of georeferenced yield data recorded using different sensors
mounted on the harvesters [45]: (1) harvest quantity measurement sensors (mass or vol-
ume); (2) GNSS sensors; (3) reference area measurement sensors (working width, speed,
time); and (4) data recording and processing units. Yield mapping systems are constantly
improving, but to date, their accuracy is influenced by many factors, which include flow
sensor calibration, combine speed changes, grain flow variations, grain moisture, and the
level of smoothing applied for mapping [46]. As a consequence, the outputs often require
post-processing correction [47].

While many studies combine vegetation indices (from various remote or proximal
sensors) and VRT crop fertilization, only a few integrate yield mapping sensors. Moreover,
to our knowledge, very few studies have combined vegetation indices, VRT fertilization,
and yield mapping in a PA case study designed explicitly for evaluating variable-N-rate
treatments on winter wheat. In this context, two preliminary studies reported data from a
two-year experiment aimed at comparing a standard rate calculated by a typical N balance
and two variable rates defined by simplified NDVI-based models, in order to define the
N rate to be supplied to winter wheat in the second application (i.e., in late winter, just
before shoot elongation) [48,49]. The authors admitted that the models used to define the
variable rates were very simplistic, and that more advanced approaches might have further
improved the efficiency of fertilization.

In this context, the present work follows up by adding two advanced NDVI-based
models, so that in four fields and two experimental years, a total of five approaches are
evaluated: a flat N fertilization rate, calculated by a typical N balance, and four variable
rates, derived from simplified and advanced approaches, all based on Sentinel-2 NDVI.
Variable approaches include both proportional (NDVI directly related) and compensative
strategies (NDVI inversely related). The overall aim is to compare all of these approaches
in terms of NDVI, NUE (nitrogen use efficiency), grain yield, and protein content, and to
identify the most responsive methods in the cultivation conditions of the experimental
fields.

2. Materials and Methods
2.1. Study Areas and Crop Management

The experiments were carried out over two consecutive cropping seasons (2018–2019
and 2019–2020) in four different fields located in Umbria, Italy (Figure 1). Two of the fields
belong to the Fondazione per l’Istruzione Agraria (Fia, i.e., Foundation for Agricultural
Education) of the University of Perugia, located near Deruta (Province of Perugia), in the
middle Tiber Valley, while the other two cropping fields belong to the Sodalizio San Martino
farm (Sod, i.e., Sodality of San Martino), located near Mugnano (Province of Perugia). All
relevant field data are reported in Table 1.
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Figure 1. Geographical location of the study areas and experimental fields (outlined in cyan).

Table 1. Location, coordinates, altimetry, extent, variety, sowing date, and previous crops of the
experimental fields, as well as second N application date.

Field Fia19 Fia20 Sod19 Sod20

Location Deruta (PG),
Italy

Deruta (PG),
Italy

Mugnano (PG),
Italy

Mugnano (PG),
Italy

Coordinates
(WGS84)

42◦95′37′ ′ N,
12◦38′91′ ′ E

42◦93′54′ ′ N,
12◦38′85′ ′ E

43◦04′57′ ′ N,
12◦21′74′ ′ E

43◦04′38′ ′ N,
12◦21′77′ ′ E

Altimetry 160 m ASL 158 m ASL 227 m ASL 227 m ASL
Extent (ha) 20 ha 20 ha 10 ha 9 ha

Previous Crop Maize
(Zea mais L.)

Maize
(Zea mais L.)

Sunflower
(Helianthus annuus L.)

Maize
(Zea mais L.)

Variety PR22R58 Oregrain Rebelde Bandera
Sowing Date 12 November 2018 6 December 2019 16 November 2018 7 January 2018

Second N
Application Date 25 March 2019 24 March 2020 18 March 2019 7 April 2020

The crops were managed according to ordinary practices; weeds and diseases were
controlled chemically. All of the precision on-field operations were performed using a
tractor equipped with a Topcon GNSS automatic guide device connected to the regional
real-time kinematic (RTK) network. The variable rate treatments were performed using
a VRT fertilizer spreader connected through ISOBUS (a widely used software protocol
compliant with ISO 11,783 standards) to a Topcon system console. Table 2 shows the main
characteristics of the winter wheat varieties used in the study.

Table 2. Wheat varieties used for the experimentation and their main characteristics, as provided by
the seed companies.

Variety PR22R58 [50] Oregrain [51] Rebelde [52] Bandera [53,54]

Classification Bread wheat Bread wheat Strength wheat Bread wheat
Ripening Cycle Medium–late Late Medium Early

Quantitative Yield Very high High High High
Etholithic Weight Medium Medium High High

Grain Protein Content Medium Medium–high Very high Medium
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2.2. Soil Data

All of the fields were plain and characterized by a soil gradient related to their proxim-
ity to streams (located to the east of Fia19 and Fia20, and to the west of Sod19 and Sod20).
Soil sampling, including 30 samples (0–40 cm depths) for each field, distributed according
to a rectangular grid (about 1 sample/0.7 hectares), was performed on 14 November 2018
for Fia19, and on 17 December 2019 for Fia20. Each sample was obtained by mixing three
bulks around the chosen point in order to improve the soil sampling reliability. The follow-
ing parameters were analyzed: sand, loam, clay, organic matter, total nitrogen, and soil
moisture. The particle size analysis was carried out following the modified pipette proce-
dure [55]; for organic matter determination, the Walkley–Black method was used [56]; for
N total determination, the Kjeldahl method [57] was used. Soil maps for clay and organic
matter were produced through a B-spline interpolation procedure developed in QGIS (a
free and open-source piece of geographic information system software [58]) version 3.10,
using the B-spline approximation tool available in the processing plugin. According to the
USDA soil classification [59], the soil of Fia19 is Fluventic Haplustepts, and belongs to the
textural group silty clay loam, with increasing sand content from the west side to the east
side. The soil of Fia20 is also Fluventic Haplustepts, but with a more heterogeneous texture
falling in three main classes: loam, clay loam, and silty clay loam, with increasing sand
content from the west side to the east side. Table 3 shows the main soil sampling statistics
for the Fia19 and Fia20 fields.

Table 3. Main soil sampling statistics for Fia19 and Fia20 fields.

Field Stats Moisture
%

Sand
g/Kg

Silt
g/Kg

Clay
g/Kg

OM
g/Kg

N tot
g/Kg

Fia19

avg 19.4% 16.7 51.4 31.9 1.82 1.25
st.dev. 1.38% 7.68 4.07 6.15 0.228 0.156

min 14.4% 5.3 39.2 24.6 1.41 0.95
max 22.0% 35.0 61.4 46.0 2.32 1.60

range 7.6% 29.7 22.2 21.4 0.91 0.65

Fia20

avg 19.8% 27.1 46.1 26.8 1.46 0.99
st.dev. 0.93% 8.91 6.22 4.37 0.203 0.088

min 18.5% 10.8 33.2 20.3 1.10 0.80
max 21.8% 46.0 57.1 35.0 2.19 1.20

range 3.2% 35.2 23.9 14.7 1.09 0.40

2.3. Weather

Being an inner region of the Italian peninsula, Umbria is characterized by a humid
subtropical climate (Cfa) according to Köppen–Geiger classification [60]. This region differs
from a typical Mediterranean area in having quite cold winters (frost may occur several
times between December and March) and high annual rainfall (700–800 mm), although
late spring and summer are often dry. The cropping season 2018–2019 was unusually mild
in winter and rainy in winter and spring (Figure 2a). Conversely, the cropping season
2019–2020 was very rainy in November, which caused the delay of sowing in both the
Fia and Sod fields, but then it was mild and very dry in winter and spring (Figure 2b).
Weather data was provided by the “FieldLab” of the Research Unit of Agronomy and Field
Crops—Department of Agricultural, Food, and Environmental Sciences of the University
of Perugia.
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2.4. VRT Fertilization Models, Rate Calculation, and Experimental Design

According to the usual practice, the total N rate, applied as urea, was split into three
applications in order to increase N uptake efficiency and limit the risk of N leaching. The
VRT fertilization was applied only for the second fertilization, at initial shoot elongation,
since it is widely reported in the literature that this is the application that is crucial for
crop growth and yield [61–63]; in fact, it often represents the greatest part of the total
rate. The first application, normally performed in order to promote tillering, is generally
small because the crop’s need is still low, and N would be more exposed to the risk of
leaching; the third application, not always scheduled, is also a tiny part of the total rate,
performed close to ear emergence and mainly aimed at increasing the grain protein content,
while it has little effect on yield. Hence, this research focused on the second N fertilization,
comparing the typical, flat N fertilization rate calculated by a typical N balance (Flat-N)
with four variable rates, derived from simplified (Var-N-dir, Var-N-inv) and advanced
approaches (Var-N-Agrosat, Var-N-Agricolus), all based on Sentinel-2 NDVI.

In Var-N-dir, the direct relationship between the NDVI and VRT N-rates was adopted
according to a proportional strategy, on the assumption that the higher the NDVI of the
crop before the second N fertilization (Feekes stages 7–8), the higher the ability of the crop
to valorize the N supply [16,23,64]. The ranges for N rates in the two years were defined
assuming a maximum reduction in yield of 30% in disadvantaged areas: therefore, the
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maximum N rate was associated with the maximum potential yield, achievable in the
portions of the field with maximum NDVI; the minimum rate was associated with the
minimum potential yield, revealed by the minimum NDVI value; all intermediate values
were defined by a linear model between the two rates, according to the NDVI gradient.

Concerning Var-N-inv, the inverse relationship between the NDVI and VRT N-rates
was adopted according to a compensative strategy, on the assumption that the lower the
NDVI of the crop before the second N fertilization (Feekes stages 7–8), the higher the
N need of the crop in order to recover the gap in growth so as to obtain the maximum
yield—whereas the crop with high NDVI is already well N-fed, and additional high N
supply would cause luxury consumption. The ranges for N rates in the two years were
defined by fixing a reduction of 30% of the maximum rate where the NDVI was maximum,
based on the evidence from a previous study in the same location [26]. Intermediate N rates
were defined by a linear model between the two rates, according to the NDVI gradient.

The Var-N-Agrosat treatment is based on the AgroSat model, which provides a nitro-
gen prescription map based on the user’s intentions in terms of nitrogen units to apply
to the crop and the % equivalent nitrogen content of the fertilizer. If the user is using the
tool without AgroSat registration or any information about the crop sown and sowing
date, the nitrogen prescription map tool calculates the prescription map based on the latest
available NDVI map for the user’s field; on the other hand, if the user is registered and
the crop and sowing date data are available, the tool calculates the nitrogen prescription
map considering the NDVI trend from the sowing date to the current analysis date. The
output is available at 10 m of spatial resolution, and can be reclassified in 2–3–4 classes. The
model behind this tool is an exponential function (NDVI vs. nitrogen rate) as a derivation
of a more complex model built with NDVI, NNI (nitrogen nutrition index), chlorophyll
red-edge index, and data acquired in the field (SPAD, Dualex), in the laboratory (leaf N
content), and from literature [38,65–69]. The main purpose of AgroSat is not to advise how
many units to apply (this is defined by the user), but how to redistribute them throughout
the field according to the dictates of precision agriculture. The aim is to homogenize the
quantity and quality of crop production. The average of the distribution is always less than
or equal to the value indicated by the user, while the variations within the field are limited
to a maximum of ±30% of the value indicated by the user.

The Var-N-Agricolus model strategy is based on the last available NDVI calculated
from Sentinel-2, and on the average N needs of the field calculated by the N balance model.
N provided to the field in the first and third fertilization interventions was subtracted from
the model results. Satellite indices and texture data (percentage of sand, silt, and clay)
resulting from soil analysis were compared, in both years, in order to spatialize the resulting
N rate. Since, in 2019, the water indices indicated no substantial influence on vigor, the
field variability in terms of vigor was attributable to a delay of emergence in some areas of
the field. The NDVI from different dates was compared in order to identify these areas;
then, the seasonal balance model was run, assuming that in the areas where the NDVI was
higher, a higher potential yield—and so a higher N uptake—would have occurred. In 2020,
the following observations were considered: (1) The spatial trend of the NDVI was inverse
to the spatial tends of NDMI (normalized difference moisture index) and TCARI/OSAVI
(chlorophyll index); and (2) in the areas where the NDVI was higher, the soil analysis
indicated a higher percentage of sand. In these areas, water stress and chlorophyll were
lower. These factors were contrasting, as sandy soils and low chlorophyll usually require a
higher N supply, while in the areas with high vigor and low water stress, low N supply is
usually enough. However, during the application of the N balance model, considering the
soil texture gradient, the higher N availability from organic matter mineralization induced
us to decrease the nitrogen dose slightly (±5% from the mean) in places where the NDVI
was higher.

The above-described treatments were combined in the four experimental fields during
the two years (Table 4). The number of treatments compared in the Fia and Sod fields was
constrained by the fields’ size and the unavailability of a combine equipped with a yield
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tracking system for the Sod fields. These constraints, as explained later, also influenced
the experimental units’ size, the number of replications of treatments in each field, and the
harvest methods.

Table 4. Abbreviations and descriptions of the experimental treatments and the fields on which they
were applied.

Treatment Description Fields

Flat-N Standard rate calculated by a typical N balance Fia, Sod

Var-N-dir

Variable rate calculated using a simplified linear
model, adopting a proportional strategy (NDVI

directly related). The maximum rate was equal to the
Flat-N rate.

Fia

Var-N-inv

Variable rate calculated using a simplified linear
model, adopting a compensative strategy (NDVI

inversely related). The maximum rate was equal to the
Flat-N rate.

Sod

Var-N-Agrosat
Variable rate calculated using the AgroSat model

based on a compensative strategy (NDVI inversely
related). The average rate was equal to the Flat-N rate

Fia, Sod

Var-N-Agricolus Variable rate calculated applying the Agricolus model Fia

The NDVI data used for the Var-N-dir strategy were based on Sentinel-2 L2A images
from 22 March 2019 for Fia19, and from 19 March 2020 for Fia20 (Figure 3). The NDVI
data used for the Var-N-inv strategy were based on Sentinel-2 L2A images from 2 March
2019 for Sod19, and from 19 March 2020 for Sod20 (Figure 3). All of these images were
cloud-free and the closest to the fertilizer treatments.

The total N rates based on the N balance used for the Flat-N thesis were 180 kg ha−1

for Fia19, 190 kg ha−1 for Fia20, 170 kg ha−1 for Sod19, and 160 kg ha−1 for Sod20. Table 5
reports the amounts supplied in the second N application based on the different above-
described approaches.

Table 5. Main statistics of fertilization treatment doses (2nd application) for all experimental fields.

Kg N
ha−1

Fia19 Fia20

Flat-
N

Var-N-
dir

Var-N-
Agrosat

Var-N-
Agricolus Flat-N Var-N-

dir
Var-N-

Agrosat
Var-N-

Agricolus

Avg 120.0 95.2 117.8 107.2 110.0 76.6 110.1 84.3
Min 120.0 80.0 100.0 80.0 110.0 50.0 87.4 80.7
Max 120.0 120.0 134.0 118.0 110.0 104.9 124.4 87.3

St. Dev. 0.0 12.5 12.1 9.9 0.0 17.7 11.8 2.0

Kg N
ha−1

Sod19 Sod20

Flat-N Var-N-
Agrosat

Var-N-
inv Flat-N Var-N-

Agrosat
Var-N-

inv
Avg 99.8 101.6 78.5 90.0 90.0 61.4
Min 99.8 88.3 50.0 90.0 80.4 40.0
Max 99.8 114.1 100.0 90.0 107.0 85.1

St. Dev. 0.0 7.5 13.2 0.0 8.2 13.7
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Figure 3. Prescription maps (left) and NDVI calculated before the second fertilization (right) maps
for Fia19, Fia20, Sod19, and Sod20 (top to bottom). The numbers on the plots indicate the different
experimental treatments: Flat-N (1); Var-N-Inv (2); Var-N-Dir (3); Var-N-Agrosat (4); and Var-N-
Agricolus (5). The fields’ outer borders are plotted in cyan.

The fields were divided into several plots (our experimental units) in order to ex-
clude the effects of unknown or unmeasured factors, and the treatments were laid down
according to a randomized block design. Fia19 was divided into 52 plots of about 2400 m2

each (60 m long, 40 m wide), and the 4 treatments were replicated in 13 blocks. Fia20
was divided into 60 plots of about 2800 m2 each (70 m long, 40 m wide), and the 4 treat-
ments were replicated in 15 blocks. Sod19 was divided into 12 plots of about 4400 m2



Agronomy 2021, 11, 1156 10 of 21

each (110 m long, 40 m wide), and the 3 treatments were replicated in 4 blocks. Sod20
was divided into 18 plots of about 4320 m2 each (120 m long, 36 m wide), and the 3 treat-
ments were replicated in 6 blocks. For both Sod19 and Sod20, given the experimental
units’ size, the VRT treatments were variated within the units following a subgrid of about
20 × 20 m. In general, the experimental units’ size and the relatively low speed of the
tractor (about 10 km/h) during the operation limited the uncertainty related to the VRT
spreader’s possible delays occurring while changing the N doses. The prescription maps
used for the second fertilization, containing the experimental units and the associated N
doses expressed as urea (Kg/ha), were built in QGIS, in shapefile format, composing the
outputs from the above-described approaches (Figure 3). The shapefile was uploaded on
the Topcon console before executing the second N application (Table 1).

2.5. NDVI Seasonal Trend

All of the level-2A Sentinel-2 images with no cloud cover on the study areas were
collected from the second fertilization to the harvest, in order to monitor and compare the
NDVI of experimental treatments (15 images for Fia19, 16 images for Fia20, 13 for Sod19,
19 for Sod20). Average NDVI values were calculated for each experimental unit using the
SAGA “raster statistics for polygons” tool included in the QGIS processing framework.
This tool allows the user to calculate statistics about raster cell values contained in zones
defined by a vector layer of polygons.

Another analysis was performed by classifying plots according to three classes, de-
fined by dividing the NDVI range revealed by the S2 image acquired before the second
fertilization into three equal parts. In addition, total nitrogen distribution and yield data
were retrieved and compared for each of these groupings.

A final Pearson correlation analysis between the NDVI data and the soil variables (for
Fia fields) and yield variables (for Fia and Sod fields) was developed in order to explore
the possibility of predicting these variables using this vegetation index.

2.6. Grain Yield

For Fia19, the harvest was carried out on 12 and 14 July 2019, and for Fia20 on 9
July 2020, using a Claas Lexion 630 combine harvester equipped with an automatic guide
device connected to the regional RTK network and a Topcon YieldTrakk system (based on
grain mass flow and moisture sensors). After the input of the specific grain weight by the
operator, the system produced a georeferenced yield map for the whole field as an ESRI
polygon shapefile. The resulting polygons’ size depends on the feed rate, the collected
mass, and the cutter bar’s working width (in this case, 7 m). The system also corrects the
base width of the polygons when the combine passes over already collected field portions.

A data cleaning technique was applied to yield data according to the following steps:
(1) all values outside the general average ± 2.5 * standard deviation range were eliminated,
statistically considered outliers [70]; (2) all values collected close to the drainage system
were eliminated—this is because the system in those areas records the entire cutter bar as
operational, while the portion above the drainage system does not collect anything; and (3)
all values falling in the 10 m portion before and after the experimental units’ transitions
were eliminated, in order to avoid the values of one experimental unit being counted in
the adjacent one due to the delay time. The delay time of the yield tracking system is the
time required for the harvested grain to reach the reading sensor positioned on the hopper.
This parameter is necessary in order to associate the harvested product with the correct
geographical position instead of the position in which the combine is when the product
reaches the reading sensor. The system sets the default delay time to 9 seconds, but the
actual delay time between harvesting and reading depends on many factors, including
threshing rotation speed, crop density, the state of maturation, and the moisture content of
the wheat [71]. The resulting cleaned data were intersected with the experimental units
in order to calculate the average yield expressed in Mg ha−1, which was used for the
comparative analysis between treatments.
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For the Sod fields, the harvest, carried out on 8 July 2019 and 23 July 2020, was
performed by collecting and weighing each experimental unit’s yield. Although very time-
consuming, this procedure provided very accurate yield data for each experimental unit
and treatment. For Sod19, the experimental unit “1” (Var-N-Dir) was successively excluded
from the experiment due to water stagnation located in that area, which compromised the
normal comparison conditions.

2.7. Protein Content

For all fields, grain sampling was performed a few days before harvest in order to
determine the grain protein content (Fia19: 27 June 2019; Fia20: 9 July 2020; Sod19: 26 June
2019; Sod20: 10 July 2020). For Fia19 and Fia20, a sample from each experimental unit was
collected, for a total of 52 samples and 60 samples, respectively. For Sod19, 2 samples per
experimental unit were collected (considering their wider area), for a total of 24 samples,
while for Sod20, a sample per experimental unit was collected, for a total of 18 samples.
Each sample was made up of four elementary subsamples randomly taken in the plot. All
samples were analyzed according to the official Kjeldahl method [57].

2.8. Statistical Analysis

The inferential statistical analysis in this study was conducted separately for the
four fields, considering them as independent experiments. All analyses were conducted
considering the mean values of the variables calculated for each experimental unit. The
analysis of variance (ANOVA) and Tukey’s HSD test (0.05 level of significance) were
performed for the main variables in order to test the significance of differences between
the treatments within each field. Pearson correlation was carried out in order to test the
correlation between selected variables. All of the statistical analysis was performed using
the statistics software R [72] (Version 4.0.3) and the “agricolae” package [73] (Version 1.3.3).

3. Results

The seasonal trend of crop NDVI variation for all treatments in each of the four fields
is reported in Figure 4. Differences among treatments in NDVI values (average at field
scale) were practically null in Fia fields and little in Sod fields, despite the N supplied by
the second N application differing by up to three rates of kg N ha−1 (Table 5). Instead, the
interannual difference was macroscopic in terms of within-crop-season trends and peak
values.
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Figure 4. NDVI seasonal trends of the five treatments in the four experimental fields.

As far as grain yield is concerned, differences were always very little and never
significant (p-value > 0.10) (Table 6, Figure 5). Consequently, based on the N supplied
by the second N application, the NUE (nitrogen use efficiency—derived from the ratio
between kg of harvested grain and kg of nitrogen input) was higher the lower the N
supplied. Var-N-inv and Var-N-dir showed the highest NUE (p-value < 0.05), followed by
Var-N-Agricolus and then by Flat-N and Var-N-Agrosat, which did not differ substantially.
The high variability in Var-N-Agricolus for Fia19 accounted for the lack of significant
differences between Var-N-Agrosat and Flat-N. No significant differences were recorded
for protein content, whose range for all treatments within the same field was in the order
of 0.5% or less.

Table 6. Resume data of all treatments for each field. Average and St. Dev. N rates refer only to the
second fertilization. a–c: homogenous grouping of means based on Tukey’s HSD post-hoc test (the
test was carried out separately for each field).

Field Treatment
Average
N Rate

(Kg ha−1)

St. Dev.
N Rate

(Kg ha−1)

Average
Yield

(Mg ha−1)

St. Dev.
Yield

(Mg ha−1)

Average
Protein
Content

(%)

St. Dev.
Protein
Content

(%)

NUE
Yield
(Kg

Yield/Kg
N Rate)

Fia19

Flat-N 120 0 9.45 0.19 12.29 0.47 79.38 b

Var-N-dir 95.2 12.5 9.52 0.19 12.01 0.50 96.16 a

Var-N-Agrosat 117.8 12.1 9.43 0.25 12.26 0.36 80.70 b

Var-N-Agricolus 107.2 9.9 9.42 0.18 12.15 0.56 86.67 b

Fia20

Flat-N 110 0.0 6.35 0.42 10.94 0.54 58.19 c

Var-N-dir 76.6 17.7 6.21 0.44 10.62 0.58 81.56 a

Var-N-Agrosat 110.1 11.8 6.44 0.37 10.90 0.44 58.88 c

Var-N-Agricolus 84.3 2 6.27 0.38 10.72 0.54 75.11 b

Sod19
Flat-N 100 0 8.41 0.29 13.88 0.42 84.2 b

Var-N-inv 76.7 6.4 8.18 0.16 13.52 1 103.50 a

Var-N-Agrosat 101 7.7 8.33 0.21 14.18 0.46 82.54 b

Sod20
Flat-N 90 0 4.93 0.41 12.66 0.74 54.79 b

Var-N-inv 61.4 13.2 4.55 0.54 12.5 0.88 77.40 a

Var-N-Agrosat 90 8.5 4.91 0.43 12.9 0.31 54.99 b
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Figure 5. Top, from left to right: Fia19 and Fia20 yield maps used for quantitative analysis; bottom,
from left to right: Sod19 and Sod20 yield quantities measured in each experimental unit. The numbers
on the plots indicate the different experimental treatments: Flat-N (1); Var-N-Inv (2); Var-N-Dir (3);
Var-N-Agrosat (4); and Var-N-Agricolus (5).

For Fia19, the NDVI time series analysis was performed by classifying plots according
to three NDVI classes (NDVI ≤ 0.70; 0.70 < NDVI ≤ 0.77; NDVI > 0.77), as revealed by
the S2 image from 22 March 2019 (Table 7, Figure 6). For Fia20, the NDVI time series
analysis was performed by classifying plots according to three NDVI classes (NDVI ≤ 0.40;
0.40 < NDVI≤ 0.44; NDVI > 0.44), as revealed by the S2 image from 19 March 2020 (Table 7,
Figure 6). The differences in terms of yield were not significant in either field, while for
the Fia20 field, the May 23 NDVI values of Var-N-Agricolus and Var-N-Agrosat were
significantly different from Var-N-dir, but not from Flat-N.
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Table 7. Second N fertilization rates and grain yield, considering the three vigor classes as identified
in the S2 image from 22 March 2019 for the Fia19 field, and the S2 image from 19 March 2020 for the
Fia20 field.

Treatment Class
Fia19 Fia20

KgN ha−1 Yield Mg ha−1 KgN ha−1 Yield Mg ha−1

Flat-N
I 122 9.5 111 6.2
II 117 9.5 110 6.4
III 118 9.4 110 6.4

Var-N-dir
I 85 9.7 50 5.8
II 95 9.5 71 6.2
III 110 9.5 97 6.4

Var-N-Agrosat
I 130 9.3 124 6.4
II 122 9.5 114 6.5
III 110 9.4 101 6.3

Var-N-Agricolus
I 97 9.5 87 6.6
II 115 9.2 85 6.2
III 110 9.4 82 6.5
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Figure 6. NDVI time series analysis, considering the three vigor classes (Class I: red lines; Class II:
yellow lines; Class III: green lines) as identified in the S2 image from 22 March 2019 for Fia19 (top),
and from 19 March 2020 for Fia20 (bottom).
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Correlation Analysis between NDVI, Yield, and Soil Data

The results of the Pearson correlation analysis between the NDVI data and soil vari-
ables (for Fia fields) and yield variables (for Fia and Sod fields) are reported in Tables 8–11.
The correlations are based on the mean values from the individual plots.

Our results indicate relevant correlations only in few cases. For Fia20, the NDVI
showed a high correlation with the yield between the last weeks of May and 1 June.
Moreover, other fields showed an increase in correlation during the same period, which
dropped quickly after that—except for Fia19, which showed a shifted peak towards mid-
June.

Table 8. Pearson correlation analysis and significance levels (. = 0.10; * = 0.05; ** = 0.01; *** = 0.001)
between NDVI, grain yield, protein content, and soil parameters for the Fia19 field.

Fia19 Grain Protein
Content

Grain
Yield

Soil Clay
Content

Soil OM
Content

Soil Total
N Content

Grain Yield −0.37 **
Soil Clay Content 0.36 ** −0.56 ***
Soil OM Content 0.48 *** −0.51 *** 0.90 ***

Soil Total N Content 0.47 *** −0.49 *** 0.92 *** 0.98 ***
NDVI March 22 0.50 *** −0.25 . 0.49 *** 0.65 *** 0.68 ***
NDVI March 25 0.53 *** −0.28 * 0.55 *** 0.69 *** 0.73 ***
NDVI March 30 0.54 *** −0.30 * 0.54 *** 0.68 *** 0.72 ***
NDVI April 16 0.37 ** 0.02 −0.02 0.11 0.20
NDVI May 16 0.26 0.06 −0.18 −0.07 0.03
NDVI May 24 0.38 ** −0.04 0.04 0.13 0.22
NDVI June 3 0.44 ** −0.04 0.05 0.18 0.26 .
NDVI June 5 0.27 . 0.12 −0.23 −0.10 0.00

NDVI June 13 0.23 0.24 . −0.45 *** −0.25 . −0.22
NDVI June 18 0.05 0.35 * −0.68 *** −0.53 *** −0.50 ***
NDVI June 20 −0.01 0.36 ** −0.74 *** −0.59 *** −0.58 ***
NDVI June 25 0.18 0.17 −0.52 *** −0.38 ** −0.33 *
NDVI June 28 0.18 0.15 −0.49 *** −0.35 * −0.29 *
NDVI June 30 0.23 0.10 −0.38 ** −0.28 * −0.20
NDVI July 3 0.22 0.09 −0.38 ** −0.27 . −0.19

Table 9. Pearson correlation analysis and significance levels (. = 0.10; * = 0.05; ** = 0.01) between
NDVI, grain yield, and protein content for the Sod19 field.

Sod19 Grain Protein Content Grain Yield

Grain Yield 0.30
NDVI March 2 0.17 0.25
NDVI March 5 0.56 . 0.44

NDVI March 12 0.39 0.35
NDVI March 22 0.56 . 0.47
NDVI March 30 0.66 * 0.30
NDVI April 19 0.66 * 0.31
NDVI May 16 0.51 0.24
NDVI May 24 0.12 0.43
NDVI June 5 0.72 * 0.13

NDVI June 13 0.75 ** 0.30
NDVI June 18 0.81 ** 0.14
NDVI June 20 0.78 ** 0.09
NDVI June 25 0.68 * −0.07
NDVI June 28 0.48 −0.18
NDVI June 30 0.52 −0.19
NDVI July 3 0.24 −0.32
NDVI July 5 0.31 −0.29
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Table 10. Pearson correlation analysis and significance levels (. = 0.10; * = 0.05; ** = 0.01; *** = 0.001)
between NDVI, grain yield, protein content, and soil parameters for the Fia20 field.

Fia20 Grain Protein
Content

Grain
Yield

Soil Clay
Content

Soil OM
Content

Soil Total
N Content

Grain Yield 0.47 ***
Soil Clay Content 0.02 −0.13
Soil OM Content −0.08 −0.32 * 0.46 ***

Soil Total N Content −0.11 −0.26 * 0.72 *** 0.85 ***
NDVI March 19 0.29 * 0.17 −0.34 ** −0.21 −0.41 **
NDVI March 9 0.22 . 0.10 −0.13 −0.03 −0.17
NDVI April 3 0.32 * 0.13 0.14 0.14 0.06
NDVI April 5 0.31 * 0.21 0.09 0.08 0.00
NDVI April 8 0.32 * 0.17 0.31 * 0.25 . 0.23 .
NDVI April 10 0.29 * 0.24 . 0.37 ** 0.25 . 0.26 *
NDVI April 15 0.30 * 0.31 * 0.52 *** 0.35 ** 0.42 ***
NDVI April 23 0.43 *** 0.57 *** 0.43 *** 0.20 0.27 *
NDVI May 23 0.54 *** 0.80 *** −0.06 −0.25 . −0.29 *
NDVI May 25 0.47 *** 0.79 *** −0.03 −0.28 * −0.28 *
NDVI June 2 0.42 *** 0.83 *** −0.14 −0.35 ** −0.36 **

NDVI June 22 0.45 *** 0.60 *** 0.46 *** 0.06 0.23 .

Table 11. Pearson correlation analysis and significance levels between NDVI, grain yield, and protein
content for the Sod20 field (. = 0.10).

Sod20 Grain Protein Content Grain Yield

Grain Yield −0.05
NDVI March 19 −0.37 0.25
NDVI April 23 −0.24 0.15
NDVI May 8 −0.41 . 0.30
NDVI May 25 −0.34 0.39
NDVI June 2 −0.21 0.29
NDVI June 9 0.15 0.16

NDVI June 12 0.27 0.13
NDVI June 22 0.34 0.00

Concerning grain protein content, for the 2018/19 season, there seems to be a correla-
tion peak for both fields in the period around the end of March, and a subsequent second
peak, with Fia19 reaching a correlation of 0.4 in early June and Sod19 reaching a peak of 0.8
between the second and third weeks of June. Fia20 shows its peak towards the last week
of May, with a high average correlation with the NDVI of the whole season, while Sod20
starts out having a negative correlation for the whole first part of the season, becoming
positive from June onwards.

For Fia19 and Fia20, a Pearson correlation index between grain yield and the soil pa-
rameters (clay, organic matter, and total nitrogen content) was also explored. A significative
inverse correlation between yield and organic matter was found in the Fia19field.

4. Discussion

Our results show a substantial difference at the field scale, mainly linked to the
different climatic conditions in the two cropping years, with respect to the effects of the
different fertilization approaches. Our results show that a “Var” approach with a lower
overall N rate (Var-N-inv, Var-N-dir, Var-N-Agricolus) gave the same grain yield with
lower N input in all fields (Table 6). In fact, the NUE calculated with respect to the grain
yield was significantly (p-value < 0.05) higher compared to Flat-N, Var-N-Agrosat, and
Var-N-Agricolus in all cases. This result is consistent with the work of Raun et al. [74],
who reported that the VRT method improved the NUE (nitrogen use efficiency) by 15%
compared to a flat rate. The results are also consistent with the work of Vizzari et al. [6],
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who reported no decrease in grain yield using “Var” approaches while reducing the rate by
about 20 kg N ha−1. This evidence is economically and environmentally relevant, since the
surplus N would involve luxury consumption or leaching risks, depending on whether or
not it would be absorbed by the wheat’s roots. Thanks to the optimal climatic conditions of
the 2018–2019 cropping season, it is evident that even the most conservative approach in
terms of nitrogen intake worked in saturation conditions anyway. Moreover, an increase
in grain quality may not be advocated to justify the N surplus, since the increase in the
grain protein content of the flat-N and Var-N-Agrosat treatments was negligible and never
significant.

The lack of relevant average differences in grain yield among treatments is in line with
the NDVI values recorded after the second N application, since the differences in NDVI
between treatments were either null (2019) or tiny and non-critical (2020). This occurrence
may happen, especially for high NDVI values [26], when other variables aside from N
nutritional status come into play, such as the soil’s hydrological properties [31,75] or the
rainfall regime.

In this regard, both experimental years were abnormal. The first was exceptionally
rainy, and the second exceptionally dry, which masked the N treatments’ effect. Thus,
for example, the negative correlation found between grain yield and the clay and organic
matter content of the soil in the 2018–2019 season was likely independent of the soil’s
nutrient content, being more likely due to soil water saturation caused by the abundant
rainfall. On the other hand, in the 2019–2020 season, the rainfall in winter and spring
was so scarce that the wheat growth (after shoot elongation) and the grain filling were
limited by water rather than N availability. The small gradient in clay content could
not have counteracted the severe water deficiency. Interestingly, in this year, both the
grain protein content and the yield were lower than in the previous year. This result was
unexpected since, normally, when the crop is well N-fed (as it was in our case), biomass
production is inversely correlated to the concentration of N compounds—including protein
production [76]. In this regard, we can only speculate that the very low water availability
of 2020 somehow impaired N absorption or relocation to grains [77].

Regarding the correlation between yield and NDVI (Tables 8 and 9), the strong cor-
relation observed in the Fia20 field could be related to the unfavorable season, which
did not cause typical NDVI saturation. Consequently, the intra-field heterogeneity was
indicative of the crop’s phenological growth and the LAI, which was reflected in the final
yield. Sod19 and Sod20 showed correlation peaks in the same period as Fia20, but with a
lower Pearson value of around 0.4. This can be explained by the fact that the experimental
units in these fields were very large compared to the NDVI gradient, and with a higher
yield data resolution, the correlation would likely have been stronger. These results are
in line with the literature, where the existence of a correlation between NDVI and yield
is widely reported [22,37,78]. Fia19 showed a low correlation between NDVI and grain
yield, in contrast to other fields and most of the relevant literature. This result could be
explained by the optimal conditions of the season 2018–19 having translated into high crop
vigor, resulting in a low intra-field variability and, above all, a saturation of the NDVI, no
longer able to detect the differences in vigor above a certain threshold. This flattening of
the variability could result in the low correlation found with the yield data.

Regarding the correlations between protein content and NDVI (Tables 10 and 11),
although in this case the correlations are on average high for all fields, it is difficult to find
a causality that explains these data, starting with the Sod20 field which, in contrast to all
of the others, seems to show a negative correlation with NDVI. The significative inverse
correlation between yield and organic matter in the Fia19 field is atypical, and in contrast
to literature, but could be explained due to the overlapping of the clay and organic matter
spatial trends along the field. The strong clayey character of the soil can cause compaction,
with negative consequences on yield [79].

Any evaluation on the suitability of different Var-N- approaches (i.e., -dir, -inv, -
Agrosat, -Agricolus) appears meaningless if not linked to the climatic conditions character-
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izing the cropping seasons and to a careful evaluation of the initial and final conditions in
terms of NDVI and final yield. During the first cropping season, the optimal climatic con-
ditions meant that reducing the overall N rate (i.e., Var-N-dir, Var-N-inv, Var-N-Agricolus)
was the most suitable strategy for increasing the nitrogen use efficiency without compro-
mising grain yield and quality. Conversely, during the second cropping season, a direct
approach (Var-N-dir) did not lead to the same results. In fact, interesting evidence in
support of this conclusion could be found in the most disadvantaged areas of the Fia20
field; what emerges is that, when the crop season is unfavorable, well-studied management
may make the difference in limiting N losses. Analyzing the NDVI class “I” (including all
of the field pixels with an NDVI value ≤ 0.40 on 19 March 2020), it emerges that, even if
the differences are slight and not statistically significant in terms of yield, and additional
experiments would be necessary, the advanced model strategies (Var-N-Agricolus and
Var-N-Agrosat) seem to give the best results both in terms of NDVI (Figure 6, bottom) and
in terms of yield (Table 7), also resulting in a more spatial homogeneous production across
the field. Of the two advanced models, Agricolus resulted in the highest NUE (Table 6).
The probable reading of this result is that a full nitrogen dose was not the best choice for
that year and that area, because the crop could not exploit it given the weather and climatic
limits. At the same time, limiting the nitrogen rate to a minimum with a direct approach
did not turn out to be a good strategy, because the crop would have been able to exploit a
slightly higher dose, even if not the maximum.

5. Conclusions

Our study, carried out in two fields and two cropping seasons, investigated the
differences between a flat N fertilization rate and four variable rates defined through
simplified and complex methods, based on Sentinel-2 NDVI, applied to define the second
fertilization. Three of the four variable rates were aimed at reducing the overall N input
(Var-N-inv, Var-N-dir, and Var-N-Agricolus), while he other was aimed at maintaining
the same overall input (Var-N-Agrosat) as in the flat rate (Flat-N) while optimizing the N
fertilization according to the supposed N requirement as revealed by the NDVI data.

Our results show that the variable approaches with lower overall N rates (Var-N-inv,
Var-N-dir, and Var-N-Agricolus) gave the same grain yield as the others (flat-N, Var-N-
Agosat) while obtaining a higher NUE. However, the various approaches can be correctly
evaluated only when contextualized to the respective climatic season. In fact, the strong
effect of the opposite climatic trend across the two seasons is an explicit confirmation
that weather is the main factor influencing the yield of a rainfed crop, followed by soil
texture, which typically influences the vigor gradient of the crop. This evidence suggests
that VRT nitrogen fertilization may only partially mitigate the heterogeneity of production
determined by such environmental factors.

In general, in favorable seasons, a low-input nitrogen fertilization driven by the NDVI
direct model (Var-N-dir) may be the best choice in contexts where the vigor crop gradient
is a direct reflection of the soil gradient. This approach provides nitrogen where the crop
can use it and saves it where the crop is limited by other factors, limiting leaching in deep
water, preserving the environment, and saving money. On the other hand, in unfavorable
seasons, when decision support could be more helpful, the more advanced data-driven
models (Agricolus and AgroSat) may be more effective in limiting losses and maintaining
more homogeneous intra-field production. This evidence takes on greater importance for
rainfed wheat given the increasing frequency of anomalous climate phenomena.
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