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Abstract: Predatory soil-dwelling mites, Gaeolaelaps aculeifer (Canestrini) and Stratiolaelaps scimitus
(Womersley) (Mesostigmata: Laelapidae), are essential biocontrol agents of small soil arthropod pests.
To understand the population characteristics of these two predatory mites, we investigated their
development, survival, and fecundity under laboratory conditions. We used Tyrophagus putrescentiae
(Schrank) as a food source and analyzed the data using the age-stage, two-sex life table. The duration
from egg to adult for G. aculeifer was longer than that for S. scimitus, but larval duration was similar
between the two species. Notably, G. aculeifer laid 74.88 eggs/female in 24.50 days, but S. scimitus
laid 28.46 eggs/female in 19.1 days. Several population parameters, such as the intrinsic rate of
increase, finite rate of increase, net reproductive rate, and gross reproductive rate of G. aculeifer, were
significantly higher than those of S. scimitus. Using the bootstrap technique with 100,000 samples, we
demonstrated that the life tables constructed based on the 2.5th and 97.5th percentiles of finite rate of
increase (λ) net reproductive rate (R0) may characterize the variability in the survival and fecundity
curves, as well as predict population growth uncertainty. These data provide important information
for the practical application of predatory soil mites to manage agricultural pests.

Keywords: biological control; life history traits; bootstrap technique; predatory mites; thrips control

1. Introduction

Gaeolaelaps aculeifer (Canestrini) and Stratiolaelaps scimitus (Womersley) are predatory,
soil-dwelling mites belonging to the family Laelapidae (Acari: Mesostigmata). Typically,
these two species are generalist predators and are used effectively as biological control
agents of various soil pests, such as thrips pupae, fly maggots, and bulb mites [1–7].
Moreover, these two predatory mites are beneficial for controlling mushroom flies dur-
ing mushroom cultivation [3,8–10], and control poultry red mite, Dermanyssus gallinae
(De Geer) [11,12]. Recent research has shown that G. aculeifer and S. scimitus are natural
enemies of Varroa destructor (Anderson and Trueman), the honey bee ectoparasitic mite [13].
They prey on other small soil organisms, such as Collembola, mites, nematodes, and
Enchytraeidae [14–18].

The best predators should survive prey scarcity [19], and their populations should be
able to survive when the target pest population density is low due to their diverse host
range [20]. Furthermore, this ability facilitates rearing on factitious preys, such as the mold
mite Tyrophagus putrescentiae (Schrank) (Acari: Sarcoptiformes: Acaridae). T. putrescentiae is
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an important pest of stored products having a high fat or protein content [21]. T. putrescen-
tiae is routinely used for experimental and commercial rearing of predatory mites [9,22].
Predators, on the other hand, face intense selection pressure for prey quality and density,
oviposition-friendly habitats, and antagonist availability [23–26].

Predator fitness was evaluated using the life table tool. Two-sex life table techniques
are now widely used to assess predators’ fitness on prey. Two-sex life table studies assist
in understanding an organism’s ecology and fitness, because they take both sexes into
account when constructing the population curve for future populations [27,28]. Further-
more, incorporating the life table into constructing a mass-rearing system improves the
mass-rearing system’s efficiency [29,30]. Traditional female age-specific life tables [31–34]
ignore stage differentiation in metamorphic species and the effects caused by the male
component of a population. In contrast, the age-stage, two-sex life table [35] considers both
sexes and precisely describes stage differentiation; therefore, it can properly describe the
developmental duration, survival, reproduction, and population growth.

Several studies have been conducted during the past few decades on the effect of
diet on the development, fecundity, and mortality of G. aculeifer and S. scimitus, such as
mold mite, bulb mite, thrips, and sciarid fly [22,36–41]. To the best of our knowledge, no
extensive data on the fitness of these two predators employing age-stage, two-sex life
methods has ever been published. In this study, we determined the fitness traits and
population parameters of G. aculeifer and S. scimitus reared on a single-species diet of
T. putrescentiae. We also employed the age-stage, two-sex life table to examine these data,
as well as population projection to show the dynamics of stage structure and population
growth variability. By considering the importance of integrated pest management, the
findings of this study could assist in maintaining the predation of G. aculeifer and S. scimitus
on T. putrescentiae.

2. Materials and Methods
2.1. Insect Rearing

The laboratory populations of G. aculeifer and S. scimitus were reared separately
following a simple mass-rearing method [42,43]. The two predatory mite species were
maintained in two closed plastic boxes (including an inner and outer box) at 25 ± 1 ◦C,
90% ± 5% relative humidity (RH), and a photoperiod of 16:8 (L:D) h.

The mold mite, T. putrescentiae, was used as prey for both predatory mites. The prey
mites were also reared with rice bran as a food source following the same double box
system [43].

The two predatory mites were collected from the stock population and reared in Petri
dishes (50 mm D × 15 mm H). Cutting a 13.20-mm hole in each lid and covering the hole
with a nylon mesh (0.053 mm) allowed ventilation in the Petri dishes. Rice husks (1 cc)
were provided as a shelter for the mites in each Petri dish. To maintain constant humidity,
water-saturated cotton was placed daily on the hole of each Petri dish (Figure 1).

2.2. Life Table Study of G. aculeifer and S. scimitus

Life table studies were initiated using the egg stages of predatory mites. More than
100 pairs of G. aculeifer and S. scimitus adults were isolated from the mite culture and
maintained in the Petri dishes to obtain the egg stages. After 24 h, each newly-laid egg
was separated and collected into another Petri dish. Forty-eight G. aculeifer eggs and
41 S. scimitus eggs were used for the life table study. We supplied mixed life stages of
T. putrescentiae daily to each Petri dish as prey. The predatory mites’ developmental stage
and survival rate were monitored every day. Emerged male and female adults of G. aculeifer
and S. scimitus were paired, and each pair was transferred to a new Petri dish with new
rice husks and prey. Males from the mass-rearing colony were used to mate with females
from the life table cohort, since there were more females than males. The mass-rearing
colony’s males were omitted from the life table analysis, and daily oviposited eggs were
recorded and discarded. The survival of each adult was recorded daily until the death
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of all individuals. These bioassays were conducted under laboratory conditions at the
temperature and RH conditions described in Section 2.1.
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Figure 1. Experimental setup for the life table study of the two predatory mite species under
laboratory conditions.

2.3. Life Table Data Analysis

The population parameters, including the intrinsic rate of increase (r), finite rate
of increase (λ), net reproductive rate (R0), mean generation time (T), age-stage-specific
survival rate (sxj), age-specific survival rate (lx), age-specific fecundity (mx), adult pre-
oviposition period (APOP) and the total preoviposition period (TPOP), reproductive days
(Rd), age-specific maternity (lxmx), age-stage life expectancy (exj), and reproductive value
(vxj), were calculated, according to the age-stage, two-sex life table approach [35,44–46]
using TWOSEX-MSChart [47]. Population parameter variances and standard errors were
calculated following the 100,000 random resampling bootstrap technique [48]. The differ-
ences in population parameters between G. aculeifer and S. scimitus were evaluated using
a paired bootstrap test, based on the confidence intervals implemented in the TWOSEX-
MSChart [46,47,49]. All graphs were generated using SigmaPlot v.12.5 (Systat Software
Inc., San Jose, CA, USA, 2013).

2.4. Population Projection

The potential population growth of G. aculeifer and S. scimitus on T. putrescentiae
was projected according to Chi [50] by incorporating the life table data into TIMING-
MSChart [51]. The variability of population growth was projected as described by Huang
et al. [49] using life tables representing the 2.5th and 97.5th percentiles, i.e., the 2500th
and 97,500th sorted bootstrap results of the net reproductive rate (R0) and finite rate of
increase (λ).

3. Results
3.1. Survival and Developmental Characteristics of G. aculeifer and S. scimitus

We observed that the two predatory mite species could complete development and
produce offspring when fed on T. putrescentiae. Table 1 shows the developmental times
of each stage, preadult duration, adult longevity, reproductive days, and fecundity of
females for the two species. The mean developmental time of the egg stage for G. aculeifer
and S. scimitus was 3.71 and 2.89 d, respectively (Table 1). The duration of the egg stage
was significantly different between the two species (p < 0.0001). However, no significant
differences were observed in the duration of larva (p = 0.2783), protonymph (p = 0.3577),
and deutonymph (p = 0.6078) between G. aculeifer and S. scimitus. The preadult duration
was significantly longer for G. aculeifer (11.51 d) than for S. scimitus (10.69 d). However, there
were no significant differences in preadult survival rate (sa) between the two species. Female
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longevity was significantly higher (p = 0.0165) for G. aculeifer (80.31 d) than S. scimitus
(69.71 d). However, there were no significant differences in male longevity between the
two species (p = 0.1242) (Table 1). Significant differences were observed in APOP and
TPOP between the two predatory mites. The maximum number of reproductive days was
recorded for G. aculeifer (24.5 d), which was significantly higher than that for S. scimitus
(19.12 d) (p = 0.0288). The fecundity of G. aculeifer (74.88 offspring/female) was also
significantly higher than that of S. scimitus (28.46 offspring/female) (p = 0.0285).

Table 1. Development time for the different life stages, total preadult duration, adult longevity, adult
preoviposition period (APOP), total preoviposition period (TPOP), reproductive days, and fecundity
of G. aculeifer and S. scimitus fed on T. putrescentiae.

Developmental Time (days)

Biological Parameters
Gaeolaelaps aculeifer Stratiolaelaps scimitus

p
N Mean ± SE N Mean ± SE

Egg (d) 41 3.71 ± 0.11 a 36 2.89 ± 0.096 b <0.0001
Larva (d) 41 1.05 ± 0.034 a 36 1.11 ± 0.053 a 0.2783

Protonymph (d) 41 3.32 ± 0.101 a 36 3.06 ± 0.112 a 0.3577
Deutonymph (d) 41 3.44 ± 0.093 a 36 3.64 ± 0.15 a 0.6078

Preadult (d) 41 11.51 ± 0.18 a 36 10.69 ± 0.25 b 0.0064
Adult longevity (d) 41 66.24 ± 2.20 a 36 57.19 ± 2.61 b 0.0072

Female adult 26 80.31 ± 2.75 a 24 69.71 ± 3.08 b 0.0165
Male adult 15 73.33 ± 3.55 a 12 64.25 ± 4.78 a 0.1242

Total longevity (d) 41 77.76 ± 2.21 a 36 67.89 ± 2.61 b 0.0035
APOP (d) 26 3.23 ± 0.19 a 24 6.04 ± 0.47 b 0.0035
TPOP (d) 26 14.88 ± 0.34 a 24 16.42 ± 0.60 b 0.0285

Oviposition days (d) 26 24.50 ± 0.73 a 24 19.12 ± 1.29 b 0.0288
Fecundity

(offspring/individual) 26 74.88 ± 2.25 a 24 28.46 ± 2.00 b 0.0285

Fecundity (eggs/day) 26 3.06 ± 0.07 a 24 1.49 ± 0.04 b <0.0001
Standard errors (SEs) were estimated using 100,000 bootstraps. Mean values followed by the same letters in
rows are not significantly different between the two species as assessed using the paired bootstrap test at the 5%
significance level.

3.2. Life Table of G. aculeifer and S. scimitus fed on T. putrescentiae

The age-stage survival rate (sxj) depicts the probability of whether a newly hatched
individual would survive to age x and stage j (Figure 2). Due to differences in developmen-
tal rate among individuals, there was an obvious stage overlap during the developmental
period (Figure 2). The female and male adults emerged at 8 and 10 d, respectively, for
S. scimitus (Figure 2). In contrast, female and male adults appeared at 9 and 10 d, respec-
tively, for G. aculeifer (Figure 2). The longer longevity of female adults compared to males
could be observed in Figure 2.

Figure 3 shows the age-specific survival rate (lx), female age-specific fecundity (fx5)
(the female adult being in the fifth life stage), age-specific fecundity (mx), and age-specific
maternity (lxmx) for G. aculeifer and S. scimitus fed on T. putrescentiae. The lx curve of
G. aculeifer was significantly decreased from age 50 d, whereas that of S. scimitus decreased
from age 37 d (Figure 3). The parameter, fx5, is the mean number of fertilized eggs produced
by the female adult at age x. The highest peak of fx5 was observed for G. aculeifer fed on
T. putrescentiae at age 18 d (f 18,5 = 4.8 eggs). Based on the curve, mx, the highest peaks
occurred at age 18 d (with 3.04 offspring) for G. aculeifer, and at age 24 d (with 0.86 offspring)
for S. scimitus (Figure 3). Based on both lx and mx, the maximum lxmx value of 3.04 offspring
was recorded for G. aculeifer at age 18 d, whereas its value of 0.86 offspring was recorded
for S. scimitus at age 24 d (Figure 3).

Life expectancy (exj) indicates the length of time an individual of age x and stage j is
expected to survive. The curves of exj of the egg, larva, protonymph, deutonymph, and
adult of G. aculeifer fed on T. putrescentiae were higher than those of S. scimitus (Figure 4).
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The life expectancy values of a newly-laid egg of G. aculeifer and S. scimitus were 67.33 and
60.34 d, respectively (Figure 4).
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The reproductive value (νxj) indicates the expected contribution of an individual of
age x and stage j to the future population. The reproductive value gradually increased
with an increase in age and stage, whereas the reproductive value of the female stage
dramatically increased when they began to oviposit. The highest reproductive values for
G. aculeifer and S. scimitus fed on T. putrescentiae were recorded at age 17 d (v17,5 = 24.11 d−1)
and 18 d (v18,5 = 8.61 d−1), respectively (Figure 5).
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3.3. Population Parameters

Table 2 shows the population parameters of G. aculeifer and S. scimitus. The intrin-
sic rate of increase (r), finite rate of increase (λ), net reproductive rate (R0), and gross
reproduction rate (GRR) of G. aculeifer fed on T. putrescentiae were 0.1733 d−1, 1.1893 d−1,
47.49 offspring, and 47.53 offspring, respectively. These parameters were significantly
higher (p < 0.0001) than the values obtained for S. scimitus (0.1079 d−1, 1.1139 d−1, 18.97 off-
spring, and 22.03 offspring, respectively) (Table 2). In contrast, the mean generation time
(T) obtained for G. aculeifer (22.27 d) was significantly shorter (p < 0.0001) than that for
S. scimitus (27.29 d) (Table 2).

Table 2. Population parameter of G. aculeifer and S. scimitus fed on T. putrescentiae.

Population Parameters a Bootstrap (Mean ± SE b,c)
p

Gaeolaelaps aculeifer Stratiolaelaps scimitus

r (d−1) 0.1733 ± 0.0071 a 0.1079 ± 0.0071 b <0.0001
λ (d−1) 1.1893 ± 0.0084 a 1.1139 ± 0.0068 b <0.0001

R0 (offspring/female) 47.49 ± 5.80 a 18.97 ± 2.59 b <0.0001
T (d) 22.27 ± 0.44 a 27.29 ± 0.83 b <0.0001

GRR (offspring/female) 47.53 ± 5.81 a 22.03 ± 3.12 b <0.0001
a r, intrinsic rate of increase; λ, finite rate of increase; R0, net reproductive rate; T, mean generation time
(offspring/individual); GRR, gross reproduction rate. b Standard errors (SEs) were estimated using the bootstrap
technique with 100,000 re-samplings. c Mean values followed by the same letters in rows are not significantly
different between the two species as assessed using the paired bootstrap test at the 5% significance level.

3.4. Population Projection

The growth capacities of G. aculeifer and S. scimitus were projected using life table data
to demonstrate the increase in the pest population and stage structure during population
growth on T. putrescentiae. The population growth and stage structure of G. aculeifer and
S. scimitus fed on T. putrescentiae are depicted in Figure 6; the changes in the stage structure
can be observed. The fastest population growth was observed for G. aculeifer fed on
T. putrescentiae. Starting with 10 eggs, the population of G. aculeifer increased faster than
that of S. scimitus fed on T. putrescentiae, which increased slowly (Figure 6). According to
the simulation, after 30 d, the total number of eggs, larvae, protonymphs, deutonymphs,
female, and male adults of G. aculeifer was 112, 18, 55, 68, 46, and 29, respectively (Figure 6).

Figure 7 shows the total population sizes of the original cohort and those based on the
2.5th and 97.5th bootstrap percentiles of the finite rate and net reproductive rate, which
helps understand the variability of population growth. The population growth rates of
G. aculeifer and S. scimitus on T. putrescentiae were different. This could be attributed to
differences in developmental time, viability, and fertility among individuals (Figure 7). The
total population size of G. aculeifer and S. scimitus reached 76.76 and 27.93 individuals on
day 30 when fed on T. putrescentiae, respectively (Figure 7).
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4. Discussion

This study has shown that G. aculeifer had higher fecundity, intrinsic rate of increase,
finite rate of increase, and shorter mean generation time than S. scimitus when fed on
T. putrescentiae. Preadult survival and reproduction rates of insects on a prey that are higher
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indicate that the prey is more suitable [52]. Although this prey mite species has been used
commercially for rearing G. aculeifer and S. scimitus [9,22], we used the age-stage, two-sex
life table technique to compare the fitness traits of these two predatory mite species that
feed on T. putrescentiae. The predator–prey interaction, population development, survival,
and reproduction can all be assessed using life table parameters [53,54].

In a predator–prey relationship, predator fitness is extremely important. It is affected
by many factors, such as prey size and density [55,56], environmental factors, i.e., tem-
perature, humidity [57,58], habitat complexity, and internal state of the predator [54,59].
Changes in the developmental rate, survival rate, fecundity, and reproductive age can all
be attributed to these factors [60,61]. Our study showed that G. aculeifer and S. scimitus
could complete their development and reproduction when fed on T. putrescentiae, but
the fitness of these two species differed due to differences in survival, development, and
fecundity. S. scimitus was found to be less suited to T. putrescentiae than G. aculeifer due to its
prolonged TPOP and preadult length, as well as its lower fecundity and reproductive value.
On the other hand, G. aculeifer is more suited and susceptible when fed on T. putrescentiae,
because it has longer adult longevity, and life expectancy, higher fecundity, and population
parameters (Tables 1 and 2).

Preys have been found to have an impact on the survival and development of numer-
ous insects in previous studies [26,52,62]. Ajvad et al. [41] reported that female and male
longevity of G. aculeifer fed on sciarid larvae was 67.7 and 60.3 d, respectively. Kakimoto
et al. [63] revealed that the longevity of Orius similis Zheng females and males was 27.2 d
and 13.2 d, respectively, compared with that of Orius sauteri (23.8 d and 14.5 d, respectively)
when fed with Ephestia kuehniella Zeller. In another study, Asgari et al. [52] reported that
male adult longevity (14.46 d) of Amblyseius swirskii Athias-Henriot was shorter than female
adult longevity (16.61 d) when fed on T. putrescentiae. The same trend was observed in this
study, where the total longevity of female and male adults (80.31 d and 73.33, respectively)
of G. aculeifer was increased when fed on T. putrescentiae. Alternatively, the total longevity
of females and males of S. scimitus was lower (69.71 d and 64.25 d, respectively) than
G. aculeifer. This could be due to the nutritional content or quality of the specific diet/prey,
decreased food pressure throughout development, physical defense or response of the prey,
more feeding resources [62,64,65], predator preference behavior toward laying eggs [66,67],
and complete physiological reactions in the insect body under selection pressure [68].

The life parameters, particularly r and λ, represent the various population features
such as the developmental rate, fecundity, survival rate, and the population growth rate
together to evaluate the population fitness. This theory supported the present study and
showed that G. aculeifer showed higher R0, r, λ, and GRR values when fed on T. putrescentiae
under our test conditions.

A population projection based on the age-stage, two-sex life table can reveal the change
in stage structure during population growth. Understanding stage structure is vital to pest
management, because predatory mites’ dispersal and damage capability vary with stage.
This study demonstrated that such a life table could provide a comprehensive description
of predatory mite population’s fitness on a given prey. The predicted population growth
through time according to the age-stage, two-sex life table data can be described using the
stages, as shown in Figure 6. Due to the incapability of traditional female age-specific life
tables [31,32,34], to describe the stage differentiation, it would not be possible to show the
stage structure, as shown in Figure 6.

We also demonstrated the variability of population growth using computer projections
based on the bootstrap percentile confidence intervals. It is the first study to use the life
tables of G. aculeifer and S. scimitus to depict the population growth range that is lower
and upper 2.5th and 97.5th percentile to the most appropriate level of range for simulation
(Figure 7). The findings revealed that insect populations have a lot of fluctuation and that
including the life table variability into population projections is critical.
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5. Conclusions

In conclusion, our study’s life table parameters and population prediction analysis
demonstrated that G. aculeifer has greater efficiency as a natural enemy than S. scimitus. The
obtained results support Hwang et al.’s study [43] indicating that the G. aculeifer population
increased to a higher density than that of S. scimitus using a simple mass-rearing method.
We strongly promote the use of age-stage, two-sex life table in pest management programs
at the age stage to anticipate population growth, stage structure, and possible damage by
including stage-specific consumption rates in their control strategies.
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