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Abstract: Leaves from Olea europaea represent one of the main by-products of the olive oil industry,
containing a plethora of bioactive compounds with several promising activities for human health. An
organic solvent-free extraction method was developed for the recovery of olive leaf phenols, which
obtained an extract containing oleuropein in high amounts. A comparison of various extraction media
is reported, together with the total phenolic content, DPPH (2,2-Diphenyl-1-picrylhydrazyl) content,
ORAC (oxygen radical absorbance capacity), and polyphenol oxidase activity of the corresponding
extracts. The polyphenol profiles and content of the most representative extracts have also been
studied. Extraction solvent and temperature significantly influenced the phenolic content and
antioxidant activity of the extracts, with hot water representing the solvent of election for the
extraction of bioactive compounds from this matrix. All the extracts obtained showed reasonably
high total phenol content (TPC) and good DPPH radical scavenging activity; among them, the water
extract is characterized by desirable traits and could be used for many industrial applications and
human consumption.

Keywords: Olea europaea; oleuropein; aqueous extraction; radical scavenging activity; bioactive
compounds recovery

1. Introduction

The olive tree (Olea europaea L.) is an important crop in the Mediterranean area, it
is considered a drought-tolerant crop and has developed physiological mechanisms to
tolerate drought stress and grow under adverse climatic conditions, such as the regulation
of gas exchange and an antioxidant system [1]. The olive tree and its products have a
relevant importance in different fields. Recent research studies highlight that olive leaves
have been a copious by-product of the olive oil industry (10% of the total weight of the
harvested olives) and tree pruning (25 kg per olive tree) [2,3].

Olive leaves are a copious by-product of the olive oil industry and of olive tree
pruning. They are also considered a cheap and natural source of phenolic compounds such
as hydroxytyrosol, verbascoside, rutin, tyrosol, and oleuropein.

Oleuropein is an heterosidic ester of β-glucosylated elenolic acid and 3,4-dihydroxy-
phenylethanol (hydroxytyrosol); it belongs to the chemical class of secoiridoids, which are
present in all members of the Oleaceae family [4].

Oleuropein, dimethyloleuropein, ligstroside, and oleoside represent the predomi-
nant phenolic oleosides found in O. europaea [2,3], with oleuropein itself counting for up
to 9% of the leaves’ dry weight matter [4–7]. Oleuropein and its derivatives have been
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widely studied for their antioxidant properties and health benefits, including antimicro-
bial and antiproliferative activities [8–10]. Other compounds identified in olive leaves
are verbascoside and oleuroside [11,12], flavonoid glycosides (luteolin 7-O-glucoside, api-
genin 7-O-glucoside, rutin [11,13,14], apigenin 7-O-rutinoside, luteolin 7-O-rutinoside,
and luteolin 4-O-glucoside) [15], and flavonoid aglycones such as apigenin, quercetin,
kaempferol, hesperidin, and luteolin [13,15]. Several phenolic acids (ferulic, caffeic, chloro-
genic, p-coumaric, homovanillic, and vanillic) [13,15] were also found to be present in
this matrix.

The polyphenol composition of olive leaves may vary according to many factors: cul-
tivar, climatic conditions, stage of crop cycle, and agricultural practices [16]. The phenolic
profile and content of leaves can also be influenced by endogenous enzymatic activities
and extraction procedures. Different studies show that many factors affect the extraction
efficiency, such as the type and volume of the solvent, temperature, pH, and number of ex-
traction steps [17]. In the last few years, new extraction techniques have been investigated
in order to reduce the volume of solvents used. With regard to extraction from olive leaves,
organic solvents such as methanol [18], ethanol, hexane, ethyl acetate, or hydroalcoholic
mixtures are commonly employed for their ability to extract both lipophilic and hydrophilic
phenols [19] from this vegetable material. It was recently demonstrated that large amounts
of oleuropein can be extracted from olive leaves using polar solvents such as a 20:80 ace-
tonitrile/water mixture [20]. These extraction procedures often require laborious clean-up
and mandatory concentration steps. Innovative extraction techniques, such as microwave
and supercritical fluid extractions [21], superheated liquid, pressurized liquid, fractionation
by solid-phase, dynamic ultrasound-assisted, and microwave-assisted extraction, have
also been proposed for obtaining oleuropein and other phenolic compounds from olive
leaves [22,23]; these methods aim to reduce extraction time and sample preparation costs.
Non-conventional extraction techniques, such as microwave-assisted extraction (MAE),
supercritical fluid extraction (SFE), and pressurized liquid extraction, have shown different
extraction selectivity; in particular, MAE and conventional solvent extraction seem to be
the most suitable choice for obtaining polar compounds, such as oleuropein derivatives,
apigenin rutinoside, and luteolin glucoside, whilst SFE and pressurized liquid extraction
seem to be more effective in extracting less polar compounds, such as apigenin, luteolin
and diosmetin [18].

Because of the increasing interest in developing clean chemical procedures (so-called
“green chemistry”), Paladino and Zuritz [24] investigated the possibility of extracting
phenolic compounds from grape seeds using only distilled water as an extraction solvent
at different temperatures and compared the extraction efficiency with that of traditional
organic solvents.

Other authors employed boiling water to extract phenolic compounds from different
plant materials, such as Salvia triloba L. leaves, Tiliaargentea flowers, green and black
tea leaves, and grapes [25,26]. The use of water as an extraction medium is of relevant
importance for avoiding toxic solvents, especially when the procedures have to be scaled up
to an industrial level and the products targeted for human use (food ingredients or drugs).
The aim of the present paper was to develop an environmentally friendly, fast, and cheap
extraction method based on an organic solvent-free procedure to obtain large amounts of
bioactive phenolic compounds from olive leaves. The proposed method was compared
with the most popular solvent extraction procedures found in the literature. The effect
of the extraction techniques was evaluated by studying qualitatively and quantitatively
the phenolic composition of the resulting extracts and their radical scavenging activity,
using both 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity
(ORAC) assays. The presence of polyphenoloxidase in the olive leaf extracts obtained was
also determined in order to assess its possible influence on the phenolic content.
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2. Materials and Methods
2.1. Plant Material

Olea europaea ‘Biancolilla’ leaves were collected from olive trees during the pruning
period. The samples were transported to the laboratory and dehydrated in a stove at 40 ◦C
until at constant weight.

2.2. Chemicals and Standards

Unless otherwise stated, all solvents used in this study were high-purity labora-
tory products obtained from Carlo Erba (Milan, Italy). HPLC (high-performance liquid
chromatography) -grade water, acetonitrile, and methanol were purchased from VWR
(Milan, Italy). Pure luteolin, luteolin-7-O-glucoside and apigenin-7-O-glucoside were pro-
vided by Extrasynthese (Lyon, France). Rutin (quercetin-3-O-rutinoside), apigenin, caffeic
acid, chlorogenic acid, p-coumaric acid, ferulic acid, fluorescein, hydroxytyrosol, oleu-
ropein, 3,4-dihydroxyphenilacetic acid (DOPAC), 2,2-Diphenyl-1-picrylhydrazyl (DPPH),
2,2′-azobis (2-methylpropionamidine) dihydrochloride (AAPH) and 6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid (Trolox) were provided by Sigma, (Sigma-Aldrich
s.r.l., Milan, Italy).

2.3. Olive Leaf Extracts (OLEs) Preparation

The dried plant material was finely ground and suspended in a defined volume of the
extraction solvent. The resulting heterogeneous mixtures were then homogenized at room
temperature (25 ◦C) using an Ultra-Turrax IKA T-18 basic homogenizer (IKA-Werke GmbH
& Co. KG, Staufen, Germany). The homogenates were filtered, and the clear supernatants
were stored in the dark at −20 ◦C until analyzed. Different extraction treatments and
conditions were tested as reported in Table 1.

Table 1. Extraction conditions of the olive leaf extracts.

Extraction Mixture Temperature (◦C) Time (min)

MeOH:H2O:HCl (70:29.9:0.1) 25 30
EtOH:H2O:HCl (70:29.9:0.1) 25 30

MeOH:H2O (70:30) 25 30
EtOH:H2O (70:30) 25 30
EtOH:H2O (50:50) 25 30

H2O:Citric acid (98.1:1.9) 60 30 and 60
H2O 60 30 and 60
H2O 90 30 and 60

2.4. Polyphenol Oxidase (PPO) Activity Assay

The polyphenoloxidase activity of the olive leaf extracts was tested according to the
method reported by Ortega-García et al. [27] with some modifications. The assay was
performed at 30 ◦C, with the standard reaction mixture containing DOPAC (500 mM) as
a phenolic substrate, 0.1 M sodium phosphate with a pH of 6.2 as a buffer, and 50 µL of
enzymatic extract in a total volume of 1 mL. The samples were read spectrophotometrically
at 505 nm with a blank being used as a control. One unit of PPO activity is defined
as the amount of enzyme which produces 1 µmol of product per min at 25 ◦C under
assay conditions.

2.5. Total Phenolic Content and Radical Scavenging Activity

Total phenolic content and radical scavenging activity (RSA) were both evaluated
spectrophotometrically as described by Palmeri et al. [28]. Total phenolic content was
evaluated on all the OLEs. The total phenolic contents of the OLEs were expressed as
caffeic acid equivalents in milligram per gram of dried leaves. RSA was evaluated by using
a 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay and the RSA% was expressed as Trolox
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equivalent antioxidant capacity (TEAC). In addition, the DPPH radical scavenging capacity
was evaluated in the OLEs obtained by different extractions.

2.6. Oxygen Radical Absorbance Capacity (ORAC) Assay

An ORAC assay measures the antioxidant inhibition of peroxyl radical-induced oxida-
tion and thus reflects classical radical chain-breaking antioxidant activity by H atom transfer.
In the basic assay, the peroxyl radicals, generated by 2,2′-azobis(2-amidinopropane) di-
hydrochloride (AAPH), react with a fluorescent probe to form a non-fluorescent product,
which can be quantitated easily by fluorescence. An automated ORAC assay was carried
out on a Wallac 1420 spectrofluorometric analyzer (Perkin Elmer, Turku, Finland; excitation
wavelength = 485 nm and emission filter = 515 nm), based on a slightly modified procedure
proposed by Ou et al. [29]. Fluorescein (116 nM) was the target molecule for free radical
attack from AAPH (153 mM). The reaction was carried out in a 75 mM phosphate buffer
(pH 7.4) at 37 ◦C. In total, 20 µL of OLE and 120 µL of fluorescein were mixed in the
microplate and preincubated for 10 min. Then, 60 µL of AAPH solution was added, and
the fluorescence was recorded for 60 min at excitation and emission wavelengths of 485
and 530 nm, respectively. A blank sample containing 20 µL of phosphate buffer and Trolox
(10 µM) was used as a control. All solutions were freshly prepared prior to analysis. All
samples were diluted with the buffer (1:200, v/v) prior to analysis and the ORAC values
were expressed as mmol of Trolox equivalents (TE) per g of dried leaves using the standard
curve established previously.

2.7. HPLC-DAD and HPLC-ESI-MS Analyses

High-performance liquid chromatographic (HPLC) analyses were carried out on an
Ultimate 3000 “UHPLC focused” instrument equipped with a binary high-pressure pump,
a photodiode array detector, a thermostatted column compartment, and an automated
sample injector (Thermo Scientific, Milan, Italy). Collected data were processed through a
Chromeleon chromatography information management system v. 6.80. Chromatographic
analyses were carried out on a Gemini C18 column (250 × 4.6 mm, 5 µm particle size,
Phenomenex, Italy) equipped with a guard column (Gemini C18 4 × 3.0 mm, 5 µm particle
size, Phenomenex, Italy). OLEs were analyzed according to Gambacorta et al. [30] using
solvent system A (2.5% formic acid in water) and solvent system B (acetonitrile/methanol
50:50). A linear gradient analysis was used as follows: 0 min: 5% B; 8 min: 30% B;
25 min: 60% B; 30 min: 80% B; then kept for 9 min at 80% B, for a total run time of
50 min. The diode array detector (DAD) was set in the range between 600 and 190 nm,
recording the chromatographic runs at 280, 330, and 350 nm. In order to unambiguously
identify the chromatographic signals and/or to confirm peak assignments, HPLC-ESI-
MS analyses were also performed using the same conditions (solvents, elution program,
guard column, column, injection volume, and flow) described above. OLEs were analyzed
using a Waters instrument (Waters Italia S.p.A., Milan, Italy) consisting of a 1525 binary
HPLC pump and a Micromass ZQ mass analyzer equipped with an ESI Z-spray source.
Total ion current (TIC) chromatograms were acquired according to Siracusa et al. [31].
Quantification of hydroxytyrosol, hydroxytyrosolglucoside, ligstroside, oleuropein, and
oleuropein aglycone was carried out at 280 nm using the calibration curves established with
oleuropein (R2 = 0.9993) and hydroxytyrosol (R2 = 0.9992), respectively, whilst DOPAC was
quantified at the same wavelength using its corresponding analytical standard (R2 = 0.9997).
Apigenin-7-O-glucoside and apigenin were quantified at 330 nm using the calibration curve
established with apigenin (R2 = 0.9995). Caffeic acid (R2 = 0.9998) was used to quantify
caffeic acid, ferulic acid, chlorogenic acid, and verbascoside, whilst quantification of p-
coumaric acid was done using the corresponding available standard (p-coumaric acid,
R2 = 0.9999). Both calibration curves were built at 330 nm. Luteolin, luteolin 7-O-glucoside,
and rutin were quantified at 350 nm using the calibration curves established with their
corresponding analytical standards (luteolin R2 = 0.9999; luteolin-7-O-glucoside R2 = 09994;
rutin R2 = 0.9999). Analyses were always carried out in triplicate.
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2.8. Statistical Analysis

The statistical analysis was performed using INFOSTAT software version 2013. Ini-
tially, the data were analyzed by analysis of variance. When the differences were significant,
a means comparison test (Fisher’s least significant difference (LSD) test) was applied. The
criterion of significance was taken as p < 0.01.

3. Results
3.1. Effect of Different Extraction Media and Extraction Conditions on the TPC Content and
Antiradical Capacity (DPPH Assay) of OLEs

The effect of the extraction techniques was evaluated mainly through the determi-
nation of the total phenolic content (TPC) of the different extracts obtained. The results,
as reported in Table 2, showed that the TPC values found ranged from 30.44 to 47.75 mg
caffeic acid/g dried leaves.

Table 2. Total polyphenol content and DPPH activity of the different olive leaves.

Extraction Mixture/Solvent Temperature
(◦C)

Time
(min)

T.P. 1

(mg/g) 2
DPPH

(TEAC mM) 3

MeOH:H2O:HCl (OLEM;
70:29.9:0.1) 25 30 45.41 ± 0.47d 4 2.45 ± 0.01c

EtOH:H2O:HCl (OLEE; 70:29.9:0.1) 25 30 46.29 ± 0.49e 2.46 ± 0.02c
MeOH:H2O (OLEM; 70:30) 25 30 46.83 ± 0.12e 2.84 ± 0.01d
EtOH:H2O (OLEE; 70:30) 25 30 47.75 ± 0.52e 2.83 ± 0.02d
EtOH:H2O (OLEE; 50:50) 25 30 46.29 ± 0.07e 2.80 ± 0.03d

H2O:Citric acid (OLEA; 98.1:1.9) 60 30 30.45 ± 0.16a 2.19 ± 0.08ab
H2O:Citric acid (OLEA; 98.1:1.9) 60 60 31.51 ± 0.06b 2.20 ± 0.01ab

H2O (OLEA) 60 30 30.44 ± 0.34a 2.16 ± 0.01a
H2O (OLEA) 60 60 31.12 ± 0.22ab 2.25 ± 0.01b
H2O (OLEA) 90 30 40.31 ± 0.08c 2.77 ± 0.06d
H2O (OLEA) 90 60 40.01 ± 0.76c 2.76 ± 0.04d

1 Total phenol contents, 2 mg caffeic acid/g dried leaves, 3 Trolox equivalent antioxidant capacity mM, 4 different
letters indicate significant differences (p ≤ 0.01).

OLEEs at different concentrations (50%, 70%) and acidified with 0.1% HCl and OLEM
showed the highest values of total phenols (47.75 ± 0.52, 46.29 ± 0.07, 46.29 ± 0.49,
46.83 ± 0.12), followed by acidified OLEM (45.41 ± 0.47) and OLEA at 90 ◦C (40.31 ± 0.08).
The extract obtained using water at 60 ◦C for 30 min showed the lowest concentration of
total phenolic compounds (30.44 ± 0.34).

The results also showed that the use of HCl in hydroalcoholic mixtures did not
affect the TPC content of the extracts. The same behavior was observed when using an
aqueous medium acidified with citric acid. A relevant effect of extraction conditions on
the TPC content in aqueous extracts was observed only when 90 ◦C was used as the
extraction temperature.

As reported in Table 2, the extraction procedure had a significant (p < 0.01) influence on
antiradical capacity (AC) as measured by the DPPH assay. OLEA at 90 ◦C, hydroalcoholic
extracts of OLEE (70%) and OLEM (70%), showed the highest scavenging activity, followed
by acidified OLEM (70%), and OLEE and OLEA (60 ◦C). As observed for TPC content, the
use of an acidic medium did not generally seem to have a positive effect on the radical
scavenging activity of the extracts. Figure 1 shows that the extracts with a higher TPC
content also displayed a higher AC, but the relationship between TPC and AC was also
influenced by the different extraction treatments. The increment of extraction time from 30
to 60 min did not have a significant influence on the AC for OLEA (90 ◦C).



Agronomy 2021, 11, 465 6 of 11

Figure 1. Total phenolic content and DPPH scavenging radical activity of different types of olive
leaf extracts.

3.2. Effect of Different Extraction Mixtures and Conditions on PPO Activity

The results show that PPO activity is strongly inhibited for all hydroalcoholic treat-
ments; at mild temperatures (60 ◦C) PPO is still active, while its activity is low at higher
temperatures (Table 3).

Table 3. Extraction conditions and PPO activity of the olive leaf extracts.

Extraction Mixture/Solvent PPO Activity (U/g)

MeOH:H2O:HCl.(70:29.9:0.1) 1.76 × 10−3 ± 0.03
EtOH:H2O:HCl (70:29.9:0.1) 1.41 × 10−3 ± 0.03

MeOH:H2O (70:30) 2.61 × 10−3 ± 0.05
EtOH:H2O (70:30) 1.98 × 10−3 ± 0.02
EtOH:H2O (50:50) 4.31 × 10−3 ± 0.02

H2O:Citric acid (98.1:1.9) 1.30 × 10−3 ± 0.03
H2O:Citric acid (98.1:1.9) 2.00 × 10−3 ± 0.03

H2O (60 ◦C; 30′) 7.74 × 10−3 ± 0.03
H2O (60 ◦C; 60′) 7.18 × 10−3 ± 0.02
H2O (90 ◦C; 30′) 2.45 × 10−3 ± 0.02
H2O (90 ◦C; 60′) 1.59 × 10−3 ± 0.05

As mentioned earlier, these data are of pivotal importance due to the role PPO plays
in the degradation of phenolic compounds, especially in the oxidation of secoiridoids such
as oleuropein [32].

3.3. Effect of Different Extraction Mixtures and Conditions on Antiradical Activity (ORAC Assay)
of OLEs

In order to evaluate the ability of the aqueous, methanolic, and ethanolic extracts to
quench different free radicals, we also determined their inhibitory capacity against peroxyl
radicals by ORAC assay. Table 4 shows the TPC content values and antioxidant capacity of
different leaf extracts as determined using DPPH and ORAC assays.
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Table 4. Antioxidant capacity of olive leaf extracts obtained by different methods using water at
90 ◦C, 70% methanol, and 70% ethanol.

Extraction Medium, Conditions T.P.
(mg/g) 1

DPPH
(% Inhibition)

ORAC
(mmol TE/g) 2

H2O, 90◦C, 30′ 40.31 a 3 88.90 1.23 a
MeOH:H2O (70:30), 25◦C, 30′ 46.83 b 91.20 1.88 b
EtOH:H2O (70:30), 25◦C, 30′ 47.75 b 90.85 2.17 b

1 mg caffeic acid/g dried leaves; 2 mmol Trolox equivalent/g dried leaves; 3 different letters indicate significant
differences (p ≤ 0.01).

Ethanolic extract exhibited the highest ORAC value (2.17 mmol TE/g dried leaves), fol-
lowed by methanolic extract (1.88 mmol TE/g dried leaves), and water extract (1.23 mmol
TE/g dried leaves). However, the difference between the ORAC values of ethanolic and
methanolic extracts was not statistically significant. Hydroalcoholic extracts were more
efficient for flavonoids (Figure 2) than aqueous extract and they also showed higher total
phenol content, whilst DPPH scavenging activity, expressed as % inhibition, was similar
for all extracts. According to the results obtained, all extracts exhibited good antioxidant
capacities, as measured by DPPH and ORAC methods.

Figure 2. Relationship between the ORAC values and the flavonoid content of the different extracts.

3.4. Identification and Quantification of the Main Polyphenols Present in the Extracts through
HPLC-DAD/ESI-MS

As previously mentioned, the differences in the antiradical activities registered for the
different extracts tested may depend on their composition in terms of bioactive compounds.
In order to determine the individual components present in the OLEs and their possible
influence on the antioxidant potential, extracts obtained using water at 90 ◦C, 70% aqueous
ethanol, and 70% aqueous methanol solutions were analyzed by means of HPLC-DAD/ESI-
MS. Figure S1A–C shows the chromatograms corresponding to aqueous (A), 70% aqueous
methanol (B), and 70% aqueous ethanol (C) extracts from olive leaves, whilst the corre-
sponding quantitative data are listed in Table 5. Among the nearly 30 signals appearing in
the chromatogram, 16 of them (peaks 1–16) were tentatively identified by comparing their
relative retention times, UV-Vis, and MS data with those of the corresponding analytical
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standards when available; assignments were further corroborated by literature data [33,34].
As shown in Figure S1 A and reported in Table 5, oleuropein (peak 11, 46.25 mg/g dried
leaves) and hydroxytyrosol glucoside (peak 1, 14.97 mg/g dried leaves) were the most
abundant compounds present in the water extract, as extensively reported [33]. Ligstroside
(peak 13) and verbascoside (peak 6) were also present in considerable amounts (9.68 mg/g
and 5.313 mg/g, respectively).

Table 5. Composition of olive leaf extracts obtained with different extraction mixtures.

Peak
Compound OLEA OLEM OLEE

mg/g a mg/g a mg/g a

1 hydroxytyrosol glucoside 14.97b b 5.137a b 5.018a b

2 hydroxytyrosol 1.769b b 0.138a b 0.143a b

3 dihydroxyphenylacetic acid (DOPAC) 0.489b b 0.042a b 0.031a b

4 chlorogenic acid 0.167 n.d.c n.d.
5 caffeic acid 0.157b b 0.104a b 0.099a b

6 verbascoside 5.313c b 2.465a b 2.669b b

7 p-coumaric acid 0.006 n.d. c n.d. c

8 rutin 1.245a b 1.539b b 1.893c b

9 ferulic acid 0.066b b 0.007a b 0.009a b

10 luteolin 7-O-glucoside 4.039a b 8.120b b 8.937c b

11 oleuropein 46.25c b 39.40b b 36.35a b

12 apigenin 7-O-glucoside 1.947a b 5.157b b 5.370c b

13 ligstroside 9.684b b 7.200a b 7.568a b

14 oleuropein aglycone n.d. c 0.070 0.072
15 luteolin n.d. c 0.281 0.237
16 apigenin n.d. c 0.026 0.023

total 86.102 69.68 68.42
a mg compound/g dried vegetable material. b different letters indicate significant differences (p < 0.01). c not
determined, see text for detail.

The subclass of flavones was represented in this extract by the 7-O-glucoside deriva-
tives of luteolin and apigenin (peak 10 and 12, 4.039 mg/g and 1.947 mg/g, respectively)
but not by their corresponding aglycones. Similarly, Figure S1B,C show the chromatograms
corresponding to the aqueous methanol and aqueous ethanol extracts of olive leaves. As
reported in Table 5, oleuropein (peak 11, 39.40 mg/g and 36.45 mg/g dried leaves) was
the most abundant compound identified in both alcoholic extracts, followed by luteolin
7-O-glucoside (peak 10, 8.12 mg/g and 8.93 mg/g dried leaves), and ligstroside (peak 13,
7.20 mg/g and 7.57 mg/g dried leaves). Hydroxytyrosol glucoside (peak 1 in Figure S1A),
the second most abundant compound in water extract, was present here in a lesser amount
(5.14 mg/g in aqueous methanol and 5.02 mg/g dried leaves in aqueous ethanol). The
results obtained clearly showed that OLEA is the extract that is richer in oleuropein, ligstro-
side, verbascoside, hydroxytyrosol glucoside, and hydroxytyrosol. Hydroxycinnamic acids
were also more abundant in this extract, whilst ethanolic and methanolic ones were richer
in flavonoids (aglycones and glycosides), as also reported in Figure 2. These results indi-
cate that the different extraction conditions had a significant influence on the content of
secoiridoids and flavonoids in the extracts, and that water at 90 ◦C was more efficient in
extracting more polar compounds such as oleuropein and its derivatives. On the other
hand, the extract obtained using 70% aqueous ethanol exhibited the greatest amount of
flavonoid glycosides.

4. Discussion

The TPC values found in our experiments are in accordance with what was reported
by Ortega-García and Peragòn [35], who investigated the polyphenol content in leaves
from different olive cultivars extracted by methanol-containing mixtures after an n-hexane
pre-treatment to remove oil residues. The authors observed that the content depends
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on the cultivar and the fruit ripening stage, and their results ranged from 27.63 mg/g to
44.61 mg/g of dried leaves, expressed as caffeic acid content.

Studies on phenol extraction from different matrices using water at high temperatures
as an extraction medium demonstrated that it is indeed an efficient method for the recovery
of high-value natural bioactive compounds [12,36], and in some cases it was even more
efficient than when compared to organic solvents [24,37]. This “high temperature effect”
could be ascribed both to the nature of the vegetable matrix and to the structure of the
bioactive compounds to be extracted [38]. It is also well known that high temperatures are
able to deactivate endogenous enzymes such as oxidases, thus avoiding or minimizing
phenolic degradation [39].

The main enzymatic oxidative activities, such as those of ascorbate peroxidase (AP),
catalase (CAT), superoxidodismutase (SOD), and peroxidase (POD), increased both in the
leaves and the roots after drought stress in relation to stress severity [1]. On the contrary,
PPO activity decreased during the progression of stress. To our knowledge, there are
few works regarding PPO determination in olive leaves, none of which are about Sicilian
cultivars that show a low endogenous activity. PPO has been characterized by Ortega-
García and Peragón [35] in the olive tree fruits and leaves of cv. Picual during ripening.
The authors reported that the specific activity and catalytic efficiency of PPO changed in
the leaves during fruit ripening; PPO from the leaves is different from that of the fruit
for kinetic characteristics and tissue localization [27,40]. PPO shows a wide distribution
in leaves, and this is probably related to the protection mechanism of the plant. PPO
is involved in plant defense against pathogens and biotic and abiotic stress conditions.
The induction of PPO expression has been related to plant tolerance against stress. An
important function of the chemical defense of the plant for oleuropein and PPO in other
Oleaceae was observed [41].

Differences in the content and type of individual polyphenols present in aqueous,
methanolic, and ethanolic extracts determined the differences in their antioxidant proper-
ties. Antiradical activities could also be influenced by the mutual interactions occurring
among the phenolic components present in these different matrices, as mentioned in previ-
ous studies [42]. The differences in antioxidant capacity as measured by DPPH and ORAC
could then ultimately be due to the differences in the content and type of the individual
polyphenols present in the different extracts.

There are very few data about the hot water extraction of polyphenols from olive
leaves. In most of the extraction procedures, including in new extraction techniques,
organic solvents or strong acidic media are frequently employed. In this work, we have
obtained an aqueous extract from olive leaves particularly rich in oleuropein (46 mg/g).
Methanolic olive leaf extracts from several Spanish and Italian varieties showed that
the highest oleuropein content was that of 30.17 mg/g dried leaves in the “Frantoio”
cultivar [35], whilst a more modest value of 14.35 mg/g dried leaves in the “Moraiolo”
cultivar was obtained by using 50% ethanol as the extraction medium [43]. Supercritical
fluid extraction (SFE) to recover bioactive compounds from “Koroneiki” olive leaves was
employed. The extracts obtained by SFE, modified with 20% ethanol and subcritical
water at 150 ◦C, exhibited the highest oleuropein content, 51 mg/g and 46 mg/g dried
leaves, respectively [44]. Concerning the phenolic composition of olive leaves from Sicilian
cultivars, there are few studies published. The main polyphenols in a methanolic extract
from the “Biancolilla” cultivar were identified by Scognamiglio et al. [45]. In comparison
with our extracts, the oleuropein content found was much less (8.7 mg/g dried leaves)
and oleuropein derivatives were not identified. The aqueous extract obtained at a high
temperature (90 ◦C) showed the highest contents of oleuropein and other secoiridoids like
ligstroside, hydroxytyrosol, and hydroxytyrosol glucoside, whilst hydroalcoholic extracts
showed high contents of flavonoid glycosides. The proposed procedure avoids the use
of harsh organic solvents, minimizes extraction costs, and can be therefore used in the
industry for the appropriate recycling of Olea europaea leaves.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2073-439
5/11/3/465/s1, Figure S1 (A–C): HPLC chromatograms, visualized at 280 nm, of the olive leaves
extract object of the study: A), water extract; B), methanolic extract; and C), ethanolic extract. Phenolic
compounds tentatively identified (see text for details): 1, hydroxytyrosol-glucoside; 2, hydroxytyrosol;
3, DOPAC; 4, chlorogenic acid derivatives; 5, caffeic acid; 6, verbascoside; 7, p-coumaric acid; 8, rutin;
9, ferulic acid; 10, luteolin 7 -O- glucoside; 11, oleuropein; 12, apigenin 7-O-glucoside; 13, ligstroside;
14, oleuropein aglycone; 15, luteolin; 16, apigenin. Compounds with absorption maxima wavelengths
different from 280 nm are visualized though their residual absorptions.
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