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Abstract: This study evaluates the cause of salinization in an irrigation scheme of 100 ha supplied
from a reservoir. The scheme is located in Gumselasa catchment (28 km2), Tigray region, northern
Ethiopia. The catchment is underlain by limestone–shale–marl intercalations with dolerite intrusion
and some recent sediments. Water balance computation, hydrochemical analyses and irrigation water
quality analyses methods were used in this investigation. Surface waters (river and reservoir) and
groundwater samples were collected and analyzed. The water table in the irrigated land is ranging
0.2–2 m below the ground level. The majority of groundwater in the effective watershed area and
the river and dam waters are fresh and alkaline whereas in the command area the groundwater is
dominantly brackish and alkaline. The main hydrochemical facies in the groundwater in the effective
watershed area are Ca-Na-SO4-HCO3, Ca-Na- HCO3-SO4, and Ca-Na-Mg-SO4-HCO3. The river and
dam waters are Mg-Na-HCO3-SO4 and HCO3-SO4-Cl types, respectively. In the command area the
main hydrochemical facies in the groundwater are Ca-Na-HCO3-SO4 and Ca-Na-Mg-SO4-HCO3.
Irrigation water quality analyses revealed that salinity and toxicity hazards increase from the effective
watershed to the irrigated land following the direction of the water flow. The results also showed
that the analyzed waters for irrigation purpose had no sodicity hazard. The major composition
controlling mechanisms in the groundwater chemistry was identified as the dissolution of carbonate
minerals, silicate weathering, and cation exchange. One of the impacts of the construction of the
dam in the hydrologic environment of the catchment is on its groundwater potential. The dam is
indirectly recharging the aquifers and enhances the groundwater potential of the area. This increment
of availability of groundwater enhanced dissolution of carbonate minerals (calcite, dolomite, and
gypsum), silicate weathering and cation exchange processes, which are the main causes of salinity
in the irrigated land. The rising of the brackish groundwater combined with insufficient leaching
contributed to secondary salinization development in the irrigated land. Installation of surface and
subsurface drainage systems and planting salt tolerant (salt loving) plants are recommended to
minimize the risk of salinization and salt accumulation in the soils of the irrigated land.

Keywords: groundwater; irrigation; salinity; sodicity; toxicity

1. Introduction
1.1. General

Salinization refers to a rise of excess soluble salts concentration in the soil. These salts
occur in the soil as ions: Cl−, SO4

2−, HCO3
−, CO3

2−, NO3
−, Na+, Ca2+, Mg2+, and K+.

Salinization occurs in nearly all climatic regions in non-irrigated areas, irrigated areas, and
coastal areas. It can be caused by geogenic processes and anthropogenic impacts [1]. In the
non-irrigated area, which is common in dryland regions and is known as dryland salinity,
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the cause is the rising of brackish/saline groundwater to the surface or depth of root zone
from unconfined, perched, or leaky aquifers. Unavailability of sufficient rainfall to flush the
soils and the existence of high evapotranspiration rate has led the salts in brackish/saline
groundwater to accumulate in the soils. In irrigated areas consist of waterlogged soils
usage of brackish/saline water from a reservoir and/or brackish/saline groundwater from
wells for irrigation is the cause of salinization. The rises of brackish/saline groundwater to
the depth of the root zone from an unconfined aquifer, perched aquifer, or leaky aquifer
may also cause salinization in irrigated areas covered by poorly drained soils. In coastal
areas it can be caused due to flooding of the land by seawater and salt water intrusions.
In all these areas a practice of excessive fertilization with very soluble forms of fertilizer
and excessive usage of pesticides can cause salinization. Evangelou [2], in his publication,
“Effects of Fertilizer Salts on Crop Production” had shown that excessive usage of fertilizers
result salt toxicities that severely injure the growth and development of plants. The author
also showed that soluble fertilizers differ in the degree to which they contribute to the
process of salinization.

Salinization is a worldwide problem. According to Szabolcs [3] there is no continent
in this world that does not have salt-affected soils and at least seventy countries have
major salt-related problems. In a study carried out by Pooja and Rajesh [4] on development
of simple and low cost biological methods for salinity stress management, it was shown
that worldwide out of the entire irrigated and cultivated agricultural lands 33% and 20%,
respectively, are estimated to be affected by high salinity.

Among the worldwide distributed salt-affected areas, the largest area is found in
arid and semi-arid regions [5,6], where poor quality groundwater is used for irrigation
and evapotranspiration rate is very high. Mateo-Sagasta and Burke [7], in their report on
agriculture and water quality interactions at a global scale, had shown that 25% of the
total irrigated land is affected by soil degradation due to the impact of high to moderate
salinization in the Mediterranean area. In Europe about 3.8 million hectares are affected
by soil salinization [8]. Zaman et al. [1], in their publication on guideline on protocols for
salinity and sodicity assessment, and the role of isotopic nuclear and related techniques
to develop mitigation and adaptation measures to use saline and sodic soils sustainably,
reported that 20% of the cultivable land is affected by sodicity or salinity in India, 10 million
hectares are affected by soil salinization in Pakistan and in Africa the total area of human-
induced salt-affected soils is 14.8 million hectares. Pooja and Rajesh [4] state that, globally,
the extents of salt-affected areas are increasing at a rate of 10% annually for numerous
reasons.

In Ethiopia, salinization affects more than 11 million of hectares of land [9–12] that
are dominantly located in the Ethiopian Rift Valley and other semi-arid and arid parts of
the country. The study area for the Gumselasa irrigation scheme is located in Gumselasa
catchment, in the highlands of Tigray region, which is a drought prone and degraded
region of Ethiopia [13]. The dam was constructed twenty-five years ago for an irrigation
purpose. The history of the Gumselasa catchment shows that the current irrigated area
and reservoir site were cultivated land where local communities practiced rainfed agricul-
ture [14] without any record of the salinization problem. The current irrigated area, located
in the downstream side of the dam, stretched from the area around the dam to the outlet of
the catchment. The catchment is a sub catchment of May Taweru river, a tributary of the
Tekeze river, which in turn is a major tributary of the Atbarah river (Black Nile) in Sudan.

Since the commencement of the dam operation, the farmers are benefitting from
the irrigation scheme. In a study carried out by Teshome [15] on the state irrigation
interventions interface with irrigators’ life-worlds in a drought-prone region of Northern
Ethiopia by taking the Gumselasa irrigation system as a case study area, it was shown that
following the operation of the dam, in the years from 2000 to 2005, the mean production
of maize has increased from 24 to 167.5 quintals per hectare. However, from year to year
there is a reduction of the land size covered by the irrigation due to salinization, which led
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to a reduction in the annual production of the farmers. Currently more than 10 ha of land
of the command area is abandoned because of salinization.

The irrigation scheme has been studied by many scholars and researchers [13–29].
Most these studies have focused on irrigation water management and on socioeconomic
aspects and few of them considered salinity developments and relate its source with poor
agricultural water management practices. A detail study on the causes of salinity by
taking into account the geology and the hydrochemical nature of the groundwater of the
catchment is lacking. Identifying the exact source of salinity is essential to determine and
design appropriate methods to control soil salinity and also restore salt-affected soils. This
research was done with the objective to identify the cause of salinity in the Gumselasa
irrigation scheme by considering the underlain geological units and the hydrochemical
nature of the groundwater of the area.

1.2. The Study Area
1.2.1. Location

Gumselasa irrigation scheme is located in Gumselasa catchment (28.1 km2) in the
southern administrative zone of the Tigray region, North Ethiopia. Geographically, it is
found bounded between 556,000–564,000 m E and 1,458,000–1,467,000 m N (Figure 1).
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The catchment is mainly gentle to flat sloping area and is drained by Mehombiya
and Asegeda rivers, which are perennial and main rivers in the catchment. Both of them
rise from surrounding mountains: Mehombiya from the southeast and flows to the west
whereas Asegeda from east and flows to southwest (Figure 1). Besides to these rivers, the
catchment is also drained by other minor seasonal streams.

Gumselasa dam, which is the sole source of irrigation water for the irrigation scheme,
was constructed across these rivers in 1995 [14] and commenced its operation after two
years [18] with a height of 13.5 m, 400 m dam axis length, reservoir capacity of 1.92 million
cubic meters, and a command area for irrigation of 120 ha [14,26]. Currently the available
water in the dam is 0.194 million cubic meters and the area covered by irrigation is 100 ha.

1.2.2. Geology

Geologically the study area is mainly constituted by a limestone–shale–marl interca-
lation with dolerite intrusion and Quaternary sediments [29] (Figure 2). The underlying
limestone–shale–marl intercalation unit is part of the Mesozoic sedimentary succession
of Northern Ethiopia, which consists of a gray-green and black shale, marl, and claystone
interlaminated with finely crystalline black limestone containing disseminated pyrite with
some gastropods and brachiopods [31–35]. According to Enkurie [34] it also contains some
thin beds of gypsum and dolomite and a few beds of yellow coquina.
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Limestone–Shale–Marl Intercalation

This unit is outcropped mainly in the northeastern, southern, northern, western, and
central parts of the catchment. It is found forming moderately steep to gentle and flatland
areas and poorly exposed.

It is consisting of light yellowish and greenish gray shale intercalated with thinly
bedded, light gray to yellowish marl, and thick, finely crystalline limestone with occa-
sional patches of gypsum. The unit is generally dominated by shale and marls in various
proportions. The exposed thickness of each shale bed is ranging from 0.2 to 5 m, and it
is poorly weathered. The thickness of the intercalated limestone is ranging from 0.3 to
1 m. The limestone is fossiliferous, fractured, and weathered. Secondary precipitated
calcium carbonate due to dissolution and recrystallization of calcite is common in this unit
(Figure 3).
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Mineralogically, the intercalated limestone is composed mainly of calcite (80–56%),
quartz (6–2%), opaque (Fe–oxide) (3%), feldspar (2–1%), gypsum (2% to nil), and sphene
(1% to nil). Its fossil content ranges from trace to 32% [36].

Dolerites Dykes

Numerous dolerite dykes that are intruding the limestone–shale–marl intercalation
units occur in the catchment. These intrusions are black andesine dolerite with ophitic
texture and outcropped mainly in the eastern, western, southwestern, southern, and
southeastern parts of the catchment.

They are forming a dome like spheroid shape in most case and in some case they are
exposed as dykes dominantly having a trend of N-S in the eastern and central parts of
the catchment. They also occur as irregular bodies within the sedimentary successions
in different parts of the catchment. The weathered part of this dolerite dyke exposes a
circular boulder resulting from spheroidal (exfoliation) weathering. In the southeastern
and eastern sides of the catchment and also in the area where the crest of the dam is located,
the dolerite surface is covered by precipitated calcium carbonate (Figure 4). This is the
result of dissolution and recrystallization calcite while dolerite is intruding through the
limestone–marl–shale intercalation.
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Mineralogically, the rocks are composed of plagioclase (46–40%), pyroxene (37–32%),
opaque (Fe–oxide) (10–8%), biotite (8–2%), apatite (10% to nil), and olivine (7% to nil) [36].

Quaternary Deposits

In the catchment, extensive Quaternary sediment areas are not available. Mappable
Quaternary sediments are found in variable thickness and areal extent mainly in the
command area. Elsewhere bedrocks are variably covered by earthy soils. In the command
area, the sediments are mainly black to brownish clay that has a thickness greater than 3 m.
The sediments do not have the same thickness throughout the command area.

Less extensive unconsolidated sediments occur in the northeast, north, and northwest
parts of the catchment covering the relatively flat areas. These sediments are formed by the
processes of weathering from the underlying bedrocks. The sediments are mainly black
cotton soil, which being rich in clay and their thickness range from 2 to 5 m.

Along the margins of the Asegeda and Mehombiya rivers and their tributaries allu-
vium are found as thin strips. The relative abundances and stratigraphic relations of these
sediments, however, are generally not uniform throughout the catchment. Toward the
mountains front, where the gradient of the rivers is high and steep topographic slopes
exist, the alluvium, in general, are dominated by coarse grained subrounded to subangular
particles mixed with coarse grained sand. In the eastern, southeastern, and southern parts
of the catchment, where the gradient of the rivers decreases down slope, the dominant
alluvium are fine to medium grained sand particles mixed with variable content of fine
grained sediments. The thickness of this alluvial deposit ranges from 0.5 to 6 m.

1.2.3. Water Uses

The study area is endowed with both surface water and groundwater. River water
and dam water represents the surface water resource of the area.

In the study area groundwater is the main source of water supply for domestic use.
More than 10 closed hand dug wells (Figure 5b) exist in different parts of the upstream
side of the dam for this purpose. Besides, two deep wells that have a depth of 120 m and
45 m exist in the downstream side of the dam immediately behind the main structure of
the dam [29]. Of these two deep wells, due to poor quality of the groundwater, the deep
well that has a depth of 120 m is sealed and abandoned. The latter currently serve as a
source of water for domestic water supplies for the nearby town and villages. There is no
hand dug well in the downstream side of the dam.
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Groundwater is also used as a source of irrigation water in the upstream side of the
dam. However, agricultural activities in this part of the catchment are dominantly rainfed.
Only few numbers of farmers are practicing an irrigation activities using groundwater as a
source of irrigation water from open hand dug wells (Figure 5a) since 2005 with no record
of major salinization problem and history of abandoned land due to this problem [29].

The majority of open hand dug wells have trapezoidal shape with an upper diameter
ranging from 5 to 9 m and final internal diameter ranging from 2 to 5 m. The depth of the
hand dug wells varies between 5 to 15 m. The depth of static water levels ranges from 3
to 11 m. In closed hand dug wells water abstraction is done with hand pumps (Figure 5a)
while treadle and motor pumps (Figure 6) are used in the open hand dug wells.
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The shallow, mostly perched, aquifers in the thin alluvial covers and the upper
weathered and fractured zones of the underlying rocks (limestone–shale–marl intercalation)
are exploited through these hand dug wells. Those hand dug wells that are tapping only
the alluvial aquifer are characterized by a groundwater quality having a TDS < 1000 mg/L
whereas those that are tapping by including the next lower or underlying water bearing
stratum are characterized by brackish quality nature. The majority of the hand dug wells
are often dry during the peak time of the dry season of the year.
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Irrigated agriculture is the main agricultural activity in the downstream side of the
dam with the dam water as the only source of water for the irrigation. Groundwater is not
used as a source of irrigation water in this part of the catchment.

2. Methods
2.1. Data Collection

The whole catchment boundary and specific boundaries (effective watershed area,
reservoir area, command area, and adjacent water contributing areas to the command
area; Figure 1) delineations were done using Garmin GPS and topographic map with a
scale of 1:50,000 as a base map. Different maps were prepared using the readings and the
topographic map as a base map.

Geological investigation was done in the field paying particular attention to the
water bearing nature of the rocks and sediments in the side and surrounding area of
the catchment.

Computation of the water balance of the catchment was done by the same authors of
this paper [27] and was used here as input data for the analyses the causes of salinization.

Eight test pits were excavated for collection of groundwater samples and to measure
the depth to groundwater in different parts of the command area (Figure 7). The pits size
was 1 m by 1 m having a depth ranging from 1.4 to 3.5 m.

Agronomy 2021, 11, x FOR PEER REVIEW 8 of 21 
 

 

bearing stratum are characterized by brackish quality nature. The majority of the hand 
dug wells are often dry during the peak time of the dry season of the year. 

Irrigated agriculture is the main agricultural activity in the downstream side of the 
dam with the dam water as the only source of water for the irrigation. Groundwater is not 
used as a source of irrigation water in this part of the catchment. 

2. Methods 
2.1. Data Collection 

The whole catchment boundary and specific boundaries (effective watershed area, 
reservoir area, command area, and adjacent water contributing areas to the command 
area; Figure 1) delineations were done using Garmin GPS and topographic map with a 
scale of 1:50,000 as a base map. Different maps were prepared using the readings and the 
topographic map as a base map. 

Geological investigation was done in the field paying particular attention to the water 
bearing nature of the rocks and sediments in the side and surrounding area of the catch-
ment. 

Computation of the water balance of the catchment was done by the same authors of 
this paper [27] and was used here as input data for the analyses the causes of salinization. 

Eight test pits were excavated for collection of groundwater samples and to measure 
the depth to groundwater in different parts of the command area (Figure 7). The pits size 
was 1 m by 1 m having a depth ranging from 1.4 to 3.5 m. 

 
Figure 7. Some of the test pits in the command area. 

For hydrochemical and irrigation water analyses, representative samples were col-
lected from all the water resources of the study area. Accordingly, nineteen water samples 
were collected from the different parts of the catchment: nine groundwater samples from 

Figure 7. Some of the test pits in the command area.

For hydrochemical and irrigation water analyses, representative samples were col-
lected from all the water resources of the study area. Accordingly, nineteen water samples
were collected from the different parts of the catchment: nine groundwater samples from
existing opened hand dug wells (Figure 5a) and one sample from river in the effective
watershed area, one sample from reservoir and eight groundwater samples from test pits
in the command area (Figure 7). Before sampling the groundwater, the hand dug wells and
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pits identified for this purpose were purged for about 5 min to ensure that the standing
water did not contaminate the sample and that the water that was sampled was from the
aquifer. All the groundwater samples are shallow groundwater and were collected at low
water levels manually. The sampling was done during the dry season of the year before the
peak time of the season. For all the samples, TDS, EC, pH, and temperature of the water
were measured in situ using a digital multiparameter analyzer.

2.2. Data Analysis

Surface water and groundwater samples were analyzed at the Department of Earth
Science geochemistry laboratory in Mekelle University, Ethiopia. The samples were ana-
lyzed for calcium (Ca2+), magnesium (Mg2+), potassium (K+), sodium (Na+), bicarbonate
(HCO3

−), chloride (Cl−), sulfate (SO4
2−), and nitrate (NO3

−). A flame photometer and
atomic absorption spectrophotometer (AAS) were used for analyses of Na+, K+, Ca2+, and
Mg2+. The titration method was used for HCO3

− analyses and the remaining major anions
(Cl−, SO4

2−, and NO3
−) were analyzed using an ultraviolet spectrophotometer.

The accuracy of the analysis was tested through the computation of electro neutrality
using Equation (1), and the result show that the computed values range from 0.8% to 2.3%,
which is in the acceptable range.

ElectroNeutrality(E.N)(%) =

[
(Sumcations − Sumanions)
(Sumcations + Sumanions)

]
100 (1)

where the cations and anions are expressed as meq/L. The sums were taken over the
cations Na+, K+, Mg2+, and Ca2+, and anions Cl−, HCO3

−, SO4
2−, and NO3

−.
The suitability of the analyzed water for irrigation was evaluated based on the sodium

adsorption ratio (SAR), percentage sodium, magnesium hazard (MH), and electrical con-
ductivities values of the waters at 25 ◦C (EC25).

SAR =
Na+√

Ca2++ Mg2+

2

(2)

%Na =
Na+

Ca2+ + Mg2+ + Na+ + K+
× 100 (3)

MH =
Mg2+

Ca2+ + Mg2+× 100 (4)

where all the ionic concentrations are expressed in milliequivalents per liter (meq/L) of the
respective ion.

The field measured electrical conductivities values were measured at a temperature
different from 25 ◦C and because of this a conversion of the field measured electrical
conductivities values to EC25 at 25 ◦C were done using the appropriate conversion factors.

In this study, FAO guideline by Ayers and Westcot [37] was used to assess the salinity,
sodicity, and toxicity impact of the analyzed water samples.

To determine the mechanism of salinization and water–rock interaction bivariate
graphs of the parameters Ca2+, Mg2+, HCO3

−, and SO4
2− and computations of Na+/Cl−

and Na+/Na+ + Cl− ratios and chloro-alkaline indices were used.
Chloro-alkaline indices (CAIs) were computed using the using the following formu-

las [38,39]:

CAI 1 =
[Cl− (Na + K)]

Cl
(5)

CAI 2 =
[ Cl− (Na + K)]

(SO4 + HCO3 + CO3 + NO3)
(6)
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3. Results
3.1. Water Balance

The computed water balance for the different parts of the catchment by Nata et al. [27]
is summarized and given in the Table 1 below. The average annual rainfall in Gumselasa
catchment is 485.89 mm: 84% of this amount is contributed by the three months of the rainy
season (July, August, and September).

Table 1. Summary of water balance based on soil type of the area.

Location Area (km2) AET (×106) m3 P (×106) m3 Qi (×106) m3 Qo(×106) m3 I (×106) m3

EWSSCL 17.16 5.468 8.34 1.167 1.705
EWSC 4.98 1.55 2.42 0.44 0.43

RES 0.4 0.505 0.194 1.607 0.553 0.743
WCA-1 0.55 0.19 0.267 0.048 0.029
WCA-2 3.99 1.42 1.94 0.349 0.171

CA 1 0.32 0.486 0.95 0.13 0.986

Where, EWSSCL is effective watershed with sandy loam soil; EWSC is effective watershed with clay soil; RES is reservoir; WCA-1 is water
contributing area 1 with clay soil; WCA-2 is water contributing area 2 with clay soil; CA is command area; AET is actual evapotranspiration
(AET for the reservoir is evaporation from the reservoir); P is mean annual rainfall; Qi is input discharge (inflow); Qo is runoff (outflow);
and, I is infiltration, the amount of water that percolates into the upper level of groundwater as a groundwater accretion.

The construction of the dam has increased the availability of water in the catchment by
harvesting the water especially that received during the rainy months of July to September,
which accounts about 84% of the mean annual rainfall of the catchment. This might have
led to an increment of the groundwater potential of the area by increasing the recharge.

The water that percolates as a recharge into the ground in the effective watershed
area makes its way toward the command area beneath the dam as a groundwater flow
together with the water of the dam that percolate deep as a recharge into the ground at
the reservoir site. The water that percolates deep as a recharge at the water contributing
area-1 and at the water contributing area-2 will also make their respective way toward the
outlet of the catchment, which is the command area (Figure 1) following the direction of
the water flow. All these are additional water to the command area on top of its own direct
recharge amount.

The water balance computation analyses revealed that the overall infiltration in the
Gumselasa catchment was 4.064 million cubic meters and 75.7% of this amount was flowing
toward the command area following the direction of the water flow from a different
direction of the catchment as a groundwater accretion. This augments the availability of
groundwater in the command area and raised the level of groundwater toward the surface.
As it was observed from the pits drilled in the command area, the groundwater level ranges
from 0.2 to 2 m below the earth surface (Figure 7). With the exception of the deep borehole
that is used for the domestic purpose, at present the groundwater in the command area
is not used for any other purposes. Application of water for irrigation from the reservoir
should take into account this readily available water in the irrigated area.

3.2. Hydrochemical Analyses

The water samples were analyzed for major cations and anions and the result is given in
Table 2 and Figure 8. In the effective watershed of the catchment, 80% of the water was fresh
and alkaline whereas the remaining 20%, which were mainly groundwater, were brackish
and alkaline. The dominant anion was SO4

2− and the dominant cation was Ca2+. In the
analyzed groundwater, based on the mean values of the constituents, the cations were in the
order of abundance as Ca2+ > Na+ > Mg2+ > K+. Anions content indicates that 60% of the
analyzed groundwater samples followed the trend of SO4

2− > HCO3
− > Cl− > NO3

− and in
the remaining 40% HCO3

− > SO4
2− > Cl− > NO3

−. However, in the river water sample, the
cations were in the order of abundance as Mg2+ > Na+ > Ca2+ > K+ and the anions were in
the order of abundance as HCO3

− > SO4
2− > Cl− > NO3

−.
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Table 2. The chemical analyses of the groundwater, river water, and dam water in Gumselasa catchment.

Sample ID
Major Cations (mg/L) Major Anions (mg/L) Chemical Parameters

Water Type
Na+ K+ Ca2+ Mg2+ Cl− SO42− NO3− HCO3− pH TDS

EWS 1 44 1.31 123 25 13.95 208.1 17.15 222 8.22 504 Ca-Mg-Na-SO4-HCO3
EWS 2 51 1.07 104 20 18.95 247.4 14.9 375.9 8.35 472 Ca-Na-HCO3-SO4
EWS 3 41 1.93 169 20 144.6 222.4 18.26 266.1 7.94 596 Ca-SO4-HCO3-Cl
EWS 4 48 1.16 127 19 13.07 235.1 16.33 344.3 8 588 Ca-HCO3-SO4
EWS 5 70 1.09 83 23 44.25 256.1 19.15 297.2 8.42 668 Ca-Na-SO4-HCO3
EWS 6 135 1.67 296 51 89.03 348.1 42.08 259.9 7.97 2189 Ca-Na-Mg-SO4-HCO3
EWS 7 120 1.23 117 30 78.98 303.9 27.94 307.5 8.07 1193 Ca-Na-SO4-HCO3
EWS 8 85 1.44 99 29 40.17 279.2 21.07 303.5 8.4 689 Ca-Na-Mg-SO4-HCO3
EWS 9 55 1.06 157 16 43.01 95.3 17.99 133.3 7.82 358 Ca-Na-HCO3-SO4
CA 1 161 1.91 487 169 83.77 186.6 46.74 372.1 7.81 5605 Ca-Mg-Na-HCO3
CA 2 107 1.42 202 35 63.08 353.3 45.09 495.7 7.95 1061 Ca-Na-HCO3-SO4
CA 3 87 1.67 251 39 59.53 271.7 40.36 380.8 7.96 1059 Ca-Na-HCO3-SO4
CA 4 124 1.78 213 54 39.79 341.1 18.57 203.1 8.33 1508 Ca-Na-Mg-SO4-HCO3
CA 5 53 1.07 81 27 22.47 315 16.03 295 8.12 635 Ca-Na-Mg-SO4-HCO3
CA 6 106 1.13 261 52 33.04 299.2 17.26 372.5 8.18 1266 Ca-Na-Mg-SO4-HCO3
CA 7 119 1.99 371 79 47.18 377 20.55 216.7 8.13 1612 Ca-Mg-Na-SO4
CA 8 144 2.16 267 145 47.93 418.4 20.19 287.7 8.52 3016 Ca-Mg-Na-SO4-HCO3
RW 70 1.13 11 38 40.93 119.4 15.17 246.1 8.42 662 Mg-Na-HCO3-SO4
DW 18 1.04 15 9 39.89 87.82 13.89 211 8.2 248 HCO3-SO4-Cl
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Seven water types were recognized in the effective watershed area: Ca-Mg-Na-SO4-
HCO3 (10%), Ca-SO4-HCO3-Cl (10%), Ca-HCO3-SO4 (10%), Mg-Na-HCO3-SO4 (10%),
Ca-Na-SO4-HCO3 (20%), Ca-Na-HCO3-SO4 (20%), and Ca-Na-Mg-SO4-HCO3 (20%).

The dam water is fresh and alkaline having a dominant anion of HCO3
− and SO4

2−

and dominant cations of Na+ and Ca2+. Generally, based on the mean values of the chemical
parameters, the anions were in the order of abundance as HCO3

− > SO4
2− > Cl− > NO3

−

and the cations were in the order of abundance as Na+ > Ca2+ > Mg2+ > K+. The water
type is HCO3-SO4-Cl.

In the command area, with the exception of one sample that was fresh and alkaline, the
groundwater was brackish and alkaline. The dominant anion was SO4

2− and the dominant
cation was Ca2+. In the analyzed groundwater samples 62.5% of the cations were in the
order of abundance as Ca2+ > Na+ > Mg2+ > K+ and the anions were in the order of the
abundance as SO4

2− > HCO3
− > Cl− > NO3

−. In the remaining 37.5% the cations were in
the order of the abundance as Ca2+ > Mg2+ > Na+ > K+ and the anions were in the order of
abundance as HCO3

− > SO4
2− > Cl− > NO3

−.
The water types recognized in the command area are Ca-Mg-Na-HCO3 (12.5%), Ca-

Mg-Na-SO4 (12.5%), Ca-Mg-Na- SO4-HCO3 (12.5%), Ca-Na-HCO3-SO4 (25%), and Ca-Na-
Mg-SO4-HCO3 (37.5%).

3.3. Irrigation Water Quality

Irrigation water assessment indices (SAR, %Na and MH) were computed for all the
analyzed water samples and the results are given in Table 3.

Table 3. Computed irrigation parameters for groundwater, river water, and dam water samples in
Gumselasa catchment.

Sample Id EC25 at 25 ◦C (dS/m) SAR %Na MH (%)

EWS 1 0.7 0.943 18.84 25.12
EWS 2 0.662 1.201 24.42 24.12
EWS 3 0.836 0.793 14.95 16.37
EWS 4 0.824 1.052 20.86 19.75
EWS 5 0.937 1.751 33.41 31.34
EWS 6 3.07 1.906 23.59 22.14
EWS 7 7.684 2.561 38.5 29.72
EWS 8 0.967 1.933 33.42 32.61
EWS 9 0.923 1.117 20.66 14.43
CA 1 7.68 1.601 15.47 36.4
CA 2 1.489 1.826 26.35 22.22
CA 3 1.485 1.348 19.33 20.39
CA 4 2.114 1.964 26.28 29.46
CA 5 0.89 1.306 26.86 35.46
CA 6 1.776 1.567 21.01 24.74
CA 7 2.26 1.465 17.13 25.99
CA 8 4.23 1.762 19.83 47.25
RW 0.929 2.242 45.04 85.05
DW 0.348 0.904 33.91 49.66

3.3.1. Salinity of Water

The salt concentration was determined by measuring the electrical conductivity (EC25)
of the water samples (Table 3). Accordingly, out of the analyzed nineteen water samples,
four water samples have an EC25 value greater than 3 dS/m, 13 water samples with EC25
value ranging from 3 to 0.7 dS/m and the remaining two water samples had an EC25value
less than 0.7 dS/m.

Based on the measured EC25 values, the dam water and a groundwater sample from
the effective watershed area (EWS2) were not hazardous and need no restriction on use.
They can be used for almost all crops and for almost all kinds of soils [40]. This quality
nature of the Gumselasa dam water is also shared by the other dams that are found in the
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nearby areas such as dam Maylaey (0556650 mE/1461427 mN having an EC of 393 µS/cm)
and dam May Gassa (0554732 mE/1460249 mN having 257.3 µS/cm) [29].

Thirteen samples, six from the command area and seven from the effective watershed
area (including the river water), were unsafe and need a slight to moderate degree of
restriction in the use of them. A continuous use of these waters for irrigation can cause
a gradual increase of the salinity problem. The remaining four samples, two from the
effective watershed area (EWS6 and EWS7) and two from the command area (CA1 and
CA8), were severely saline waters. Continuous irrigation with such water might cause
increasing to immediate salinity problems. They need restrictions in the use of them.

Based on this salinity nature analyses of the water three types of waters were rec-
ognized in the effective watershed area (including the river water) of the catchment:
non-saline (10%), saline (70%), and severely saline (20%). The water in the dam was non-
saline whereas in the command area two types of groundwater were identified: saline
(75%) and severely saline (25%). Generally, the analyses of the results revealed that the
severity of the salinity of water was high in the command area, implying an increasing
degree of salinity toward the command area following the direction of the water flow.

3.3.2. Sodicity Hazard

The sodicity hazard was determined considering both the electrical conductivity
(EC25) and sodium adsorption ratio (SAR) together. The computed SAR values for all
samples were less than 3 (Table 3). On the basis of measured EC25 values, two groups of
water were identified in the study area: water that had an EC25 greater than 0.7 dS/m
and water that had an EC25 values ranging from 0.7 to 0.2 dS/m. Sixteen samples, all
the groundwater samples from the command area and eight from the effective watershed
area (seven groundwater and a river water samples), were in the first group and need no
restriction for use whereas three samples, two from the effective watershed (EWS1 and
EWS2), and the dam water, were in the second group, which needs a slight to moderate
degree of restriction in use of them.

The result of the analyses revealed that the groundwater in the effective watershed area
was characterized by non-sodic and sodic nature. The river water was non-sodic whereas
the dam water was sodic. The groundwater in the command area was characterized by
non-sodic nature.

Sodium hazard was also evaluated using the percentage of sodium (Equation (3)).
Based on the percentage of sodium the water was classified as excellent (<20%), good
(20–40%), permissible (40–60%), doubtful (60–80%), and unsuitable (>80%) [41]. Accord-
ingly, the groundwater of the effective watershed area had excellent to good irrigation
water quality whereas the river water had permissible irrigation water quality. The dam
water had good irrigation water quality and the groundwater in the command area had an
excellent to good irrigation water quality (Table 3). This analyses shows that there was no
water that had doubtful and unsuitable quality for irrigation.

Both the sodium adsorption ratio and percentage of sodium methods revealed that
sodicity or sodium hazard did not increase from the effective watershed area to the com-
mand area following the direction of the water flow. Excess of sodium in irrigation water
can affect the flow rate, permeability, infiltration, and soil structure promoting soil disper-
sion [42].

3.3.3. Magnesium Hazard (MH)

The degree of impact of magnesium in irrigation water to the soil structure is measured
by the magnesium hazard (MH) [43]. Soil alkalinity can be caused by high concentration of
Mg2+ in groundwater; additionally, between magnesium and clay particles a huge volume
of water can be absorbed that decreases the infiltration capacity of the soil, which has an
adverse impacts on crops [44–46]. According Abdulhussein [47] groundwater that has MH
less than 50% is safe for irrigation whereas a MH greater than 50% is harmful and unsafe
for irrigation.
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The MH in the groundwater of the study area ranged from 14.43% to 47.25%, with a
mean of 26.91% (Table 3). The MH of the dam water was also less than 50% whereas the
river water in the effective watershed area of the catchment had a MH of greater than 50%
and was unsafe for irrigation. The groundwater and the dam water are safe for irrigation.

3.3.4. Toxicity Hazard

The toxicity problem was assessed by measuring the concentrations of sodium. Ac-
cordingly, twelve water samples (four from the effective watershed area and seven from the
command area and river water) had concentrations of sodium ranging from 3 to 9 meq/L,
signifying that the water was slightly to moderately toxic whereas the remaining seven
water samples (five from the effective watershed area and one from command area and
dam water) had a concentrations sodium less than 3 meq/L indicating that the water was
not toxic.

The groundwater in the effective watershed area was characterized by free to toxic
nature. The river water had toxic nature whereas the dam water was free of any toxicity
problem. The groundwater in the command area was dominantly toxic. In general, the
trend of toxicity hazard increased from the effective watershed to the command area
following the direction of the water flow.

4. Discussions
Sources of Salinity

Computed ionic ratios and chloro-alkaline indices values for the groundwater samples
are given in the table below.

According to Golchin and AzhdaryMoghaddam [48], the ratio of Na+/Cl− can be used
to determine the mechanism of salinization. The Na+/Cl− ratio of groundwater sampled
ranging from 0.436 to 5.649 with a mean of 3.372 (Table 4). Of the total sample 89.5% show
that the Na+/Cl− ratio was above 1 implying that dissolution of halite might not be the
main source of Na+ ions in the groundwater of the area. According to Mayback [49] and
Elango and Kannan [50] this high concentrations of Na+ than Cl− normally interpreted as
Na+ released from silicate weathering as given below (Equation (7)).

2NaAlSi3O8 + 9H2O + 2H2CO3→Al2Si2O5(OH)4 + 2Na+ + 2HCO3
− + 4H4SiO4 (7)

The Na+/Na+ + Cl− ratio of the groundwater sampled was ranging from 0.304 to
0.85 with a mean of 0.739. With the exception of a groundwater sample from the effective
watershed area (EWS3), all the remaining samples had a Na+/Na+ + Cl− ratio above 0.6,
revealing that the source of Na+ ions in the groundwater was primarily from incongruent
dissolution of silicate minerals and cation exchange [51]. Figure 9 below shows a good
correlation of Na+ ions (R2 = 0.74) with the total cations, suggesting possible sources from
silicate minerals.
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Table 4. Computed values of Na+/Cl− and Na+/Na+ + Cl− ratios and chloro-alkaline indices for
the analyzed groundwater in the Gumselasa catchment.

Sample Code Na+/Cl− Na+/Na+ + Cl− CAI1 CAI2

EWS1 4.897 0.830 −3.974 −0.189
EWS2 4.189 0.807 −3.245 −0.150
EWS3 0.436 0.304 0.551 0.244
EWS4 5.649 0.850 −4.730 −0.163
EWS5 2.432 0.709 −1.456 −0.174
EWS6 2.339 0.700 −1.355 −0.282
EWS7 2.341 0.701 −1.354 −0.257
EWS8 3.274 0.766 −2.310 −0.236
EWS9 1.975 0.664 −1 −0.275
CA1 2.966 0.748 −1.987 −0.443
CA2 2.612 0.723 −1.635 −0.181
CA3 2.25 0.692 −1.274 −0.172
CA4 4.813 0.828 −3.857 −0.404
CA5 3.667 0.786 −2.714 −0.147
CA6 4.957 0.832 −3.989 −0.296
CA7 3.895 0.796 −2.932 −0.334
CA8 4.637 0.823 −3.681 −0.363

Minimum 0.436 0.304 −4.730 − 0.443
Maximum 5.649 0.850 0.551 0.244
Average 3.372 0.739 −2.408 −0.225

The low chloride ions concentration in the groundwater of the catchment was due to
lack of natural sources in the area.

To gain more insight about the ion exchange processes, computation of chloro-alkaline
indices (CAIs) for the sampled groundwater were carried out (Table 4). According to
Schoeller [39] chloro-alkaline indices (CAI) is used to recognize the ion exchange between
groundwater and its aquifer during residence time within the aquifer. As shown in the
Table 4, 94% of the samples had negative CAI1 values and 6% had positive values. CAI1
ranged from −4.73 to 0.551 with a mean of −2.408. CAI2 ranged from −0.443 to 0.244
with a mean of −0.225. Of the total samples 94% had a negative CAI2 values and 6%
had a positive CAI 2 values. This great percentage of negative chloro-alkali indices value
revealed the existence of an exchange Mg2+ and Ca2+ of the groundwater with Na+ and K+

ions from rocks. In the 6% of the total samples, however, the reverse ion exchange process
was the significant one.

The plot of (Ca2+ + Mg2+ − SO4
2− − HCO3

−) versus (Na+ − Cl−) was used to
determine whether the cation exchange was a major mechanism of salinization or not [52].
As shown in the Figure 10, the relation between these two parameters were not linear
(r2 = 0.32), signifying that cation exchange was not a significant mechanism of salinization
in the catchment.

A plot of Ca2+ + Mg2+ versus SO4
2− + HCO3

− (Figure 11) was used to determine the
role of congruent dissolution minerals (calcite, dolomite, and gypsum) and incongruent dis-
solution of silicate minerals as a mechanism of salinization in the studied area. According
to Datta and Tyagi [53] a scatter diagram of (Ca2+ + Mg2+) versus (SO4

2− + HCO3
−) can be

used for this purpose. As shown in the Figure 11, 52.9% of the total samples were laying
above the equiline, revealing that congruent dissolution of carbonate minerals and gypsum
were the prevailing composition-controlling processes whereas in those samples below the
equiline, which constituted 41.2% of the total samples, incongruent dissolution of silicate
minerals was the dominant process. In the sample that fell along the equiline (EWS1;
5.9% of the total sample) was due to both dissolution of carbonate minerals (including
gypsum) and silicate weathering. This indicates that dissolution of carbonate minerals and
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gypsum (Equations (8)–(10)) was the main source for Ca, Mg, and SO4 ions [50,51,54] in
groundwater of the catchment.

CaCO3 + CO2 + H2O→ Ca2+ + 2HCO3
− (8)

CaMg(CO3)2 + 2CO2 + 2H2O→ Ca2+ + Mg2+ + 4HCO3
− (9)

CaSO4.2H2O + H2O→ Ca2+ + SO4
2− + 3H2O (10)
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− versus Na+ − Cl− in the groundwater of the catchment.
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The plot of Ca2+ versus SO4
2− (Figure 12a) and Ca2+ versus HCO3

− (Figure 12b) are
portraying the existence of higher concentration of Ca2+ over SO4

2− and HCO3
−, respec-

tively. This high concentration of Ca2+ revealed the presence of additional source for Ca2+

besides to the dissolution of carbonate minerals. This additional source is the incongruent
dissolution of silicate weathering [55], which is also a source of bicarbonate ions to the
groundwater of the catchment. In this reaction, plagioclase feldspar (anorthite) minerals



Agronomy 2021, 11, 512 17 of 20

react with carbonic acid in the presence of water and releases calcium and bicarbonate ions
into the groundwater [56] (Equation (11)).

CaAl2Si2O8 + 2CO2 + 3H2O→Al2Si2O5(OH)4 + Ca2+ + 2HCO3
− (11)
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In conclusion all the above computations of ratios and chloro-alkaline indices and bi-
variate plots depict that silicate weathering, dissolution of carbonate minerals, and gypsum
and ion exchange are the major geochemical processes that control the groundwater chem-
istry in the studied area. Among these, however, the significant composition-controlling
processes or salinization mechanisms are dissolution of carbonate minerals and gypsum
and silicate weathering.

5. Conclusions

Limestone–shale–marl intercalation with dolerite intrusion and Quaternary sediments
are the geological formations that constituted the catchment. The rate of flow of the
groundwater and its quality is profoundly affected by these formations as the groundwater
flow from different parts and directions of the catchment toward the command area. Due
to the impervious nature of the intercalated shale and poorly weathered and fractured
nature of the dolerite, the rate of flow of groundwater through these formations is very
sluggish, resulting in a high circulation period and longer residence time. This creates an
opportunity for different water–rock interaction processes to take place invariably and
modify the quality of the groundwater. Calcite and gypsum from the intercalated limestone
is easily affected by a congruent dissolution process while the different silicate minerals in
the dolerite and dissolved and recrystallized calcium carbonate (caliche) on the surface of
dolerite are affected invariably by both congruent dissolution carbonate (calcite, dolomite,
and gypsum) and incongruent dissolution of silicate minerals.

The surface waters and groundwater in the Gumselasa catchment were evaluated for
their chemical composition and suitability for irrigation. The abundance of the major ions in
the majority of the groundwater of the effective watershed area was as follows: Ca2+ > Na+

> Mg2+ > K+ and SO4
2− > HCO3

− > Cl− > NO3
−. In the river water the abundance of the

major ions is Mg2+ > Na+ > Ca2+ > K+ and HCO3
− > SO4

2− > Cl− > NO3
−. The abundance

of the major ions in the dam water was Na+ > Ca2+ > Mg2+ > K+ and HCO3
− > SO4

2− >
Cl− > NO3

−. In the command area the abundance of the major ions in the majority of the
groundwater was as follows: Ca2+ > Na+ > Mg2+ > K+ and SO4

2− > HCO3
−> Cl− > NO3

−.
Hydrochemical analyses revealed that in the effective watershed area of the catchment,

groundwater was dominantly fresh and alkaline and the main hydrochemical facies are
Ca-Na-SO4-HCO3, Ca-Na-HCO3-SO4, and Ca-Na-Mg-SO4-HCO3. The river water was
fresh and alkaline and the water is the Mg-Na-HCO3-SO4 type. The dam water was fresh
and alkaline and the water is HCO3-SO4-Cl type. In the command area the groundwater
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was dominantly brackish and alkaline and the main hydrochemical facies were Ca-Na-
HCO3-SO4 and Ca-Na-Mg-SO4-HCO3.

Irrigation water quality analyses revealed that salinity and toxicity show an increasing
tendency from the effective watershed area towards the command area following the
direction of the water flow. The results also showed that the analyzed waters for irrigation
purpose had no sodicity hazard.

The increment of the availability of groundwater due to the existing dam enhanced
dissolution of carbonate minerals (calcite, dolomite, and gypsum), silicate weathering,
and cation exchange processes, which are the main causes of salinity in the irrigated land.
Among these salinization mechanisms, the most influential are carbonate and silicate
weathering processes. The rising of the saline groundwater combined with insufficient
leaching contributed to secondary salinization development in the command area of the
Gumselasa irrigation scheme.

Currently more than 10 ha land of the command area was abandoned because of salin-
ization in the studied area. The following general recommendations were forwarded in or-
der to minimize risk of salinization and salt accumulation in the soils of the command area:

• Surface and subsurface drainages must be installed to minimize groundwater rise
that lead to salinization due to salts dropped in soil when the rise up groundwater
evaporates and;

• Salt tolerant (salt loving) plants should be planted in areas where there is high salinity,
like rice, barley, and other salt tolerant plants.
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