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Abstract: Basal stem rot disease (BSR) in oil palm plants is caused by the Ganoderma boninense
(G. boninense) fungus. BSR is a major disease that affects oil palm plantations in Malaysia and
Indonesia. As of now, the only available sustaining measure is to prolong the life of oil palm
trees since there has been no effective treatment for the BSR disease. This project used an ALOS
PALSAR-2 image with dual polarization, Horizontal transmit and Horizontal receive (HH) and
Horizontal transmit and Vertical receive (HV). The aims of this study were to (1) identify the
potential backscatter variables; and (2) examine the performance of machine learning (ML) classifiers
(Multilayer Perceptron (MLP) and Random Forest (RF) to classify oil palm trees that are non-infected
and infected by G. boninense. The sample size consisted of 55 uninfected trees and 37 infected trees.
We used the imbalance data approach (Synthetic Minority Over-Sampling Technique (SMOTE) in
these classifications due to the differing sample sizes. The result showed backscatter variable HV
had a higher correct classification for the G. boninense non-infected and infected oil palm trees for
both classifiers; the MLP classifier model had a robust success rate, which correctly classified 100%
for non-infected and 91.30% for infected G. boninense, and RF had a robust success rate, which
correctly classified 94.11% for non-infected and 91.30% for infected G. boninense. In terms of model
performance using the most significant variables, HV, the MLP model had a balanced accuracy (BCR)
of 95.65% compared to 92.70% for the RF model. Comparison between the MLP model and RF
model for the receiver operating characteristics (ROC) curve region, (AUC) gave a value of 0.92 and
0.95, respectively, for the MLP and RF models. Therefore, it can be concluded by using only the
HV polarization, that both the MLP and RF can be used to predict BSR disease with a relatively
high accuracy.

Keywords: Basal Stem Rot (BSR); Ganoderma boninense; radar backscattering; classifier; classification;
polarization; imbalance approach

1. Introduction

Oil palm (Elaeis guineensis) from the Palmae family, is a major crop in Indonesia and
Malaysia, which are the main export products of these countries in the agricultural sector.
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Indonesia is the largest producer of palm oil, with a total production of 34,520 million
metric tons, equivalent to 58% in the year 2016, whereas Malaysia is the second largest
producer of palm oil, with a production of 17,320 million metric tons, equivalent to 29%
in the same year [1]. Oil palm trees in SouthEast Asian countries, such as Malaysia, are
exposed to various fungi attacks, with the most common fungus being the G. boninense,
which results in the Basal Stem Rot (BSR) disease [2]. The G. boninense attack results in a
reduction of production yield that can eventually lead to tree mortality [3]. This disease
has been one of the major culprits in the palm oil yield reduction throughout most of the
production areas in the country [4]. Until now, there has been no effective treatment for
the BSR disease and the current sustaining measures can only extend the life of oil palm
trees [5–7].

In the case of young oil palm trees, the root and stem parts become decayed, the leaves
turn yellowish, and the plants die within six months [8]. It is common for young plants
grown at sites where old oil palm trees had been cut down for the replanting process, to
be infected by the G. boninense, which came from the felled oil palm trees [8]. For mature
trees, the infection symptoms on the leaves and fronds are roughly known only when the
base of the palm leaves (petiole) is broken, whereas the shoots do not grow, and the leaves
become yellowish, which will cause the trees to die within 12 to 36 months [9]. When the
occurrence of the disease is more than the rate of 30%, the production of fresh fruit bunches
(FFB) decreases or is affected by 26%, while the fruits produced are of poor quality. When
the attack occurs more than the rate of 60%, the FFB production is affected by 45% [10].
To regulate the spread of the BSR disease in oil palm estates, the health status of oil palm
must crucially be monitored through plantation management. Disease monitoring can
be implemented, and oil palm life can be extended to increase productivity [6]. The need
for an automated non-destructive approach has led to the creation of a rapidly-specific
method suitable for the early detection of diseases, and remote sensing techniques can be
used to monitor plant diseases and stress [11]. Today, many researchers have used remote
detection techniques for the early detection and mapping of the BSR disease in oil palm
plants based on the symptoms of G. boninense infection [12].

Three types of remote sensing techniques were used to study the BSR disease in
previous studies. First, the BSR disease was detected using ground-based platform sensors,
i.e., hyperspectral imaging spectrometer: [13] reached an overall accuracy (OA) of 97%
using multivariate pattern recognition; [14] achieved 82% net accuracy using a Jeffries–
Matusita JM distance analysis and maximum likelihood classification; and [15] obtained
an OA of 94% using Partial Least Square Discriminant Analysis (PLS-DA). The second
technique used airborne hyperspectral platform sensors: [16] obtained 84% precision using
the Lagrangian interpolation red edge technique. The third technique used spaceborne
optical platform sensors: [17] had used the Multispectral QuickBird image to identify and
map the BSR disease with the identification accuracy of 85% and the mapping accuracy
67%, using the Vegetation Index.

Based on previous studies, observation showed that the use of RS sensors in detecting
and monitoring the BSR disease were able to detect the disease in oil palm plantations
effectively [12]. A remote sensing hyperspectral sensor platform has been used in two
different scales: ground-based (in-situ) and airborne sensors. Both showed satisfactory
results with acceptable accuracy. However, a limitation of using the ground platform is
that the range will be confined to a small area [18], while the airborne platform has some
disadvantages, such as in obtaining the permission to encroach in the air, which can be a
long process with a high cost, because nowadays airplanes are used as a common airborne
platform [19]. Spaceborne optical remote sensing remains the foremost utilized platform
because of its advantage in resolution, and each radiometric and spatial measurement.
However, owing to clouds and haze that incorporate a regular prevalence in Malaysia, as
well as in different countries of South-East Asia, the usage of spaceborne optical remote
sensing can result in imaging distortions, since its detection cannot penetrate clouds and
haze [20]. In contrast, remote sensing satellites that use RAdio Detection and Ranging
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(RADAR) technology employ microwaves, which are able to broadcast through most
clouds and haze. Hence, the backscattering signals obtained using RADAR remote sensing
satellites are less influenced by weather conditions.

Several studies have shown the ability of SAR (Synthetic Aperture Radar) data in
monitoring crop conditions and adopting biophysical parameters [21–24]. Studies showed
that backscattering SAR sensitivity to plant conditions depends on SAR sensor parameters,
i.e., polarization, incident angle, and wavelength [25–27]. In general, SARs with short
wavelengths, such as X-band (~3 cm) and C-band (~6 cm), have a lower chance of penetrat-
ing the canopy. On the other hand, L-band (~20 cm) and P-band (~100 cm) that have long
wavelengths can penetrate the plant cover to the ground surface [28]. The achieved pene-
tration depth depends on the biophysical parameter of the object which causes the spread
in the plant layer (e.g., geometry, size and water content, scatter objects) that can increase or
weaken the interaction between microwave and distribution-production characteristics [28].
SAR images have the potential not only to distinguish different crop types, but also to
monitor crop growth [29,30]. Furthermore, to date, there is still a lack of health monitoring
of the oil palm trees by using microwave wavelengths. Therefore, there is a potential to
assess the feasibility of SAR data in classifying oil palm trees that are non-infected and
infected by G. boninense.

The machine-learning algorithm is one probable method that can be used to classify
oil palm trees that are non-infected and infected by G. boninense. ML algorithms use a
computation method to find out information directly from the data without depending on
the equations that have been designated as a model [31]. In the recent decade, ML algo-
rithms have been used in various applications, such as land cover mapping [32–35], forest
monitoring [36–39], and agricultural monitoring [40–42]. Up to now, machine-learning
algorithms have also been used to classify remote sensing data and crop diseases. [43]
presented the application of ML algorithm in plant resistance genes discovery and plant
diseases classification; [44] have used ML algorithms to classify healthy and unhealthy
plant leaves of sorghum, citrus, and cabbage; and [43] contributed a procedure for the early
detection and differentiation of sugar beet diseases based on ML algorithms. Nonetheless,
the class imbalance of the data poses a challenge to the ML classifiers, since the class
imbalance often favors a majority class [45]. To overcome the class imbalance problems,
data level approaches are commonly used. Synthetic Minority Oversampling Technique
(SMOTE) is the most widely used at the data level to overcome the imbalance problem of
various applications in the agricultural field [46,47].

Hence, the aim of this research is to introduce L-band ALOS PALSAR-2 (Japan
Aerospace Exploration Agency (JAXA)) dataset to discriminate oil palm trees that are
non-infected and infected by G. boninense using ML algorithm. The two objectives required
to be achieved by this research are to: (1) identify the potential backscatter variables; and
(2) examine the performance of ML classifiers (Multilayer Perceptron (MLP) and Random
Forest (RF). In this research, the imbalance approach (Synthetic Minority Over-Sampling
Technique (SMOTE) is used to classify oil palm trees that are non-infected and infected
by G. boninense.

2. Materials and Methods
2.1. Study Area

The study area is located in the oil palm plantations of Felcra Seberang Perak 10, Phase
1, Parcel 3. It is located in Mukim Pasir Salak, Perak Tengah district, Perak, approximately
at latitude 4◦06′01′′–4◦06′44′′ N and longitude 100◦53′07′′–100◦53′42′′ E (Figure 1). The
area size of Parcel 3 is 26 hectares with a total of 3660 trees. Oil palm trees for Phase 1,
Parcel 3 were the second generation planted in 2005. The age of the oil palm trees during
this study was 13 years old, and 2009 was the plantation’s first year of fruit yield.
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Figure 1. The Perak Tengah district, Perak, (a) Mukim Pasir Salak, (b) the image of the study area. The sample selection of
oil palm trees with non-infected and infected by G. boninense is random based on census obtained from Malaysian Palm Oil
Board (MPOB).

2.2. Field Survey Data

Field data collection was conducted on 20 March 2017. The census of oil palm trees that
were non-infected and infected by G. boninense was obtained from the Malaysian Palm Oil
Board (MPOB) and the infection status of the BSR disease was identified based on the visual
symptoms stated by the expert, as shown in Table 1 and Figure 2. The GPS coordinates of
individual trees were recorded using Trimble R6 GPS receiver (Trimble Navigation Limited,
Sunnyvale, CA, USA) and the total number of oil palm trees that were non-infected and
infected by G. boninense collected for this study were 55 and 37, respectively.

Table 1. Category and description of infection status of the oil palm trees.

Category Description

Non-infected Healthy palm, no foliage symptom (0%), no fruiting body
Infected Foliage symptom more than 25%, produce fruiting bodies

2.3. Dataset Description

This study used ALOS PALSAR-2 image data archived on 20 March 2017. The scene
observed and captured on ALOS PALSAR-2 is a fine beam dual polarization (HH and HV)
and a high spatial resolution 10 m, with a pixel size of 6.25 m × 6.25 m and a 24 cm radar
wavelength. Table 2 shows the specification of ALOS PALSAR-2 sensor data.
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Figure 2. Oil palm trees in Felcra Seberang Perak 10, Phase 1, Parcel 3—(a) tree non-infected by
G. boninense; (b) tree infected by G. boninense: showing foliar symptom such as the lower parts of
leaves have formed like skirting; (c) tree infected by G. boninense: showing multiple unopened spears;
(d) tree infected by G. boninense: showing the fruiting bodies and decay of the palm bole.

2.4. Data Analysis and Evaluation

The four main steps involved in this research and the workflow of the processing are
shown in Figure 3.



Agronomy 2021, 11, 532 6 of 17

Table 2. Details specification and image view of ALOS PALSAR-2.

ALOS PALSAR-2 Specification
ALOS PALSAR-2 Image View

Observation Mode Strip Map/High Resolution

Calibration Factor −83
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Figure 3. Research workflow—(1) SAR image pre-processing; (2) extraction of all pixel values for oil palm trees based on
census data; (3) imbalanced data approach; and (4) classification of trees that were non-infected and infected by G.boninense
in the study area.

2.4.1. SAR Image Pre-Processing

As shown in Figure 3, ALOS PALSAR-2 data were first subjected to speckle filtering
and radiometric correction. Since ALOS PALSAR-2 data are stored in Level 1.5 product,
data have been subjected to geometrical correction; thus, terrain correction step was
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unnecessary for this data. To reduce high frequency noise in ALOS PALSAR-2 data, speckle
filtering was applied to the image. Several well-known researchers have developed filtering
algorithms for SAR images [48–50]. A wide range of filtering techniques was applied to
varying researches. Reduction of speckle noise is one of the most important processes to
increase the quality of coherent radar images. Image variance or speckle is a granular noise
that inherently exists and degrades the quality of active radar and SAR images [51] found
that Lee filter is best used for agricultural areas; hence, Lee filtering was adopted in this
research. A filter’s Kernel size plays an important role in smoothing the image [52]. To
preserve the details of the image, appropriate size should be selected for better results.
The 7 × 7 of window filter size was utilized for HH and HV based on high Equivalent
Number of Looks (ENL) values, and low Speckle Suppression and Mean Preservation
Index (SMPI) value, so it indicates better performance in terms of speckle reduction and
means preservation. Radiometric correction was then applied to the image to obtain the
sigma naught value in the unit of decibel (dB), as in Equation (1) [53]

σo = 10× log10

[
DN2

]
− 83 dB (1)

where DN is the digital number of the ALOS PALSAR-2 data.
Subsequently, the SAR image was subset into the region of interest, and the data image

type was converted from the .dim format to the .tiff format prior to being processed using
ArcGIS Desktop software version 10.6.1 (Environmental Systems Research Institute (ESRI),
Redland, CA,USA).

2.4.2. Training Data

In the second step, an orthorectified UAV image (3DR Iris + drone with MAPIR Survey
2 camera (MAPIR, Peau Prodiuctions, Inc., San Diego, CA, USA), as a base map was
overlaid with the GPS coordinate of each individual tree, which had been recorded using
Trimble GPS device during the field survey. Afterwards, the SAR image and coordinate of
each tree were overlaid to extract backscattering values. The backscattering value for each
oil palm point was extracted from the processed SAR image by using Extract Multi Values
tool in ArcGIS. As the SAR image was tested with dual polarization (HH and HV), each
digitized point possessed two different backscatter values.

2.4.3. Imbalance Data Approach

In this study, data imbalance was an issue due to the small number of instances
in the infected class compared to the non-infected. Therefore, the imbalance approach,
SMOTE was applied for the classification of non-infected and infected by G.boninense. The
algorithm was chosen because it is of low complexity, has less bias, and requires minimal
computation [45,54]. From the SMOTE result, non-infected and infected by G. boninense,
was pooled to represent the training and testing datasets with a 70:30 ratio, respectively.

Data Sampling

SMOTE is a technique that oversamples the minority class by generating synthetic
examples [55]. SMOTE first randomly selects an example of a minority class and finds
the nearest minority class neighbor. The synthetic instance is then created by choosing
one of the k nearest neighbors b at random and connecting a and b to form a line segment
in space characteristics. The synthetic samples are produced as a convex combination
of two selected samples a and b [56]. Finally, the new instances of minority class are
synthesized. In this study, SMOTE was executed using an open-source ML program,
Waikato Environment for Knowledge Analysis (WEKA) version 3.8.5 [57]. Prior to the
classification, the SMOTE parameters were tuned and summarized in Table 3.
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Table 3. Summary of the parameters used for the imbalance approach.

Technique Parameter

SMOTE nearestNeighbors = 5
percentage = 100

2.4.4. Classification

The process of manipulating the backscatter of dual-polarization values can result
in more effective classification [58]. Therefore, instead of using the original backscatter
(HH and HV) polarization values, a trial was also made to obtain other variables gained
from the backscatter of dual polarization values. The backscatter variables generated for
this study were (i) range (HH-HV); (ii) average (HH + HV/2); and (iii) simple band ratio
(HH/HV), (HV/HH). All six (6) backscatter variables were used in this study, as shown in
Table 4. In this study, the variables of backscatter of dual-polarization values were used as
the ML inputs as illustrated in Table 5.

Table 4. Variables used to classify trees that were non-infected and infected by G. boninense (Adapted from [59]).

Variable Description

HH Pixels values of original backscattering (dB) from HH polarization

HV Pixels values of original backscattering (dB) from HV polarization

HH-HV Range generation by subtraction HH to HV polarizations (unitless)

(HH + HV)/2 Average of HH and HV polarization (unitless)

HH/HV Simple ratio generation by dividing HH to HV polarizations (unitless)

HV/HH Simple ratio generation by dividing HV to HH polarizations (unitless)

Table 5. Descriptive statistics of variables gained from the backscatter of dual polarization values.

Variable Dataset Status n Mean SD Min Max

HH Training Non-Infected 38 −11.37 2.42 −16.70 −4.91
Infected 51 −11.81 1.60 −17.06 −8.95

Testing Non-Infected 17 −11.13 2.31 −15.78 −6.49
Infected 23 −11.66 1.54 −15.57 −9.19

HV Training Non-Infected 38 −19.31 2.10 −23.63 −15.05
Infected 51 −17.42 2.38 −22.25 −11.51

Testing Non-Infected 17 −21.01 3.24 −28.84 −17.55
Infected 23 −16.10 2.12 −21.43 −10.99

HH-HV Training Non-Infected 38 7.94 3.35 2.45 16.32
Infected 51 5.61 2.71 1.15 13.00

Testing Non-Infected 17 9.88 4.72 2.43 2.43
Infected 23 4.60 2.15 −1.59 8.07

(HH + HV)/2 Training Non-Infected 38 −15.34 1.53 −18.83 −13.07
Infected 51 −14.64 1.51 −19.44 −12.05

Testing Non-Infected 17 −16.07 1.54 −19.20 −13.85
Infected 23 −13.94 1.56 −18.65 −18.65

HH/HV Training Non-Infected 38 0.60 0.15 0.23 0.85
Infected 51 0.69 0.12 0.41 1.02

Testing Non-Infected 17 0.55 0.16 0.29 0.87
Infected 23 0.72 0.13 0.58 1.15

HV/HH Training Non-Infected 38 1.80 0.58 1.18 4.33
Infected 51 1.50 0.28 0.96 2.45

Testing Non-Infected 17 1.99 1.99 1.16 3.46
Infected 23 1.41 0.20 0.87 0.87
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Machine Learning Approach

The ML approach could also be used to classify a large number of samples and classify
a smaller number of samples [60,61]. Due to the small number of samples, we performed
a cross-validation process to evaluate model performance. The K-fold cross-validation
function in WEKA was used to split the data into training and testing datasets and obtain
an independent evaluation of the model accuracy. Thus, the resulting model was valid
and not limited to only one set of data. Ten iterations of cross-validation were performed,
where the original data were randomly partitioned into ten subsamples. Two ML methods
were used, as described below:

(1) Multilayer Perceptron (MLP). MLP is an artificial neural network feed-forward
model that charts input data sets to a set of appropriate outputs. An MLP is the result
of multiple layers of nodes being connected to one another [62]. Every node is a neuron
(or processing element) with a nonlinear activation function, except for the input nodes.
For training the network, MLP utilizes a supervised learning technique called backpropa-
gation [63]. MLP is a modification of the standard linear perception and can distinguish
non-linearly separable data.

(2) Random Forests (RF). RF is a type of classification algorithm that contains a group
of decision tree stochastics. In RF, the individual bootstrap sample is drawn from the
original datasets to train each tree, and each node has a random feature from the original
dataset [64]. The dataset is assigned according to the majority vote from the ensemble of
trees built by the RF algorithm [65]. Moreover, it has high predictive accuracy, and it works
well with an imbalanced dataset and robust against noise [66,67].

Accuracy Assessment

Overall accuracy as an assessment metric will be biased because of the data imbalance
problem since it mainly represents the majority class’s accuracy [54]. This analysis, there-
fore, presented the description of the confusion matrix as an alternative in terms of the
success rate of the non-infected and infected G. boninense, along with the balanced classifi-
cation rate or balanced accuracy (BCR) and the receiver operating characteristics (ROC)
curve region (AUC). These metrics were used to evaluate different classifier approaches
and measure their performance. Following the classification of Kappa value by [68], we
considered the BCR below 40.00% as poor, between 40.00% and 80.00% as moderate and
above 80.00% as robust. While, the AUC value of 0.50 is regarded as fail, 0.51−0.69 is
considered to be poor, 0.70–0.79 is deemed to be acceptable, 0.80–0.89 is considered excel-
lent, and 0.90–1.00 is regarded as outstanding [69]. Finally, ANOVA and Tukey Honest
Significant Difference (HSD) test at p < 0.05 using IBM SPSS Statistics for Windows, version
19 (IBM Corp., Armonk, NY, USA) determined the significance level of the differences
between classifiers and backscatter variables.

3. Results
3.1. Sensitivity of Variables of Backscatter Used

The success rate (%), BCR (%) and AUC of the non-infected and infected by G. boninense
are illustrated in a heat map shown in Figures 4–6, respectively. Since the accuracy assess-
ment of training and testing datasets was about similar, the result and discussion of success
rate, BCR and AUC are focused on the testing dataset. As shown in Figure 4, the MLP
model performed better than the RF model, given any backscatter variables. HV had a
higher correctly classified the G. boninense non-infected and infected oil palm trees for both
classifiers in terms of backscatter variable. The MLP classifier model for the variable HV
had a robust success rate with correctly classified 100% for non-infected and 91.30% for
infected G. boninense, BCR 95.65% (robust) and AUC 0.92 (outstanding). Meanwhile, the
RF classifier model for the variable HV had a robust success rate with correctly classified
94.11% for non-infected and 91.30% for infected G. boninense, BCR 92.70% (robust) and
AUC 0.95 (outstanding).



Agronomy 2021, 11, 532 10 of 17Agronomy 2021, 11, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 4. The success rate (%) of non-infected (N) and infected (I) by G. boninense for variables of backscatter used. 

 
Figure 5. The balanced accuracy (BCR) rate (%) of multilayer perceptron (MLP) and random for-
ests (RF) classifier according to backscatter variables. 

Figure 4. The success rate (%) of non-infected (N) and infected (I) by G. boninense for variables of backscatter used.

Agronomy 2021, 11, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 4. The success rate (%) of non-infected (N) and infected (I) by G. boninense for variables of backscatter used. 

 
Figure 5. The balanced accuracy (BCR) rate (%) of multilayer perceptron (MLP) and random for-
ests (RF) classifier according to backscatter variables. 
Figure 5. The balanced accuracy (BCR) rate (%) of multilayer perceptron (MLP) and random forests
(RF) classifier according to backscatter variables.

Agronomy 2021, 11, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 6. The area under the curve (AUC) of the MLP and RF classifier according to backscatter variables. 

The ANOVA (Table 6) test demonstrated that there is no statistically significant dif-
ference between backscatter variables. However, a Tukey post hoc (Table 7) test showed 
that the HH and HV were statistically significant (p = 0.03) and there was no statistically 
significant difference between the other backscatter variables. The Tukey’s HSD (Table 8) 
test depicted the mean comparison of BCR (%) highest for HV = 70.65% and lowest for 
HH = 50.53%. 

Table 6. ANOVA for the effect of classifiers and backscatter variables on BCR (%). 

Source Sum of Squares df Mean Square F Sig. 
Classifiers 231.882 1 231.882 1.274 0.271 

Backscatter Variables 1797.478 5 359.496 2.654 0.057 
Corrected Total 2029.360 6    

Table 7. Multiple comparisons of backscatter variables on BCR (%) obtained from Tukey’s honest significant difference 
(HSD) test. 

(I) Backscatter Variables (J) Backscatter Variables Mean Difference (I–J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
HH HV 28.46 8.23 0.03 −54.61 −2.31 

 HH-HV 14.60 8.23 0.51 −40.75 11.55 
 (HH + HV)/2 20.29 8.23 0.19 −46.44 5.86 
 HH/HV 20.10 8.23 0.19 −46.25 6.05 
 HV/HH 18.68 8.23 0.26 −44.83 7.48 

HV HH 28.46 8.23 0.03 2.31 54.61 
 HH-HV 13.86 8.23 0.56 −12.29 40.01 
 (HH + HV)/2 8.18 8.23 0.91 −17.98 34.33 
 HH/HV 8.36 8.23 0.91 −17.79 34.51 
 HV/HH 9.79 8.23 0.84 −16.36 35.94 

HH-HV HH 14.60 8.23 0.51 −11.55 40.75 
 HV 13.86 8.23 0.56 −40.01 12.29 
 (HH + HV)/2 −5.69 8.23 0.98 −31.84 20.46 
 HH/HV −5.50 8.23 0.98 −31.65 20.65 
 HV/HH −4.08 8.23 1.00 −30.23 22.08 

Figure 6. The area under the curve (AUC) of the MLP and RF classifier according to backscatter variables.



Agronomy 2021, 11, 532 11 of 17

Contrary to the HH variable, we correctly classified the G. boninense non-infected and
infected oil palm trees for both classifiers. The MLP classifier model for the variable HH
had a poor and robust success rate with correctly classified 17.65% for non-infected and
86.96% for infected G. boninense, BCR 52.30% (moderate) and AUC 0.49 (fail). Meanwhile,
the RF classifier model for the variable HH had a poor to moderate success rate with
correctly classified 29.41% for non-infected and 52.17% for infected G. boninense, BCR
40.80% (moderate) and AUC 0.44 (poor).

However, the manipulation results of the variables obtained in this study only reached
higher from average variables ((HH + HV)/2). The MLP classifier model for the variable
HH + HV)/2 had a robust success rate with correctly classified 88.24% for non-infected and
82.61% for infected G. boninense, BCR 85.40% (robust) and AUC 0.88 (excellent). Meanwhile,
the RF classifier model for the variable HH + HV)/2 had a moderate to robust success rate
with correctly classified 76.47% for non-infected and 82.61% for infected G. boninense, BCR
79.55% (moderate) and AUC 0.85 (excellent).

The ANOVA (Table 6) test demonstrated that there is no statistically significant dif-
ference between backscatter variables. However, a Tukey post hoc (Table 7) test showed
that the HH and HV were statistically significant (p = 0.03) and there was no statistically
significant difference between the other backscatter variables. The Tukey’s HSD (Table 8)
test depicted the mean comparison of BCR (%) highest for HV = 70.65% and lowest for
HH = 50.53%.

Table 6. ANOVA for the effect of classifiers and backscatter variables on BCR (%).

Source Sum of Squares df Mean Square F Sig.

Classifiers 231.882 1 231.882 1.274 0.271

Backscatter Variables 1797.478 5 359.496 2.654 0.057

Corrected Total 2029.360 6

Table 7. Multiple comparisons of backscatter variables on BCR (%) obtained from Tukey’s honest significant difference
(HSD) test.

(I) Backscatter Variables (J) Backscatter Variables Mean Difference (I–J) Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound

HH HV 28.46 8.23 0.03 −54.61 −2.31
HH-HV 14.60 8.23 0.51 −40.75 11.55

(HH + HV)/2 20.29 8.23 0.19 −46.44 5.86
HH/HV 20.10 8.23 0.19 −46.25 6.05
HV/HH 18.68 8.23 0.26 −44.83 7.48

HV HH 28.46 8.23 0.03 2.31 54.61
HH-HV 13.86 8.23 0.56 −12.29 40.01

(HH + HV)/2 8.18 8.23 0.91 −17.98 34.33
HH/HV 8.36 8.23 0.91 −17.79 34.51
HV/HH 9.79 8.23 0.84 −16.36 35.94

HH-HV HH 14.60 8.23 0.51 −11.55 40.75
HV 13.86 8.23 0.56 −40.01 12.29

(HH + HV)/2 −5.69 8.23 0.98 −31.84 20.46
HH/HV −5.50 8.23 0.98 −31.65 20.65
HV/HH −4.08 8.23 1.00 −30.23 22.08

(HH+HV)/2 HH 20.29 8.23 0.19 −5.86 46.44
HV −8.18 8.23 0.91 −34.33 17.98

HH-HV 5.69 8.23 0.98 −20.46 31.84
HH/HV 0.19 8.23 1.00 −25.96 26.34
HV/HH 1.61 8.23 1.00 −24.54 27.76
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Table 7. Cont.

(I) Backscatter Variables (J) Backscatter Variables Mean Difference (I–J) Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound

HH/HV HH 20.10 8.23 0.19 −6.05 46.25
HV −8.36 8.23 0.91 −34.51 17.79

HH-HV 5.50 8.23 0.98 −20.65 31.65
(HH + HV)/2 −0.19 8.23 1.00 −26.34 25.96

HV/HH 1.43 8.23 1.00 −24.73 27.58

HV/HH HH 18.68 8.23 0.26 −7.48 44.83
HV −9.79 8.23 0.84 −35.94 16.36

HH-HV 4.08 8.23 1.00 −22.08 30.23
(HH + HV)/2 −1.61 8.23 1.00 −27.76 24.54

HH/HV −1.43 8.23 1.00 −27.58 24.73

Table 8. Mean comparison of BCR (%) obtained from Tukey’s HSD test according to classifiers and
backscatter variables.

Group Mean (%)

Classifiers MLP 70.65
RF 64.44

Backscatter Variables HH 50.53
HV 78.99

HH-HV 65.13
(HH + HV)/2 70.81

HH/HV 70.63
HV/HH 69.20

3.2. Effects of Classifiers on the Model Performance

Based upon the results in the study, the MLP model performed slightly better than the RF
model, given any backscatter variables, with BCR ranging from 52.30 to 95.65% (moderate to
robust), AUC = 0.49–0.92 (fail to outstanding), non-infected success rate = 17.65–100% (poor to
robust) and infected success rate = 82.61–100% (robust) compared to 40.80 to 92.70% (moderate
to robust), AUC = 0.44–0.95 (fail to outstanding), non-infected success rate = 29.41–94.11%
(poor to robust) and infected success rate = 52.17–100% (moderate to robust).

From the results obtained, the excellent variable selection also plays a role in deter-
mining the performance model. Results for the HV polarized backscatter variables were
found to be better than other backscatter variables based on the results of the success rate,
balanced accuracy (BCR) and the receiver operating characteristics (ROC) curve region,
(AUC) for both classifiers.

The ANOVA also concluded that there is no statistically significant difference in model
performance (p = 0.271). The Tukey’s HSD test depicted the mean comparison of BCR (%)
slightly higher for MLP model = 70.65% than RF model = 64.44%.

4. Discussion
4.1. Sensitivity of Variables of Backscatter Used

The current study was to identify the potential backscatter variables for the classifi-
cation of the BSR disease in oil palm plants. Several studies have shown the efficiency of
backscattering of SAR data sensitivity to plant conditions [25–27]. The radar backscattering
from crops is sensitive to the crop canopy structure and the underlying soil condition [70].
As regards the polarization response, cross-polarized backscatter is found to be more sensi-
tive than co-polarized backscatter. This is attributed to the depolarization due to multiple
reflection of incoming signals inside the plant canopy. This is consistent with conclusions
in the literature as mentioned above that HV polarization is more sensitive compared to
HH polarization.
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This study discovered the potential to assess the feasibility of backscatter variables
from SAR data in classifying oil palm trees that are non-infected and infected by G. boninense
and revealed prediction accuracy. The backscatter of HV polarization has greater success
in correctly classifying G. boninense non-infected and infected oil palm trees for both clas-
sifiers. The MLP classifier model for the HV polarization has a robust success rate with
correctly classifying 100% of the non-infected and 91.30% of the infected G. boninense, BCR
95.65% (robust) and AUC 0.92 (outstanding). Meanwhile, the RF classifier model for the HV
polarization had a robust success rate with correctly classifying 94.11% of the non-infected
and 91.30% of the infected G. boninense, BCR 92.70% (robust) and AUC 0.95 (outstanding).

4.2. Effects of Classifiers on the Model Performance

Based upon the BCR, AUC, success rate of non-infected and infected by G. boninense
as well as the ANOVA, both the MLP-based models and the RF-based models have almost
similar performance in classifying the oil palm trees. We need a thorough understanding of
the output of these methods in order to make maximum use of each classification system.

There are two factors we can consider when choosing an algorithm. (1) Performance;
when deciding the algorithm to use for classification or regression, the algorithm’s overall
output is a significant determinant. Both MLP and RF are able to distinguish linear and
nonlinear relationships and MLP systems have more significant potential for this [71].
(2) Robustness; when evaluating performance it is necessary to look at the robustness of
the application rather than the consistency of the fitting [72]. Although the data were
generated from the same database, they do not work well with new data. Such a condition
is considered “overfitting” [73]. In this situation, the respective delegate does not comply
with the existing protocol robustness, reflecting its generality. In this scenario, we reduce
the chance of over generalization. These can be minimized by restricting the number of
models that can be suggested by an algorithm. To do so, both MLP and RF can be used
with advantages and disadvantages. In MLP, the number of hidden neurons and layers has
a significant effect on the complexity of the model, as well as the amount of regularization
used when optimizing the weights. RF allows us to change the size and number of trees, or
the size and depth of individual trees, to fit the issue. Additionally, each of these methods
can manage uncertainty and overfitting. MLP are stereotyped as being especially sensitive
to inputs, which may contribute to tendencies towards deviations [74].

Many previous studies involved the comparison of these classifiers. Another research
study deals with the prediction of carbon and nitrogen in the soil and how different fields
have different amounts of these two elements [75]. The research compares MLP, RF and
Gradient Boosted Machines (GBM) to see better results. The findings indicate that the
results differed according to the kinds of data used. The RF model outperformed other
models in most situations. Another research done based on the comparison of MLP and RF
in predicting building energy usage, which is a numerical prediction rather than a category
classification case [76]. The study found MLP performed significantly better than RF.

In reality, both techniques help with various aspects of applications. ML has found
that no single algorithm can be useful in every situation. Thus, no single algorithm always
performs better, and the results of an algorithm will differ significantly depending on
the application and the size of the dataset. Hence, one can compare various learning
algorithms’ outputs for a particular problem to find the best algorithm. It is also useful to
construct ensembles of multiple models generated with different approaches to combine
their strengths, thus reducing their weaknesses.

5. Conclusions

In this study, the backscatter values of oil palm trees were extracted using ALOS
PALSAR-2 image data and divided into two level status: non-infected and infected by
G. boninense. Six (6) backscatter variables were used, namely HH, HV, range (HH-HV),
average (HH + HV/2), simple band ratio (HH/HV), and simple band ratio (HV/HH) to
generate ML models for the prediction of the BSR disease. Two classifier models were used;
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MLP and RF. In terms of model performance, given any backscatter variables, the MLP
model had a balanced accuracy (BCR) ranging from 52.30% to 95.65% compared to 40.80%
to 92.70% for the RF model. Comparison between the MLP model and RF model for the
receiver operating characteristics (ROC) curve region, (AUC) gave a range of 0.49–0.92 and
0.44–0.95, respectively, for the MLP and RF models.

Regarding the polarization response, certain variables such as the fact HV that
captures the phenomena under study better, stand out more significantly. The cross-
polarized backscatter (HV) was found to be more sensitive to crop canopy structure than
co-polarization backscatter (HH), which is more susceptible to the surface. Due to that, the
results of the success rate, a balanced accuracy (BCR) and the receiver operating character-
istics (ROC) curve region, (AUC) become low if it involves HH polarization as a variable.
Using the most significant variables, HV, the MLP model had a balanced accuracy (BCR) of
95.65% compared to 92.70% for the RF model. Comparison between MLP model and RF
model for the receiver operating characteristics (ROC) curve region, (AUC) gave a value of
0.92 and 0.95, respectively, for the MLP and RF models.

In conclusion, by using only the HV polarization, both the MLP and RF can be used
to predict BSR disease with a relatively high accuracy. The major benefit derived from
this study is the potential of using SAR data and the imbalanced data approach to classify
oil palm trees infected by G. boninense using ML techniques. In the future, studies with
samples of different severity levels will be used to analyse backscatter characteristics and
identify oil palm trees that have been infected with BSR disease.
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