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Abstract: This study evaluated the effects of de-inking paper sludge (DPS) and sewage sludge (SS)
application on soil properties, and durum wheat growth and yield. A pot experiment was performed
on Calcaric cambisol (clCM) and Cromic Luvisol (coLV) soils. Three DPS rates (0, 30, and 60 Mg ha−1)
were studied with and without nitrogen fertilizer (280 kg NH4NO3 ha−1). DPS was also mixed
with SS at two rates (5 and 10 Mg ha−1) to highlight the benefits of organic nitrogen compared to
mineral nitrogen. DPS improved total organic carbon and nitrogen, mineral nitrogen, and soils cation
exchange capacity, the 30% rate provided the greatest improvement in both soils. DPS increased
grain and root P, K, Ca, and Mg contents in both soils. It also increased wheat straw N, P, Mg, and Ca
for the same soil compared to the control. Mixed DPS treatments with nitrogen fertilizer enhanced
grain yield by up to 38% and increased root biomass in the studied soils. Thus, DPS is a potential
source of organic matter and a liming agent for acid soils when appropriate supplemental fertilizer
is provided.

Keywords: de-inking paper sludge; sewage sludge; waste management; soil fertility; industrial
ecology; durum wheat; carbon mineralization

1. Introduction

According to the Kyoto protocol related to the reduction of greenhouse gas (GHG)
emissions, waste management, and the use of residual fertilizer material (RFM), can
mitigate climate change [1]. Waste management is an international problem, especially in
developing countries. This waste should constitute an asset that should not be wasted and
should be reconsidered in terms of energy, fertilizer, or other resources.

The use of fertilizing matter like compost, biosolids, or de-inking paper sludge (DPS)
is one of the ways to decrease the effects of climate change [2,3]. At the Conference of
the Parties in Paris is the 21st (COP21), the reduction target for Tunisia was estimated at
40% of total emissions [2,4]. Despite this, the recycling rate in Tunisia for residues such as
DPS is close to 0%, which represents a big loss of organic matter [4,5]. The explanation
for this is that in Tunisia this kind of residue is considered dangerous (Article 2 of Act No.
96-41 of 10 June 1996, JORT No. 49 of 18 June 1996 relating to control, management, and
disposal of wastes; Decree No. 2000-2339 of 10 October 1996–2000, hazardous waste list

Agronomy 2021, 11, 709. https://doi.org/10.3390/agronomy11040709 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-8952-6348
https://orcid.org/0000-0002-1750-9183
https://orcid.org/0000-0002-1670-6417
https://orcid.org/0000-0002-7895-1901
https://doi.org/10.3390/agronomy11040709
https://doi.org/10.3390/agronomy11040709
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11040709
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy11040709?type=check_update&version=2


Agronomy 2021, 11, 709 2 of 16

JORT No 86 of 27 October 2000), although this classification is not supported by studies.
De-inking sludge is included in Group 5, waste from wood processing, paper, and panel
and furniture production. DPS is considered non-hazardous in European and Canadian
legislation because it is recalcitrant organic matter and contains a lot of nutrients (C, P, K,
Ca, and Mg) [6]. The heavy metal content of DPS does not exceed contamination limits [1,5];
this organic matter can be used as a fertilizer and there is no risk of soil contamination if
the application rate does not exceed 60 Mg ha−1 [4–6].

This type of organic matter has been used in several applications: restoration of de-
graded or mining sites [7], crop growth and yield improvement [8], growth improvement of
forest tree species such as alder and aspen [9], improvement of the physicochemical proper-
ties of acidic soils [5,6,10], and the reduction of greenhouse gases, essentially N2O [2,11]. But
few studies have involved Mediterranean conditions and especially calcareous soils [4,11].
Recent studies have demonstrated the role of DPS in the improvement of soil fertility, soil
carbon storage, and humic substances [2,4,5]. This leads to the need for in-depth research
on the environmental impacts of this amendment on agronomic calcareous soils compared
with acidic forest soils and the possibilities of its valorization as an organic fertilizer for
agricultural soils and crops.

Climate change and poor management of resources affect soil organic carbon stocks,
mainly in Mediterranean areas, where there is a deterioration in the physicochemical and
biological properties of soils [12]. For example, the soils in Tunisia are chemically poor,
with an organic matter content of less than 2%, and remain in a perpetual quest for a source
of organic matter [13]. We believe that DPS may be a source of organic matter for the
restoration of agronomic calcareous soils. Furthermore, the pulp industry generates a large
amount of lignocellulosic waste that must be managed. Information on the fertilizing value
of de-inking paper and mixed sewage sludge on crops is relatively scarce.

In the Mediterranean region, durum wheat (Triticum turgidum L. sub sp. durum) is one
of the most cultivated herbaceous crops and is considered a major cereal crop in Tunisia,
with 1.8 Mha under cultivation [14]. However, the total production of wheat is still far
from the country’s requirements, which range from 1 Tha−1 to 6 Tha−1, mainly due to poor
crop management, [15]. Indeed, amendments could improve crop growth, nutrient status,
and grain yield. Hence, research is needed to provide data for determining the effects of
de-inking paper sludge on Mediterranean soils and the vegetative parameters of durum
wheat. The present study was focused on the assessment of the effect of different de-inking
paper sludge application rates on vegetative parameters and durum wheat yield in two
Mediterranean soils.

The specific objectives of this research were (i) to study the effects of DPS application
rates (0, 30, and 60 Mg ha−1) on the chemical parameters of a calcareous soil, and on
the vegetative growth and yield of durum wheat following DPS application and (ii) to
determine whether the addition of N fertilizer (organic or mineral) induces changes in soil
and agricultural parameters.

2. Materials and Methods
2.1. Soils and Amendments

Soils were collected from the surface layer (0–20 cm) of two representative Mediter-
ranean soils from two sites in Tunisia, Nefza and Mornag. The Nefza soil is a Cromie
luvisol (coLV) [16] and is located under a cork oak forest on a mountain slope (20%). The
climate of Nefza is humid (1000 mm rain/year) and the soil is on a sandstone and acid clay
bedrock. The Mornag soil is a Calcaric cambisol (clCM) [16], located at the National Insti-
tute of Tunisia (INAT) agronomic experimental farm. The climate of Mornag is semi-arid
(400–450 mm rainfall/year) and the soil is limestone-clay alluvium plain. The collected
soils were air-dried and sieved. Crop residues were removed. Before sowing, initial soil
physicochemical analyses were carried out (Table 1). The organic carbon content was low
in both soils (5.8 and 4.6 g kg−1 for Calcaric cambisol and Cromie luvisol, respectively),
as is typical for Mediterranean (Tunisian) agricultural soils. The clCM silty clay soil is
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characterized by a medium pH (basic pH = 7.84), high K and high available P, whereas the
coLV silty clay-sand soil has a high K, an acidic pH (acidic pH = 5.73) and low available P.
Total limestone was measured for the two soils, with the highest value in the clCM (25.52%)
compared to coLV soil (0%).

Table 1. The physicochemical characteristics of initial soils collected from the experimental fields.

Chemical Properties Unit clCM Soil coLV Soil

Clay % 51.60 ± 6.44 34.06 ± 4.62
Silt % 42.20 ± 6.41 36.36 ± 6.70

Sand % 6.20 ± 0.32 29.64 ± 0.26
TOC g kg−1 5.80 ± 0.08 4.60 ± 0.02

pH (1:5) 7.84 ± 0.10 5.73 ± 0.06
EC µS cm−1 175.60 ± 5.06 107.38 ± 4.02

Total N % 0.13 ± 0.01 0.15 ± 0.01
Available P mg kg−1 67.62 ± 9.12 18.73 ± 4.86

Kexchangeable mg kg−1 472.61 ± 6.90 400.91 ± 2.30
CEC cmolc kg−1 23.08 ± 0.63 19.90 ± 1.41
SFC % 26.06 ± 0.15 30.86 ± 0.48

Total CaCO3 % 25.52 ± 0.81 0

TOC, total organic carbon; EC, electrical conductivity; CEC, cation exchange capacity; SFC. soil field capacity.

Two wastes were used as organic amendments (OA). The de-inking paper sludge
(DPS) was obtained from the Tunisie Ouate Company [2,3]. The sewage sludge (SS) was
used after waste was dewatered from the Chotrana Wastewater Treatment Station (Ariana,
Tunisia). This amendment is considered stable, is black and more than 6 months old and
was randomly sampled. Only the solid part was recovered after secondary treatment. The
DPS and SS were air-dried and the resulting biosolids were analyzed to determine their
physico-chemical characteristics before treatment application (Table 2). The DPSs were
rich in C, Ca, and Mg, whereas a supplement nitrogen source was required due to the
high C:N ratio (C:N = 108). The total organic carbon content was 315 and 399 g kg−1 for
DPS and SS, respectively. DPS N, P, K, Ca, and Mg contents were 2.91, 0.35, 7.23, 122, and
4.49 g kg−1, respectively. The C:N and C:P ratios were 108.24 and 900 for the DPS and 149.4
and 151.1 for the SS, respectively. Critical C:N ratio was established between 20–30 and
the C:P ratio between 40–50 [16]. The Ca:Mg ratio is another measure of the suitability of
organic residues as a nutrient source for plant growth [17]. This ratio was 27.17 for the DPS
and 63.15 for the SS.

Table 2. Characteristics of the two biosolid amendments used in the experiment.

Chemical Properties Unit DPS SS

Moisture content % 73 82
Organic C g kg−1 315 ± 25 399 ± 30

pH 7.80 ± 0.30 7.30 ± 0.10
Total N g kg−1 2.91 ± 0.60 2.67 ± 0.10

K g kg−1 7.23 ± 3.0 3.96 ± 0.40
P g kg−1 0.35 ± 0.20 2.64 ± 1.10

Na g kg−1 1.8 ± 0.30 ND
Ca g kg−1 122 ± 19 92.20 ± 5.0
Mg g kg−1 4.49 ± 0.40 1.46
Fe g kg−1 1.06 ± 0.10 ND
Cu mg kg−1 51.4 ± 7.0 <0.396
Mn g kg−1 0.52 ± 0.10 ND
Zn mg kg−1 101 ± 15 225

C:N 108.24 149.4
C:P 900 151.1

Ca:Mg 27.17 63.15

K: potassium, P: phosphorus, Na: sodium, Ca: calcium, Mg: magnesium, Fe: for, Cu: copper, Mn: manganese,
Zn:zinc, C:N: ratio carbon-nitrogen, C:P: ratio carbon phosphorus, Ca:Mg: ratio calcium magnesium.
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Marouani et al. [5] reported that the same DPS contained aliphatic (polysaccharides)
and aromatic structures (lignin or lignin derived products). Infrared spectroscopy revealed
that the DPSs contain quartz, kaolinite, smectite (3620, 3650 and 3690 cm−1) and carbonate
(875 and 2520 cm−1) [5].

2.2. Experimental Design and Soil Sampling Scheme

Sixty-four pots of soil (13.5 cm diameter × 20 cm height, 2 kg of soil) were placed
in a semi-controlled greenhouse at INAT (36◦49′ N, 10◦10′ E) in Tunis (Tunisia) during
the 2013–2014 growing season (Figure 1). The monthly air temperature ranged from 12
to 36 ◦C. The monthly relative humidity fluctuated between 58 and 68%. The soils were
collected from clCMs and coLVs.

Agronomy 2021, 11, x FOR PEER REVIEW 4 of 17 
 

 

C:N  108.24 149.4 
C:P  900 151.1 

Ca:Mg  27.17 63.15 
K: potassium, P: phosphorus, Na: sodium, Ca: calcium, Mg: magnesium, Fe: for, Cu: copper, Mn: 
manganese, Zn:zinc, C:N: ratio carbon-nitrogen, C:P: ratio carbon phosphorus, Ca:Mg : ratio cal-
cium magnesium. 

Marouani et al. [5] reported that the same DPS contained aliphatic (polysaccharides) 
and aromatic structures (lignin or lignin derived products). Infrared spectroscopy re-
vealed that the DPSs contain quartz, kaolinite, smectite (3620, 3650 and 3690 cm−1) and 
carbonate (875 and 2520 cm−1) [5]. 

2.2. Experimental Design and Soil Sampling Scheme 
Sixty-four pots of soil (13.5 cm diameter × 20 cm height, 2 kg of soil) were placed in a 

semi-controlled greenhouse at INAT (36°49′ N, 10°10′ E) in Tunis (Tunisia) during the 
2013–2014 growing season (Figure 1). The monthly air temperature ranged from 12 to 36 
°C. The monthly relative humidity fluctuated between 58 and 68%. The soils were col-
lected from clCMs and coLVs. 

 
Figure 1. Location of experimental site. 

Three rates of DPS were used (0, 30, and 60 Mg wet ha−1) identified as control, DPS30 
and DPS60, respectively. One mineral nitrogen rate of 280 kg N ha−1 (as NH4NO3−, noted 
as F) is added to former treatments identified as DPS30F, and DPS60F. This nitrogen is 
applied at two crop growth stages: three leaves (13) and two nodes (33) according to the 
BBCH scale. 

Two rates of SS (5 and 10 Mg. ha−1) were used alone to give the treatments SS5 and 
SS10. The treatment “MIXED” is a mixture of DPS 60 and SS10. Thus, the treatments were 
identified as: Control, DPS 30, DPS 60, DPS 30F, DPS 60F, MIXED, SS5 and SS10. The pots 
were arranged in a randomized complete block design in four replications and were re-

Figure 1. Location of experimental site.

Three rates of DPS were used (0, 30, and 60 Mg wet ha−1) identified as control, DPS30
and DPS60, respectively. One mineral nitrogen rate of 280 kg N ha−1 (as NH4NO3

−, noted
as F) is added to former treatments identified as DPS30F, and DPS60F. This nitrogen is
applied at two crop growth stages: three leaves (13) and two nodes (33) according to the
BBCH scale.

Two rates of SS (5 and 10 Mg. ha−1) were used alone to give the treatments SS5 and
SS10. The treatment “MIXED” is a mixture of DPS 60 and SS10. Thus, the treatments
were identified as: Control, DPS 30, DPS 60, DPS 30F, DPS 60F, MIXED, SS5 and SS10.
The pots were arranged in a randomized complete block design in four replications and
were re-randomized every week to avoid light and temperature side effects. For each
pot, treatments were mixed thoroughly into soil seven days before sowing. During the
experiment, the pots were weighed daily and the lost water was replaced by adding
tap water.

Four seeds of durum wheat, variety “KARIM”, were sown in each pot on 15 December
2014. Irrigation was applied using tap water to reach a 40% soil holding capacity. After
188 days, on May 23rd, the aerial portion of plants was harvested, separated into grain and
straw, weighed, and oven-dried at 65 ◦C. After watering, roots were smoothly collected
and maximum length is measured on millimeter paper. The soil in each pot was air-dried,
ground, sieved (2 mm), and mixed well and analyzed.
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The measured agronomic parameters were grain and straw yield, biomass root, root
length, and dry matter. Mineral element concentrations (P, Mg, Ca, K, Pb, and Cd) in
durum wheat grain, straw, and roots were analyzed. Nitrogen was analyzed in both the
above and belowground plant parts.

2.3. Soil Chemical Analysis

All chemical and physical analyses were performed according to Pauwels et al., [18].
The soil pH values were measured at 25 ◦C in a sample suspended in distilled water
(1:2.5; w:w), using a Consort C860 multi-parameter analyzer (Consort bvba, Turnhout,
Belgium). Total organic C was determined using the Walkley and Black method based
on potassium dichromate oxidation [4,18]. Total N was determined using the Kjeldahl
method [4,19]. Available P was extracted using the Olsen method [4,20] and measured with
the ascorbic acid–molybdate reaction [4]. The determination of the content of exchangeable
K, Ca, and Na in soil was based on the principle of extracting the exchangeable bases
with a 1 N solution of ammonium acetate (C2H7NO2). The extract was passed to the
flame photometer to measure K, Ca, and Na concentrations [4]. The determination of the
percentage of clays and silts was based on the principle of sedimentation. The proportion
of sand was determined by dry sifting [4]. Mineral nitrogen (N-NH4

+ and N-NO3
−) of

soil subsamples was extracted with 2 M of potassium chloride solution (KCl) with a 1:10
(soil: solution) ratio and shaken for 1 h to determine the concentration of soil N-NH4

+

and N-NO3
− [21].

The cation exchange capacity (CEC) was carried out according to the principle of
extracting the exchangeable bases with a 1 N solution of ammonium acetate (C2H7NO2).
The extract was passed through a flame photometer to measure K, Ca, and Na concentra-
tions [22]. Cd and Pb concentrations were measured by atomic absorption. Metal extraction
followed the acid attack method using a 1 g soil sample sieved to 0.25 mm. All analyses
were performed in triplicate and were reported as average values. For sludge, moisture
content was calculated from weight loss after oven-drying to a constant weight at 105 ◦C,
and organic matter content by loss on ignition at 450 ◦C for 4 h. Total P, Na, Ca, Mg, Fe, Cu,
Mn, and Zn were determined after dry-ashing at 500 ◦C for 3 h [23].

2.4. Carbon Mineralization of Biosolid Amended Soils

Soil incubations were carried out under controlled conditions at humidity levels close
to field capacity and a constant temperature (30 ◦C) in the dark for 95 days so that the
soil respiration of the biosolid-amended soil could be quantified and compared to that of
the control, as described in Marouani et al. [4]: A sample of 50 g of moistened soil from
each treatment was placed in a one-liter hermetic jar containing 10 mL of NaOH and a
crystallizer. CO2 emissions during the incubation period were trapped in 1 mol L−1 NaOH
solution and the excess NaOH was titrated with 0.1 mol L−1 H2SO4 after the addition of
2 mL of BaCl2. The CO2-C released by mineralization was expressed as mg CO2 kg soil−1

(Equation (1)) [4]:

CO2-C emission rate = [(T − V) − (T − B)(NE/W) d] (1)

where T is the total volume (mL) of NaOH at the start of incubation; V is the H2SO4 volume
(mL) required to titrate the NaOH; B is the H2SO4 volume used to titrate NaOH in the
blanks; N is the H2SO4 normality used to titrate NaOH; E (E = 6) is the equivalent weight
of carbon; W is the soil weight and d is the days between every two sampling times.

The CO2-C released by mineralization was expressed as mg CO2 kg soil−1 using
Equation (2):

Ct = C0 (1 − e−Kt) (2)

where Ct is the cumulative carbon mineralized at time t expressed in mg C kg−1; C0 is
mineralizable carbon potential expressed in mg C kg−1; k is the mineralization constant
expressed in days−1 and t is the incubation time expressed in days. The data was also
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tested using Curve Expert software and the kinetics parameters were calculated as in
Marouani et al. [4].

2.5. Plant Analysis

The dried plant tissue was ground to determine N, P, K, Ca, and Mg concentrations.
About 1g of the ground tissue was incinerated at 500 ◦C for 4 h and digested with 20 mL
of HNO3 (1N). To obtain the total element concentrations, we calculated the sum of each
element accumulated in the grain, straw, and root, and multiplied it with its respective
dry matter mass [8,23]. To fix Ca and Mg, about 1 mL of plant extract was added to 4 mL
of distilled water and 4 mL of buffer solution. The analysis was performed using EDTA
(0.02 N) after adding a colored indictor. The P content was quantified by the ammonium
molybdate—ascorbic acid method [20]. The N content was determined using the Kjeldhal
method [24], K and Na were analyzed using a flame photometer, and Ca, Mg, Fe, Cu,
Mn, and Zn were quantified by flame atomic absorption spectrometry as described by
Pauwels et al. [18].

2.6. Statistical Analysis

The chemical soil parameters (pH, TOC, TN, C/N, PT, available P, available K, Ca,
Mg, Na NH4

+, NO3) were subjected to variance analyses with the GLM procedure using
partial sums of squares. Data were analyzed using the SAS® statistical package, version 9.4.
The statistical significance tested using F-tests at a 5% level of probability. The mean and
standard deviation for each physicochemical soil attribute (pH, TOC, TN, C:N, PT, available
P, available K, Mg, Ca, Na, NH4

+, NO3
-) were calculated for each soil type and treatment [0

(control), DPS 30, DPS 60, DPS 30F, DPS 60F, MIXED, SS5, and SS10]. Tukey’s student range
(HSD) test was used to test for significant statistical differences in physicochemical soil and
plant variables between soil types (cl CM; co LV). F-values were considered statistically
significant at p ≤ 0.05 [25].

3. Results
3.1. Changes of Soil Chemical Properties after DPS Application
3.1.1. Effect on Soil pH and Electrical Conductivity (EC)

The pH values were highly dependent on soil type (p < 0.0001), treatment (p < 0.0001)
and the interaction is highly significant (p < 0.001) (Table 3). Results showed that DPS
application rates and the presence of the N fertilizer were affected by soil pH. In the silty
clay soil (clCM), the pH value increased significantly for the 60 Mg ha−1 treatment with
and without N fertilizer compared to the control with 0.41 and 0.21 increases respectively.
For the acidic co LV soil, the 60 Mg ha−1 DPS rated raised the soil pH by 0.54 (Table 4).
The present study showed a highly significant variation in EC among soils (p < 0.0001)
and treatments (p < 0.0001) (Table S1). In the non-fertilized clCM soil, EC decreased from
276.8 to 199.0 mS cm−1 for DPS30 treatment and from 276.8 to 194.6 mS cm−1 for DPS60
treatment (see Supplementary data). However, when N fertilizer (DPS30F and DPS60F)
was applied, a strong EC increase is observed due to the salts contained in the N fertilizer,
(see Supplementary data; Table S1). In the acidic coLV soil, a decrease of EC was observed
for the DPS30 compared to the control. The value of EC for the MIXED treatment was
lower than that for the DPS60F in both soils.

3.1.2. Changes in Total Organic Carbon and Total Organic Nitrogen

Overall, highly significant variations among soils (p < 0.01) and treatments (p < 0.001)
occurred for organic carbon, however, the interaction was not significant (Table 3). The
30 Mg ha−1 DPS dose produced the highest amounts of soil organic carbon (SOC) com-
pared to control in coLV soil (Table 4). A DPS rate of 30 Mg ha−1 was required to increase
SOC by 0.06 g kg−1 C for clCM, and this, with only one application. While for the
SS10 Mg ha−1 treatment, SOC decreased from 5.8 to 4.6 g kg−1 for SS10 and from 4.6 to
3.9 g kg−1 in the clCM and coLV soils respectively compared to the control.
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Table 3. Analysis of variance for the different soil chemical properties.

pH OC TN NH4
+ NO3− avP Ca2+ Na+ Mg2+ K+

F value

Soil (s) 1953 4 ** 11.1 ** 453 6 ** 30.9 ** 29.1 ** 6779 8 ** 191.9 ** 70.1 ** 97.5 ** 848 7 **
Treatment

(T) 6.8 ** 4.7 ** 15.9 ** 5.5 ** 6.1 ** 1174.7 * 15.4 ** 780.7 ** 6.4 ** 5.0 **
S*T 3.1 ** 0.4 NS 7.0 ** 4.6 ** 3.6 ** 1431.8 ** 11.1 ** 39.9 ** 6.0 ** 7.3 **

pH, OC, organic carbon; TN, total nitrogen; CEC, cation exchangeable capacity; NH4+, ammonium; NO3
−, nitrate; avP, available

phosphorus; Ca, calcium; Na, sodium, Mg, magnesium, and K, potassium. Treatments: control, no DPS;DPS, deinking paper sludge; SS,
sewage sludge; SS5, 5 Mg ha−1 sewage sludge; SS10, 10 Mg ha−1 sewage sludge; F, 280 Mg ha−1 N fertilizer; DPS30, 30 Mg ha−1 deinking
paper sludge; DPS60, 60 Mg ha−1 deinking paper sludge; DPS30F, 30 Mg ha−1 deinking paper sludge with F; DPS60F, 60 Mg ha−1 deinking
paper sludge with F; MIXED, 60 Mg ha−1 deinking paper sludge and 10 Mg ha−1 sewage sludge. * Statistically Significant at p < 0.05,
** significant at p < 0.01, NS means no significant.

Table 4. DPS application effects on soil chemical properties.

pH OC TN NH4
+ NO3− P Ca2+ Na+ Mg2+ K+

g kg−1 gkg−1 mg kg−1 mg kg−1 mg kg−1 mg kg−1 mg kg−1 mg kg−1 mg kg−1

Soil 1 clCM

Control 8.2 b 5.8 b 0.10 c 110.9 b 139.9 a b 42.4 e d 1629.5 b 1235.8 c 1190.7 a 472.6 a b

DPS30 8.0 c 5.6 a 0.17 a 119.0 ab 140.5 b 43.3 d 2297.4 b 1381.6 a 453.6 b 503.7 a

DPS60 8.6 a 4.8 b 0.10 c 135.8 a 166.0 a b 88.4 a 748.0 c 1100.9 d 569.2 b 469.8 b

DPS30F 8.5 a 4.8 b 0.09 d 99.1 b 136.0 a b 46.4 c 3259.0 a 1176.5 d 521.2 b 477.3 b

DPS60F 8.4 a 4.9 b 0.09 d 129.4 b 156.4 a b 47.8 b 3195.4 a 1349.2 a b 1101.6 a 484.9 b

MIXED 8.3 b 4.7 c 0.12 c 131.2 a 164.7 a 42.3 e 694.5 d 1306.0 b 1069.2 a 477.3 b c

SS5 8.4 b 5.0 b 0.14 b 120.2 b 148.0 a b 30.4 g 1709.7 b 1457.1 a 318.4 b 494.3 b

SS10 8.3 b 4.6 c 0.14 b 129.8 a 174.2 a 35.6 f 1763.1 b 1349.0 b 388.8 b 481.1 b

Soil 2 coLV

Control 6.1 a b 4.6 b 0.19 b 182.5 b 222.9 b 12.3 h 614.2 c 901.2 c 146.4 b c 400.9 b

DPS30 6.3 a b 5.5 a 0.20 a 119.6 c 146.5 c 20.8 d 614.6 c 982.2 b 161.6 a b 383.0 c

DPS60 6.6 a 4.2 b 0.19 b 140.1 c 175.1 c 22.8 c 560.9 b 809.5 d 193.1 a b 407.5 b

DPS30F 6.3 a b c 4.7 b 0.17 c 147.1 c 182.0 c 19.8 e 747.9 a b 809.5 d 163.3 a b 400.0 c

DPS60F 6.5 a 4.6 b 0.17 c 124.7 c 170.2 c 36.4 b 848.2 a 1521.9 a 198.7 a b 435.8 a

MIXED 6.4 a 4.0 c 0.18 b 237.0 a 296.9 b 15.9 f 641.1 b 841.9 c 162.3 a 390.5 c

SS5 6.2 bc 4.5 b 0.19 b 128.1 c 157.2 c 15.1 g 523.1 c 906.6 b c 129.6 b 405.6 a b

SS10 6.2 c 3.9 c 0.17 c 218.1 b 305.9 a 69.3 a 514.7 c 831.1 c 129.6 b 405.6 a b

pH; OC, organic carbon; total nitrogen, TN; NH4
+, ammonium; NO3

−, nitrate, mg kg−1; available P; Treatments: control, no DPS; DPS:
deinking paper sludge; SS: sewage sludge; SS5: 5 Mg ha−1 sewage sludge; SS10: 10 Mg ha−1 sewage sludge; F: 280 Mg ha−1 N fertilizer;
DPS30: 30 Mg ha−1 deinking paper sludge; DPS60: 60 Mg ha−1 deinking paper sludge; DPS30F: 30 Mg ha−1 deinking paper sludge with F;
DPS60F: 60 Mg ha−1 deinking paper sludge with F; MIXED: 60 Mg ha−1 deinking paper sludge and 10 Mg ha−1 sewage sludge. Averages
that are not followed by the same letter are significantly diferent at the 5% risk threshold based on Tukey’s test. Means marked with the
same letter did not differ significantly between treatments (p < 0.05; n = 4).

Total organic nitrogen was highly significantly (p < 0.0001) affected by soils, treatments
as well as their interaction (Table 3). An increase of 0.065 g kg−1 and 0.013 g kg−1 occurred
in clCM and coLV respectively, compared to the control. More interestingly, the application
of the DPS 30 Mg ha−1 rate without N fertilizer significantly increased total organic nitrogen
in both soils (Table 4). There was no significant difference between the 60 Mg ha−1 (DPS60)
and MIXED treatments in both soils. However, there was a significant decrease between
the control and the DPS30F and DPS60F treatments from 0.103 to 0.09 g kg−1 in clCM soil
and from 0.19 to 0.17 g kg−1 in coLV soil.

3.1.3. Variation of Mineral Nitrogen (N-NH4
+ and N-NO3

−) and Available P

The NH4
+ and NO3

− concentrations depended highly on soils (p < 0.0001), treatments
(p < 0.0001) and their interaction (p < 0.001) (Table 3). Among the two soils, maximum
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NH4
+ and NO3

− occurred in the acidic coLV soil with the MIXED (237.0 mg kg−1) and
DPS30F (296.9 mg kg−1) treatments.

In the clCM soil, post-harvest soil analysis showed that NH4
+ values were significantly

higher than the control for only the Mixed, DPS60, and SS10 treatments. For the other
treatments, NH4

+ was either lost or absorbed by the plant. In the acidic coLV soil, the
analysis showed that the MIXED treatment had either the highest concentration of NH4

+ (a
significant increase compared to the control and other treatments), where the concentration
significantly increased of from 182.6 to 237.0 mg kg−1 (Table 4).

The addition of DPS at rates of 30 and 60 Mg ha−1 with and without N fertilizer
had no significant effect on NO3

− concentration in clCM soils. In contrast, the Mixed
and SS10 treatments significantly increased the soil NO3

− concentration from 139.89 to
174.18 mg kg−1 after harvest compared to the control. In the acidic coLV soil, there was a
highly significant decrease in the NO3

− concentration for DPS doses of 30 and 60 Mg ha−1

with and without fertilizer compared to the control. In contrast, the Mixed and SS10
treatments significantly increased the soil NO3

− concentration from 222.9 to 305.9 mg kg−1

after harvest compared to the control.
Available P was highly dependent (p < 0.0001) on soils, treatments, and their interac-

tion. An application of DPS increased available P in both soils (Table 3). In the clCM soil,
there was a significant increase for the two DPS rates (30 and 60 Mg ha−1) with or without
N fertilizer especially for 60 Mg ha−1. Whereas for the two SS doses, there was a decrease
in available P compared to the control in cl CM. Whereas, there was a positive effect on the
available P content for all DPS and SS treatments in the acidic coLV soil (Table 4).

3.1.4. Variation of Nutrients (Ca2+, Mg2+, K+ and Na+)

Based on the results, significant effects of soils, treatments, and their interaction were
found for micronutrient (p < 0.0001) (Table 3). The application of soil amendments increased
all nutrients in the clCM soil compared to the co LV soil (Table 4).

In clCM soil, the addition of 30 and 60 DPS Mg ha−1 with N fertilizer produced a
highly significant increase in Ca2+ concentration compared to the control (from 1629.5 to
3259.0 mg kg−1) For the DPS60 treatment without fertilizer, there was a strong decrease in
Ca2+ concentration compared to the control. In the acidic coLV soil, there were significant
increases in the concentration of Ca2+ compared to the control for the DPS30F (614.2
to 747.9 mg kg−1), DPS60F (614.2 to 848.2 mg kg−1) and MIXED treatments 614.2 to
641.1 mg kg−1) (Table 4).

There was a significant drop in the Mg2+ concentration following the application of
amendments to the clCM soil, except for Mixed and DPS60F treatments, whereas in the
coLV soil, there was no significant effect compared to the control.

K+ values were significantly higher than the control in the acidic coLV soil, only for
theDPS60F. The DPS60F treatment significantly decreased the Na+ concentration in the
clCM soil. There was also a significant decrease in the Na+ concentration for the DPS60
and DPS30F in the acidic coLV soil (Table 4).

3.1.5. Effect on Cation Exchange Capacity

Results showed a significant effect of soils (p < 0.0001), treatments (p < 0.001), and
their interaction (p < 0.005), on the cation exchange capacity (CEC) (see Supplementary
data). In the clCM soil, CEC values established to 23.08, 29.35 to 50 meq 100 g−1 soil for
the control, DPS60 and MIXED treatments respectively. In the coLV soil, the maximum
CEC value was also observed for the MIXED (DPS + SS) treatment (195.0 meq 100 g−1)
compared to the control (134.22 meq 100 g−1) and DPS60 (133.97 meq 100 g−1).

3.2. Effect of De Inking Paper Sludge on Carbon Mineralization

In the absence of N fertilizer, the addition of DPS30 (30 Mg ha−1) increased the C0
mineralization potential for both soils. Indeed, DPS provides an appreciable supplement
(63%) of organic carbon (Table 5). Doubling this rate with DPS60 produced a slight decrease
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in C0 in the cl CM soil but C0 remained stable in the coLV soil. The addition of ammonium
nitrate did not affect the mineralization potential of any of the treatments in either soil
except for DPS60 added to the coLV soil. The mineralization coefficient k did not seem to
be affected by DPS inputs, but N inputs (organic or mineral) increased this coefficient. The
maximum mineralization rate occurred for the SS10 and DPS60 treatments in the clCM and
coLV soils, respectively.

Table 5. Kinetic parameters of carbon (C) mineralization according to the exponential model calculated as Ct = C0 (1 − e(−kt))
using Curve Expert Professional software.

Soil Calcaric Cambisol Cromic Luvisol

Treatments C0
(mgC kg−1)

K
(Day−1)

C0 * k
(mg kg−1 Day−1) R2 C0

(mgC kg−1)
k

(Day−1)
C0 * k

(mg kg−1 Day−1) R2

Control 231.9 0.024 5.6 0.99 339.6 0.116 39.4 0.87
DPS30 340.8 0.019 6.4 0.99 364.7 0.104 37.9 0.87
DPS60 301.3 0.024 7.2 0.98 364.8 0.114 41.5 0.88
MIXED 495.1 0.013 6.2 0.99 417.6 0.092 38.2 0.88

SS10 306.6 0.041 12.6 0.94 404.6 0.076 30.9 0.87
ControlF 243.6 0.028 6.8 0.97 327.6 0.118 38.8 0.83
DPS30F 274.0 0.028 7.6 0.98 337.5 0.111 37.5 0.85
DPS60F 297.1 0.033 9.8 0.98 460.7 0.078 36.12 0.91

SS5: 5 Mg ha−1 sewage sludge SS10: 10 Mg ha−1 sewage sludge; F: 280 Mg ha−1 N fertilizer; DPS30: 30 Mg ha−1 deinking paper sludge
DPS60,60 Mgha−1 deinking paper sludge; C0, Mineralizable carbon potential expressed in mg C kg−1; k, Mineralization constant expressed
in day—C0 * k, Mineralization rate expressed in mg kg−1 day−1.

3.3. Effect of DPS on Nutrient Status, Yield, and Root Length of Durum Wheat
3.3.1. Grain Yield and Nutrient Status

Biosolid application improved the grain yield of the clCM soil for DPS30F, MIXED,
SS5, and SS10 treatments compared to the control. Significant decreases in grain yield
were observed for the co LV soil, except for the DPS 60 F treatment, which produced
a significant increase (Table 6). Results revealed that, in the clCM soil, grain N content
decreased for all treatments except DPS60F. Whereas, in the co LV soil, grain N content
increased significantly for the DPS30, DPS30F, DPS60F and SS10 treatments. For grain
P content, the maximum concentration was occurred for the DPS30, DPS60 and SS10 in
the clCM soil and for the MIXED, SS5, and SS10 treatments in coLV soil. The highest
concentrations in grain K content were observed in clCM soils amended with DPS30 and
DPS60. While, in the coLV soil, the DPS60, MIXED, SS5, and SS10 treatments produced
the highest contents. Data showed that DPS30 and DPS 60 positively affected the Ca2+

grain content on the clCM soil, however, we registered a decline using the MIXED, SS5,
and SS10 treatments. For coLV soils, we noted a positive effect of the DPS 60 application
on Ca2+ grain content, however, we observed a negative effect when adding DPS30 and
DPS30F. Moreover, results revealed no significant effects on grain Mg content for nearly all
treatments, excepting DPS60, MIXED, and SS10 added to the clCM soil. For the coLV soil,
Mg grain content increased significantly for DPS60 and declined for the DPS30, DPS30F,
and MIXED treatments. In the case of Na grain content, in clCM, we observed, an increase
in DPS60 and SS10 and we detected a significant only positive effect in DPS60 for coLV soil.

3.3.2. Straw

Data indicates that biosolid application consistently increased straw yield, particularly
for the cl CM soil, DPS30, DPS30F, MIXED, and SS10 treatments compared to the control.
For the co LV soil, with the exception of the DPS 60 F treatment, treatments caused a
significant decrease in straw yield (Table 7). The highest straw P content occurred for
the SS10, DPS30 and DPS60 treatments added to the clCM soil and DPS30 and DPS60
treatments added to the coLV soil. For Straw K content, we observed a significant increase
with the application of DPS30F and MIXED to clCM soil and the application of DPS60,
MIXED, SS5, and SS10 to the coLV soil. Deinking paper sludge alone (30 and 60 Mg ha−1)
or mixed with 10 Mg ha−1 sewage sludge significantly increased Ca2+ straw content for
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the cl CM soil. Whereas there was no significant effect for the co LV soil. The most notable
increase in straw Na+ content was detected for the Mixed in cl CM soil and for DPS60F
and SS10 treatments in co LV soil.

Table 6. Wheat grain yield and selected elemental composition as affected by biosolid application.

Soil Type Grain Yield
g Pot−1

N
%

P
%

K
%

Ca
%

Mg
%

Na
%

Soil 1 clCM

Control 30.21 b 3.65 a 0.33 b 0.45 b 0.28 b 0.02 c 0.73 c

DPS30 15.67 c 2.59 c 0.41 a 0.61 a 0.40 a 0.02 c 0.84 c

DPS60 6.90 d 3.37 b 0.67 a 0.79 a 0.40 a 0.04 a 1.04 b

DPS30F 48.52 a 1.74 d 0.12 c 0.40 b 0.20 b 0.02 c 0.57 d

DPS60F 5.75 d 3.59 a 0.29 b 0.49 b 0.20 b 0.02 c 0.75 c

MIXED 45.10 a 2.88 c 0.13 c 0.43 b 0.16 c 0.03 b 0.75 c

SS5 55.15 a 3.20 b 0.35 b 0.41 b 0.17 c 0.02 c 0.47 d

SS10 61.75 a 3.22 b 0.47 a 0.46 b 0.19 c 0.03 b 1.66 a

Soil 2 coLV

Control 38.52 b 3.24 b 0.54 b 0.32 b 0.24 b 0.02 b 0.66 b

DPS30 11.35 d 3.66 a 0.20 c 0.23 c 0.17 c 0.01 c 0.62 b

DPS60 3.25 e 1.16 d 0.17 c 0.38 a 0.35 a 0.05 a 1.23 a

DPS30F 38.27 b 3.43 a 0.64 b 0.32 b 0.20 c 0.01 c 0.56 b

DPS60F 44.32 a 3.42 a 0.53 b 0.25 c 0.19 c 0.02 b 0.63 b

MIXED 28.02 c 2.01 c 1.05 a 0.36 a 0.18 c 0.01 c 0.66 b

SS5 30.14 c 2.85 c 1.31 a 0.34 ab 0.21 b 0.02 b 0.53 b

SS10 31.17 c 3.58 a 1.32 a 0.33 ab 0.14 d 0.02 b 0.55 b

Treatments: control, no DPS; DPS, deinking paper sludge; SS5, 5 Mg ha−1 sewage sludge; SS10, 10 Mg ha−1 sewage sludge; F, 280 Mg ha−1

N fertilizer; DPS30, 30 Mg ha−1 deinking paper sludge; DPS60, 60 Mg ha−1 deinking paper sludge; DPS30F, 30 Mg ha−1 deinking paper
sludge with F; DPS60F, 60 Mg ha−1 deinking paper sludge with F; MIXED, 60 Mg ha−1 deinking paper sludge and 10 Mg ha−1 sewage
sludge. Lowercase letters indicate significant differences between soils based on Tukey’s test. Means marked with the same letter did not
differ significantly between soils (p < 0.05; n = 4).

Table 7. Wheat straw yield and selected elemental composition as affected by deinking paper sludge application.

Straw Yield g
Pot−1 P % K % Ca % Mg % Na %

Soil 1 clCM

Control 49.95 c 0.33 d 1.04 c 0.16 c 0.52 b 2.00 b

DPS30 56.45 b 0.41 c 0.44 d 0.37 a 0.74 a 2.11 b

DPS60 27.47 e 0.67 a 0.59 d 0.34 a 0.26 c 2.17 b

DPS30F 56.08 b 0.12 d 1.91 a 0.17 c 0.47 b 2.08 b

DPS60F 25.45 e 0.29 d 0.98 c 0.20 b 0.44 b 1.99 b

MIXED 65.05 a 0.13 d 1.25 b 0.24 b 0.35 b 3.39 a

SS5 34.27 d 0.35 d 0.80 d 0.19 c 0.29 c 1.79 c

SS10 63.70 a 0.47 b 0.55 d 0.15 c 0.39 b 1.66 c

Soil 2 coLV

Control 43.05 b 0.14 c 0.59 b 0.16 a 0.17 b 1.63 b

DPS30 26.32 d 0.62 a 1.94 a 0.16 a 0.19 ab 1.68 b

DPS60 12.85 e 0.30 b 0.26 c 0.16 a 0.15 b 1.56 b

DPS30F 43.87 b 0.09 d 0.66 b 0.16 a 0.09 c 1.65 b

DPS60F 49.80 a 0.12 c 0.63 b 0.16 a 0.19 ab 1.81 a

MIXED 29.04 d 0.13 c 0.52 b 0.17 a 0.09 c 1.60 b

SS5 37.15 c 0.06 d 0.52 b 0.16 a 0.12 b 1.66 b

SS10 41.77 b 0.13 c 0.51 b 0.13 a 0.30 a 1.91 a

DPS, deinking paper sludge; SS, sewage sludge. Treatments: control, no DPS, DPS, deinking paper sludge; SS5, 5 Mg ha−1 sewage sludge;
SS10, 10 Mg ha−1 sewage sludge; F, 280 Mg ha−1 N fertilizer; DPS30, 30 Mg ha−1 deinking paper sludge; DPS60, 60 Mg ha−1 deinking
paper sludge; DPS30F, 30 Mg ha−1 deinking paper sludge with F; DPS60F, 60 Mg ha−1 deinking paper sludge with F; MIXED, 60 Mg ha−1

deinking paper sludge and 10 Mg ha−1 sewage sludge. Lowercase letters indicate significant differences between soils based on Tukey’s
test. Means marked with the same letter did not differ significantly between soils (p < 0.05; n = 4).
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3.3.3. Root Length and Biomass

The effect of the combined application of SS and DPS treatments on root length and
biomass and nutrient content is illustrated in Table 8. All treatments induced a higher
root length as compared to the control for the clCM soil, whereas, for the coLV soil, we
observed this trend only when adding DPS60F. As for root biomass, data showed an
improvement of this parameter for most of the treatments for the two soils. Regarding
nutrient content, all treatments induced an increase in the concentrations of some elements
for both soils compared to the control. Results show an inhibition of root N concentration
for the clCM soil for all treatments expect for DPS30. However, an increase in this parameter
was observed for DPS60 and DPS60F added to the co LV soil. Root P content increased
significantly with the application of DPS60, MIXED, SS5, and SS10 to the clCM soil, and with
the application of the DPS30, DPS60, DPS30F, DPS60F and MIXED treatments to the coLV
soil, while it declined with SS5 and SS10. The use of DPS60F and SS5 significantly increased
root K content for the cl CM soil, more interestingly, data revealed an improvement of the
concentration of K for all treatments in the case of the coLV soil.

Table 8. Wheat root length and selected elemental composition affected by deinking paper sludge application.

Root
Length cm

Root
Biomass g N % P % K % Ca % Mg % Na %

Soil 1 clCM

Control 15.75 c 40.43 e 2.25 a 0.07 c 0.24 b 0.46 b 0.52 b 1.15 b

DPS30 26.25 b 84.70 a 2.28 a 0.09 c 0.08 c 0.61 a 0.74 a 0.88 c

DPS60 31.25 a 72.25 b 1.46 c 0.13 b 0.10 c 0.34 c 0.26 e 0.76 c

DPS30F 22.75 b 49.43 c 0.61 e 0.05 c 0.25 b 0.37 c 0.47 c 0.94 c

DPS60F 28.75 a 47.28 d 1.28 c 0.08 c 0.31 a 0.40 b 0.43 c 1.35 a

MIXED 29.12 a 53.92 c 1.99 b 0.25 a 0.14 c 0.45 b 0.36 d 1.37 a

SS5 24.68 b 50.82 c 1.35 c 0.23 a 0.30 a 0.40 c 0.29 d 0.88 c

SS10 26.60 b 73.15 b 1.05 d 0.24 a 0.20 b 0.48 b 0.39 d 1.13 b

Soil 2 coLV

Control 11.02 b 55.95 c 1.74 b 0.15 c 0.09 d 0.34 b 0.68 a 1.25 c

DPS30 2.50 d 81.51 a 1.60 b 0.14 b 0.43 a 0.33 b 0.49 b 0.59 e

DPS60 4.37 d 47.00 d 2.13 a 0.19 b 0.32 b 0.36 a 0.22 c 1.64 a

DPS30F 10.87 b 72.74 a 1.38 c 0.17 b 0.25 b 0.33 b 0.24 c 1.31 b c

DPS60F 14.00 a 60.98 b 2.03 a 0.19 b 0.31 b 0.42 a 0.14 d 1.52 b

MIXED 8.87 c 48.39 d 1.09 d 0.46 a 0.17 c 0.25 c 0.20 c 0.82 d

SS5 11.25 b 62.13 b 1.33 c 0.07 d 0.13 c 0.25 c 0.06 e 0.95 d

SS10 10.37 b 64.73 b 1.56 b 0.11 c 0.19 c 0.20 c 0.16 d 0.62 e

DPS: deinking paper sludge; SS: sewage sludge; Treatments: control, no DPS; DPS, deinking paper sludge; SS5, 5 Mg ha−1 sewage sludge;
SS10, 10 Mg ha−1 sewage sludge; F, 280 Mg ha−1 N fertilizer; DPS30, 30 Mg ha−1 deinking paper sludge; DPS60, 60 Mg ha−1 deinking
paper sludge; DPS30F, 30 Mg ha−1 deinking paper sludge with F; DPS60F, 60 Mg ha−1 deinking paper sludge with F; MIXED, 60 Mg ha−1

deinking paper sludge and 10 Mg ha−1 sewage sludge. Lowercase letters indicate significant differences between soils based on Tukey’s
test. Means marked with the same letter did not differ significantly between soils (p < 0.05; n = 4).

Furthermore, we observed an increase in Ca2+ root content using DPS30 for the cl CM
soil and DPS60 and DPS60F for the coLV soil. Root Mg2+ content was significantly higher
for DPS30 added to the clCM soil and decreased for all treatments compared to the control
for the coLV soil. The application of DPS60F and MIXED produced the highest values of
root Na content for the cl CM soil, while the highest values for the coLV soil occurred when
DPS60, DPS30F andDPS60Fwere applied.

3.4. Metal Content

Cd and Pb contents in wheat extracts were below the detection limits of the appa-
ratus (Flame Atomic Absorption Spectroscopy: AA400 Flame), i.e., <0.8 µg Cdl−1 and
<15 µg Pb l−1.
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The Cd and Pb contents in durum wheat were less than 0.8 µg g−1 for Cd and less
than 15 µg g−1 for Pb. The acceptable thresholds for cereals are 0.2 mg g−1 for Cd and
0.2 mg g−1 for Pb as indicated by the European regulation of the 1881/2006 European
directive. [26] There is therefore no contamination risk by either cadmium or lead.

4. Discussion

One of the most important benefits of sludge application to agricultural soils is the
increased availability of plant nutrients. Deinking paper sludge was characterized as an
alkaline residue according to the studies of Marouani et al. [2,4,5]. Soil characteristics were
in the same range as those reported in many studies conducted in the same region [4,13].
Previous studies by Cabral and Vasconcelos [26], Nunes et al. [17] and Marouani et al. [2]
established a close relationship between paper sludge application rate and pH in soils,
especially in acidic soils. This can be explained by the high initial pH of calcareous clCM
soils, which is expected to be more strongly buffered than soils with low pH [25].

The Marouani et al. [4] study, which evaluated the effect of two years of DPS applica-
tion on the same calcareous soil indicated that, following a limestone amendment, the Ca2+

ions replace the H+ ions on the clay humic complex, thus decreasing the acidity. However,
this study only showed a short-term effect of DPS application and only for 30 Mg ha−1

in the absence of nitrogen fertilizer, pH was lower than the control. This decrease was
linked to a “priming effect” produced by the addition of a small dose of organic matter in
the form of deinking sludge, causing intense mineralization, and releasing organic acids.
and that for the other treatments DPS30F, DPS60F, and DPS60, the mineralization is less
intense thus promoting a slow degradation of the matter and the pH increases significantly
compared to the control (8.16–8.57). This could be explained by the change in soil pH
following an acidic or basic amendment, the soil would tend to return to its original pH
after a certain period due to the soil’s buffering capacity. This principle is very important
especially, for calculating the dose necessary to correct pH [25]. For the other wastewater
sludge treatments (Mixed, 5 SS, and 10 SS), there were no significant differences compared
to the control. Thus, it can be concluded that the soil returned to its initial pH after harvest
or that the pH remained unchanged. These results give us an idea of the residence time
and the degradation of DPS. As to the 30 Mg ha−1 rate, it does not seem to slow or block
mineralization in agricultural soils even after the end of the growing season. This result
is in concordance with those of Marouani et al. [4]. In the acidic coLV soil, the sludge
application rate was closely related to the change in soil pH and about 60 Mg ha−1 of DPS
will be required to raise the pH from 6.01 to 6.54 in this soil, whether in the absence or
presence of fertilizer. The present results are in accordance with other studies where a close
relationship was reported between paper sludge application rate and pH in Mediterranean
soils [4,17,26]. DPS application significantly increased the pH in both soils (Table 4). Soils
with high initial pH were expected to be more strongly buffered than soils with low initial
pH [24,25].

When chemical N fertilizers (DPS30F and DPS60F) are added, there is a strong increase
in EC due to the salts contained in the fertilizers. In the acidic coLV soil, the decrease was
statistically significant only for the 30 Mg ha−1 sludge dose. For both soils, the value of
EC for the mixed treatment (10 Mg ha−1 SS + 60 Mg ha−1 DPS) is lower than the same
60 Mg ha−1 dose with chemical N fertilizer. This result highlights the importance of
integrating organic nitrogen with DPS (i.e., sewage sludge) to reduce salt accumulation.
DPS is composed of kaolinite and montmorillonite [5] and could be recommended for saline
limestone soils to decrease the Na+ concentration. Therefore, studies of DPS applications
to saline soils are a new track that should be followed. Our results also showed that
the absence of an increase in SOC during the growing cycle can be explained by the
mineralization of the OM and its assimilation by plants. The objective of adding DPS to
soils is to increase the SOC and thus use DPS as a fertilizer [2,4,5]. Considering our results,
we recommend adding doses at rates below 30 Mg ha−1 for calcareous soils if the objective
is an increase in the organic carbon stock of the soil.
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A rapid mineralization of organic carbon following the addition of a nitrogen source
(mineral or organic) was observed. This suggests that nitrogen could have been immo-
bilized during the degradation of labile C constituents in the DPS and that organic N
mineralized very slowly when high levels of sludge were applied to the clCM soil. Studies
have reported that amending soils with high C:N paper sludge caused a net immobi-
lization of soil N and reduced plant growth [4,24]. Whereas low C:N sludge increased
plant-available N and biomass production in N-limited soils [17,26]. Thus, the choice of
nitrogen type is important. The association of DPS and organic fertilizer SS may increase
the adsorbent capacity of the humic clay complex compared to chemical amendments.
NO3

− ions are still in the drainage water when paper sludge is amended with chemical
fertilizer [6].

The saturation of Ca2+ in the soil solution accompanied by N immobilization due to
high C content in DPS60 for the clCM soil induces humus fixation on clay by the Ca2+, ion
and the formation of calcium bonds [4]. The sludge used in this study had a Ca:Mg ratio
of 131:1, indicating that an adjustment of Mg is needed to reduce this ratio in the future.
These findings agree with other studies, using similar materials, which reported that no
consistent trend was observed for soil Mg as a function of the addition of increased paper
sludge rates to soils. Except for the Mixed treatment (combined DPS and SS), Mg 2+ values
were significantly higher than the control and the differences were statistically significant.
Ca2+ plays an antagonistic role for potassium, unlike K+. Ca2+ slows the absorption of
water and increases respiration. Ca2+ also functions as a growth regulator by slowing the
elongation of plant organs and thus intervenes in the root development of the plants. Mg2+

and K+ are essential to plant life, Mg2+ is a constituent of chlorophyll and activates certain
enzymes involved in the metabolism of phosphorus, lipid carbohydrate proteins, and
vitamins. K+ is a catalytic agent in the synthesis of carbohydrates and proteins. Deficiencies
in Mg2+ and K+ are rare in clay or silty clay soils but frequent, on the other hand, in sandy
or very calcareous soils.

The increase in available P in amended soils reflects the mineralization of organic P
from the decomposition of DPS. However, due to P fixation, increasing pH and Ca during
the experiment limited this effect [17,27]. Except for Mg in the clCM soil, there was a
highly significant relationship between sludge application and all exchangeable cations
in both soils, indicating that an increase in sludge rate resulted in a proportional increase
in exchangeable basic cations in the soil. The net effect of the increase in exchangeable
cations was the enrichment of soil exchange sites with basic cations in both soils. As was
expected, the increases in CEC are attributable to increases in organic matter. The CEC of a
soil depends on the nature of the colloids and the soil pH.

DPS mineralization was characterized by two steps; the first phase consisted in high
biological activity due to the presence of readily biodegradable substances and by a large
release of CO2. This release decreased in the second phase because of the reduction in
biological activity caused by a decrease in readily biodegradable substances [5]. Mineral-
ization results explained the role of nitrogen in stimulating the activity of microorganisms.
The speed of mineralization decreased for the coLV soil and this process can be linked to
the acidic pH, which negatively affects the biological activity of the soil microorganisms
and the soil CEC, which depends on soil texture.

Plant response to biosolids varied between amendment type, soil type, and plant
part (grain, straw, or root). This study suggests that DPS30F and DPS60F should have
sufficient N and other essential elements to provide good grain yields. The highest grain
yield obtained for the coLV soil with DPS60F may be explained by its low cation exchange
capacity. Hence, adding more organic matter might help to retain nutrient cations at
exchange sites and promote soil structure [28]. Moreover, type, grain yield was affected by
the interaction between treatment and soil in this study. Our investigation indicated that
DPS30F has the potential for improving yield for clay-loam-sand (balanced) textured soils
(coLV). These results could be attributed to the belowground favorable living conditions for
microorganisms [29,30]. Recent reviews have highlighted the beneficial effects of this soil
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texture which provides higher and faster mineralization than clay-loam textures, as found
for the clCM soil [4]. The use of DPS instead of sending it to landfills can mitigate around
30% of greenhouse gas emissions [31,32] and the substitution of chemical fertilizer sources
by organic amendments based on DPSs can lead to a 40% decrease of N2O emissions [2].

The influence of amendments type and soil type were observed for straw yield.
Compared to the addition chemical fertilizer, the application of organic sources improved
the straw yield for both soils. This can be interpreted as a positive effect produced by these
two amendments and they could be used for forage crops. The amendment rate depended
also on the soil characteristics. Our findings suggest that the appropriate selection of rates
and fertilizer combinations increases grain and straw yields.

Root length and biomass were affected by amendment and soil type. The maximum
root length was obtained for the 60 Mg ha−1 DPS treatment can be explained by the highest
values of C:N in this amendment (between 73 and 117), which resulted in an increase in
root length as an alternative to the strategy of increasing resource N uptake. However, root
biomass was found to be highest when adding 30 Mg DPS ha−1. This finding is in line with
the Hirte et al. [33] study which established that root biomass is inhibited by N deficiency.

Regardless of amendment type, soil mineralization was affected by DPS rate, the
presence or absence of N fertilizer, and the type of N fertilizer (mineral or organic).

The variation of macro and micronutrients with the different treatments was found to
be significantly related to different plant parts and soil types. Overall, the highest grain
N and P contents were obtained with DPS30 and DPS60 applied to either soil. This result
was likely caused by the availability of these two elements which were derived from the
decomposition of DPS. More interestingly, the high grain N values obtained for these two
amendments is the parameter that characterizes the quality of grain and consequently the
grain yield [34].

The analysis of the soil and plants after the application of deinking sludge did not
detect any trace of Cd and Pb. This shows that DPS sludge did not contaminate the
soils under our experimental conditions. Moreover, in their characterization of DPS,
Marouani et al. [5] demonstrated that the same DPS used in this study can be used as
residual fertilizing matter according to the strictest Quebec standards for the management
of paper sludge and that there was no risk of metallic or organic pollution in the short and
medium-term. Marouani et al. [4] also evaluated the effect of DPS under field conditions
after two years of application (30 and 60 Mg ha−1) on the same clCM soil used for our
experiment and showed that there was no risk of soil contamination if the application rate
did not exceed 60 Mg ha−1.

5. Conclusions

The application of de-inking sludge characterized by low N, P, and K contents and
a very high C:N ratio seems to improve straw production without having any effect on
the grain. However, results showed that better soil fertility and an increase in the durum
wheat yield were observed when DPS was combined with a nitrogen supplement source.
The form of nitrogen supplement (organic or mineral) affected soil mineralization, soil
fertility, and plant growth. The rate of DPS application varied according to the initial
CEC, texture and pH of the soil, and the form of N supply. For example, for the clCM
soil, the 30 Mg DPS ha−1 rate was increased durum wheat grain yield (around 37%), straw
yield, and root biomass. For the coLV soil, the 60 DPS Mg ha−1 rate associated with
10 SS Mg ha−1 is recommended to increase durum wheat yield and maintain soil fertility.
The value of applying biosolids (DPS and SS) lies in their capacity to improve soil properties
and to provide nutrients to the plants, which ensures plant growth. A long-term study
is required to validate these results under field conditions and with other crops. Fodder
crops should be tested.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11040709/s1, Table S1: Analysis of variance of DPS application effects on Electrical
Conductivity (CE) and on cation exchageable capacity (CEC).
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https://www.mdpi.com/article/10.3390/agronomy11040709/s1


Agronomy 2021, 11, 709 15 of 16

Author Contributions: Conceptualization, E.M.; methodology, E.M., B.Z. and N.K.B. and R.I.Z.;
validation, N.K.B., N.Z. and A.K.; formal analysis, E.M. and B.B.; investigation, E.M., B.Z., K.B. and
N.K.B.; resources, N.K.B., N.Z. and A.K.; data curation, E.M., B.Z., K.B., R.I.Z.; writing—original
draft preparation, E.M.; writing—review and editing, K.B., N.K.B., N.Z., A.K.; supervision, N.K.B.,
N.Z., A.K.; project administration, N.K.B.; funding acquisition, N.K.B., A.K. All authors have read
and agreed to the published version of the manuscript.

Funding: We are grateful to Tunisie Ouate, CETIBA, CRIBIQ, Mitacs, Canada Research Chairs, the
Tunisian Ministry of Industry, the Tunisian Ministry of Higher Education, and Agriculture and
Agri-Food Canada.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank for the technical support of National Agency for Waste Management
(ANGed) “Department of Industrial Waste” under the tutorial of the Ministry of the Environment
and sustainable development of Tunisia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hébert, M. Guide sur le Recyclage des Matières Résiduelles Ferilisantes: Critères de Référence et Normes Réglementaires; Ministry of

Sustainable Development, Environment, and Fight Against Climate Change: Quebec City, QC, Canada, 2015. Available online:
http://www.environnement.gouv.qc.ca/matieres/mat_res/fertilisantes/critere/guide-mrf.pdf (accessed on 26 June 2020).

2. Marouani, E.; Ziadi, N.; Lévesque, V.; Benzina, N.K.; Bouslimi, B.; Koubaa, A. Mitigation of CO2, CH4 and N2O from Acidic Clayey
Soil Amended with Fertilizer Pellets Based on Al-kaline Organic Residues. Waste Biomass Valorization 2020, 1–15. [CrossRef]

3. Faubert, P.; Barnabé, S.; Bouchard, S.; Côté, R.; Villeneuve, C. Pulp and paper mill sludge management practices: What are the
challenges to assess the impacts on greenhouse gas emissions? Resour. Conserv. Recycl. 2016, 108, 107–133. [CrossRef]

4. Marouani, E.; Benzina, N.K.; Ziadi, N.; Bouslimi, B.; Abida, K.; Tlijani, H.; Koubaa, A. CO2 Emission and Change in the Fertility
Parameters of a Calcareous Soil Following Annual Applications of Deinking Paper Sludge (The Case of Tunisia). Agronomy 2020,
10, 956. [CrossRef]

5. Marouani, E.; Benzina, N.K.; Ziadi, N.; Bouslimi, B.; Abouda, A.; Koubaa, A. Deinking sludge compost stability and maturity
assessment using Fourier transform infrared spectroscopy and thermal analysis. Waste Manag. Res. 2019, 37, 1043–1057.
[CrossRef] [PubMed]

6. Camberato, J.J.; Gagnon, B.; A Angers, D.; Chantigny, M.H.; Pan, W.L. Pulp and paper mill by-products as soil amendments and
plant nutrient sources. Can. J. Soil Sci. 2006, 86, 641–653. [CrossRef]

7. Fierro, A.; Angers, D.A.; Beauchamp, C.J. Restoration of ecosystem function in an abandoned sandpit: Plant and soil responses to
paper de-inking sludge. J. Appl. Ecol. 1999, 36, 244–253. [CrossRef]

8. Ziadi, N.; Gagnon, B.; Nyiraneza, J. Crop yield and soil fertility as affected by papermill biosolids and liming by-products. Can. J.
Soil Sci. 2013, 93, 319–328. [CrossRef]

9. Filiatrault, P.; Camiré, C.; Norrie, J.P.; Beauchamp, C.J. Effects of de-inking paper sludge on growth and nutritional status of alder
and aspen. Resour. Conserv. Recycl. 2006, 48, 209–226. [CrossRef]

10. Rashid, M.; Barry, D.; Goss, M. Papermill biosolids application to agricultural lands: Benefits and environmental concerns with
special reference to situation in Canada. Soil Environ. 2006, 25, 85–98.

11. Chantigny, M. Émissions de protoxyde d’azote (N2O) en Agriculture, Contribution des Amendements Organiques, des Fertilisants
Miné-Raux et du Labour. In Proceedings of the 65e Congrès de l’Ordre Agronomique du Québec; 2018. Available online:
https://www.agrireseau.net/agroenvironnement/documents/chantigny.pdf (accessed on 26 January 2020).

12. Barriga, S.; Méndez, A.; Camara, J.; Guerrero, F.; Gascó, G. Agricultural valorisation of de-inking paper sludge as organic
amendment in different soils. J. Therm. Anal. Calorim. 2010, 99, 981–986. [CrossRef]

13. Annabi, M.; Bahri, H.; Latiri, K. Statut organique et respiration microbienne des sols du nord de la Tunisie. Biotechnologie,
Agronomie. Société Environ. 2009, 13, 401.

14. Latiri, K.; Lhomme, J.; Annabi, M.; Setter, T. Wheat production in Tunisia: Progress, inter-annual variability and relation to
rainfall. Eur. J. Agron. 2010, 33, 33–42. [CrossRef]

15. Chamekh, Z.; Karmous, C.; Ayadi, S.; Sahli, A.; Hammami, Z.; Fraj, M.B.; Benaissa, N.; Trifa, Y.; Slim-Amara, H. Stability analysis
of yield component traits in 25 durum wheat (Triticum durum Desf.) genotypes under contrasting irrigation water salinity. Agric.
Water Manag. 2015, 152, 1–6. [CrossRef]

16. Legrain, X.; Berding, F.; Dondeyne, S.; Schad, P.; Chapelle, J. Base de Référence Mondiale pour les Ressources en Sols 2014. Système
International de Classification des Sols pour Nommer les Sols et Élaborer des Légendes de Cartes Pédologiques. Available online:
http://www.fao.org/3/i3794fr/I3794FR.pdf (accessed on 26 June 2020).

http://www.environnement.gouv.qc.ca/matieres/mat_res/fertilisantes/critere/guide-mrf.pdf
http://doi.org/10.1007/s12649-020-01276-y
http://doi.org/10.1016/j.resconrec.2016.01.007
http://doi.org/10.3390/agronomy10070956
http://doi.org/10.1177/0734242X19864638
http://www.ncbi.nlm.nih.gov/pubmed/31395003
http://doi.org/10.4141/S05-120
http://doi.org/10.1046/j.1365-2664.1999.00395.x
http://doi.org/10.4141/cjss2012-129
http://doi.org/10.1016/j.resconrec.2006.02.001
https://www.agrireseau.net/agroenvironnement/documents/chantigny.pdf
http://doi.org/10.1007/s10973-010-0692-1
http://doi.org/10.1016/j.eja.2010.02.004
http://doi.org/10.1016/j.agwat.2014.12.009
http://www.fao.org/3/i3794fr/I3794FR.pdf


Agronomy 2021, 11, 709 16 of 16

17. Nunes, J.R.; Cabral, F.; López-Piñeiro, A. Short-term effects on soil properties and wheat production from secondary paper sludge
application on two Mediterranean agricultural soils. Bioresour. Technol. 2008, 99, 4935–4942. [CrossRef] [PubMed]

18. Pauwels, J.; Van Ranst, E.; Verloo, M.; Mvondo, Z.E.A. Manuel de Laboratoire de Pedologie: Methodes D’analyses de Sols et de
Plantes, Equipement, Gestion de Stocks de Verrerie et de Produits Chimiques. 1992. Available online: http://hdl.handle.net/18
54/LU-223183 (accessed on 20 June 2020).

19. Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3 Chemical Methods;
Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; Volume 5, pp. 961–1010. [CrossRef]

20. Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture:
Washington, DC, USA, 1954.

21. Waring, S.A.; Bremner, J.M. Ammonium Production in Soil under Waterlogged Conditions as an Index of Nitrogen Availability.
Nat. Cell Biol. 1964, 201, 951–952. [CrossRef]

22. Murphy, J.; Riley, J. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta
1962, 27, 31–36. [CrossRef]

23. Richards, J.E. Chemical characterization of plant tissue. Soil sampling and methods of analysis. Lewis Ann. Arbor. 1993, 15, 115–139.
24. Bremner, J.M.; Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner,

M.E. Nitrogen-Total. Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America and American Society of
Agronomy: Madison, WI, USA, 1982; Volume 2, pp. 595–624. [CrossRef]

25. SAS Institute Inc. Cary, NC, USA. 2008. Available online: https://support.sas.com/resources/papers/proceedings/pdfs/sgf200
8/190-2008.pdf (accessed on 20 June 2020).

26. Cabral, F.; Vasconcelos, E. Agricultural use of combined primary/secondary pulp mill sludge. Agrochimica 1993, 37, 409–417.
27. Luo, X.-S.; Yu, S.; Zhu, Y.-G.; Li, X.-D. Trace metal contamination in urban soils of China. Sci. Total Environ. 2012, 421–422,

17–30. [CrossRef]
28. Dos Santos Rheinheimer, D.; Anghinoni, I. Accumulation of soil organic phosphorus by soil tillage and cropping sys-tems under

subtropical conditions. Commun. Soil Sci. Plant Anal. 2003, 34, 2339–2354. [CrossRef]
29. Weil, R.R.; Magdoff, F. Significance of soil organic matter to soil quality and health. In Soil Organic Matter in Sustainable Agriculture;

CRC Press Inc.: Boca Raton, LA, USA, 2004; pp. 1–43.
30. Naveed, M.; Herath, L.; Moldrup, P.; Arthur, E.; Nicolaisen, M.; Norgaard, T.; Ferré, T.P.; De Jonge, L.W. Spatial variability of

microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field.
Appl. Soil Ecol. 2016, 103, 44–55. [CrossRef]

31. Faubert, P.; Bélisle, C.L.; Bertrand, N.; Bouchard, S.; Chantigny, M.H.; Paré, M.C.; Rochette, P.; Ziadi, N.; Villeneuve, C. Land
application of pulp and paper mill sludge may reduce greenhouse gas emissions compared to landfilling. Resour. Conserv. Recycl.
2019, 150, 104415. [CrossRef]

32. Faubert, P.; Lemay-Bélisle, C.; Bertrand, N.; Bouchard, S.; Chantigny, M.H.; Durocher, S.; Paré, M.C.; Rochette, P.; Tremblay, P.;
Ziadi, N.; et al. Greenhouse gas emissions following land application of pulp and paper mill sludge on a clay loam soil. Agric.
Ecosyst. Environ. 2017, 250, 102–112. [CrossRef]

33. Hirte, J.; Leifeld, J.; Abiven, S.; Mayer, J. Maize and wheat root biomass, vertical distribution, and size class as affected by
fertilization intensity in two long-term field trials. Field Crops Res. 2018, 216, 197–208. [CrossRef]

34. Ukalska-Jaruga, A.; Siebielec, G.; Siebielec, S.; Pecio, M. The Impact of Exogenous Organic Matter on Wheat Growth and Mineral
Nitrogen Availability in Soil. Agronomy 2020, 10, 1314. [CrossRef]

http://doi.org/10.1016/j.biortech.2007.09.016
http://www.ncbi.nlm.nih.gov/pubmed/17964139
http://hdl.handle.net/1854/LU-223183
http://hdl.handle.net/1854/LU-223183
http://doi.org/10.2136/sssabookser5.3.c34
http://doi.org/10.1038/201951a0
http://doi.org/10.1016/S0003-2670(00)88444-5
http://doi.org/10.2136/sssabookser5.3.c37
https://support.sas.com/resources/papers/proceedings/pdfs/sgf2008/190-2008.pdf
https://support.sas.com/resources/papers/proceedings/pdfs/sgf2008/190-2008.pdf
http://doi.org/10.1016/j.scitotenv.2011.04.020
http://doi.org/10.1081/CSS-120024068
http://doi.org/10.1016/j.apsoil.2016.03.004
http://doi.org/10.1016/j.resconrec.2019.104415
http://doi.org/10.1016/j.agee.2017.07.040
http://doi.org/10.1016/j.fcr.2017.11.023
http://doi.org/10.3390/agronomy10091314

	Introduction 
	Materials and Methods 
	Soils and Amendments 
	Experimental Design and Soil Sampling Scheme 
	Soil Chemical Analysis 
	Carbon Mineralization of Biosolid Amended Soils 
	Plant Analysis 
	Statistical Analysis 

	Results 
	Changes of Soil Chemical Properties after DPS Application 
	Effect on Soil pH and Electrical Conductivity (EC) 
	Changes in Total Organic Carbon and Total Organic Nitrogen 
	Variation of Mineral Nitrogen (N-NH4+ and N-NO3-) and Available P 
	Variation of Nutrients (Ca2+, Mg2+, K+ and Na+) 
	Effect on Cation Exchange Capacity 

	Effect of De Inking Paper Sludge on Carbon Mineralization 
	Effect of DPS on Nutrient Status, Yield, and Root Length of Durum Wheat 
	Grain Yield and Nutrient Status 
	Straw 
	Root Length and Biomass 

	Metal Content 

	Discussion 
	Conclusions 
	References

