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Abstract: Increasing the amount of micronutrients in diets across the world is crucial to improving
world health. Numerous methods can accomplish this such as the biofortification of food through
biotechnology, conventional breeding, and agronomic approaches. Of these, biofortification methods,
conventional breeding, and agronomic approaches are currently globally accepted and, therefore,
should be the primary focus of research efforts. This review synthesizes the current literature
regarding the state of biofortified foods through conventional breeding and agronomic approaches
for crops. Additionally, the benefits and limitations for all described approaches are discussed,
allowing us to identify key areas of research that are still required to increase the efficacy of these
methods. The information provided here should provide a basal knowledge for global efforts that
are combating micronutrient deficiencies.

Keywords: conventional breeding; agronomic; fertilizers; biofertilizers; hydroponic; microorganisms;
nutri-priming

1. Introduction

Micronutrient deficiencies, also known as hidden hunger, are a global health issue
that affects approximately two billion people, with the majority of cases found in Asia,
Africa, and Latin America [1–3]. The most common micronutrient deficiencies concern
iron, iodine, zinc, and vitamin A [4]. In general, micronutrient deficiencies can have severe
health ramifications such as impaired cognitive development, stunted growth, perinatal
complications, and even premature death [5]. For instance, vitamin A deficiency is the
leading cause of childhood blindness (i.e., xerophthalmia), and it has been estimated that
over 190 million children are affected by this deficiency worldwide [4].

Numerous strategies and methods have been recommended to combat micronutrient
deficiencies, one of which is biofortification, or the process of increasing essential nutrients in
food through biotechnology, conventional breeding, and agronomic practices [2,6] (Figure 1).
Importantly, biofortification is generally considered a sustainable, cost-effective, and efficient
method to increase micronutrients in the diets of underserved populations [6–8]. Additionally,
biofortified food has become a niche commodity in developed countries in the form of
functional foods, which are foods with a potentially positive effect on human health in
addition to basic nutrition [9]. As some consumers have become more aware of particular
nutrients’ positive health effects, their food preference has shifted to foods enriched with
those nutrients [10–13]. For example, NuLin® is a flax (Linum usitatissimum L.) variety
developed to have a high alpha-linolenic acid content [14,15]. As a result, it is utilized to
increase omega-3 concentrations in food and animal feed. As of 2019, the global functional
food market size was estimated to be $173.26 billion and is projected to reach $309 billion
by 2027 [16].
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Figure 1. The three primary biofortification approaches for crops are transgenic, agronomic, and
conventional breeding. Green solid arrows signify globally accepted approaches, while the red
dashed arrows signify non-globally accepted approaches. Illustrated by Jorge Ruiz-Arocho.

Despite the benefits of biofortification to combat nutrient deficiencies, some bioforti-
fication methods have drawn major criticism from the public, primarily biofortification
of food through transgenic biotechnological processes, or the process of introducing a
gene from one organism into the genome of another organism [17–20]. Even though
limited scientific evidence suggests foods developed by transgenic biotechnology have
detrimental effects on human health, the majority of criticism focuses on its safety and
ethical concerns [17–20]. In a recent survey conducted by the Pew Research Center with
1480 correspondents, 39% of Americans considered genetically modified foods harmful to
human health, while only 10% believed they were beneficial [21]. The negative perception
of transgenic crops is even higher in Europe and also occurs in regions where malnutrition
is prevalent such as Africa and Asia [18,22]. Due to the strong negative public perception of
these foods, many consumers refuse to purchase or consume transgenic foods. Therefore,
for biofortification to have an actual impact on health around the globe, for now, biofortifi-
cation research may need to shift to other non-transgenic processes that have greater public
acceptance. This review will identify and describe non-transgenic biofortification processes
for plant-derived products and discuss the benefits and limitations of each (Table 1). The
overarching goal of this review is to explore various strategies to biofortify foods with
broad global appeal.



Agronomy 2021, 11, 464 3 of 14

Table 1. Benefits and limitations of conventional breeding and agronomic biofortification approaches.

Approach Benefits Limitations

Cost-Effective Simple Eco-Friendly Timely High-Cost Labor
Intensive Unsustainable Time

Consuming
Reliant on
Variation 1

Environment-
Dependent 2

Conventional
Breeding
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2. Conventional Breeding

Conventional plant breeding increases the essential nutrients of foods through the
improvement of cultivars by the conservative manipulation of plant genomes within their
natural genetic boundaries [23]. While conventional breeding has received less relative
research attention than transgenic approaches to biofortify crops, as of 2018, it still has a
higher success rate, with more released biofortified cultivars on a percentage basis [7]. Of
those released cultivars, 58.1% have been cereals, followed by vegetables (19.8%), legumes
(13.2%), and fruits (9%) [7]. There are many methods for breeding biofortified crops
without transgenic technologies such as single-seed descent, marker-selected-breeding,
and genomic selection [23–25]. For instance, zinc biofortification of rice (Oryza sativa L.)
has been facilitated through the identification of gene-specific markers and quantitative
trait loci associated with increased grain zinc content [26,27].

Major research programs worldwide such as the European Union’s Health Grain
Project, the global HarvestPlus program, and the BioCassava Plus program have utilized
conventional breeding to generate some of the most successful biofortified cultivars [7]. For
instance, the biofortified, orange-fleshed sweet potato (Ipomoea batatas L.) cultivars were
developed to comprise a greater content of β-carotene to help combat vitamin A deficiency
in developing countries [28,29]. Nutritional analyses demonstrate that orange-fleshed
sweet potato varieties contain up to 21-fold more β-carotene than other sweet potato
varieties [30]. Research has shown that the consumption of orange-fleshed sweet potato
varieties alleviated vitamin A deficiency in children in Mozambique, Uganda, and South
Africa [31–33]. Another prominent example is the iron-biofortified rice variety IR68144–
2B-2–2-3, developed by the International Rice Research Institute in conjunction with the
HarvestPlus program [34]. This rice variety contains four- to five-fold more iron after
processing and cooking than other commercial rice varieties [34,35]. In a controlled diet
study, this variety increased ferritin and whole-body iron by 20% in Filipino women [35].
For more examples of biofortified crops, please refer to the cited reviews [3,6,7].

2.1. Benefits of Conventional Breeding

One of the major advantages of utilizing conventional breeding practices to biofortify
foods is that the public widely accepts this process. Humans have been consciously and
unconsciously altering domesticated plants for thousands of years, making this process
a societal norm [36,37]. Therefore, biofortified foods developed by this process will be
more likely accepted by a large portion of the world’s population than food biofortified
through transgenic approaches [6,20]. In addition to having a global appeal, this method
is cost-effective for growers [6,38]. As mentioned above, micronutrient deficiencies occur
mainly in vulnerable populations in developing regions such as Africa, Asia, and Latin
America [1,2]. Most of the growers in these areas are smallholder farmers that generally
live in poverty [39]. Unlike other biofortification processes, the biofortification of food
through conventional breeding practices adds minimal additional costs to growers [40].
The majority of the costs associated with this practice would be incurred by the breeding
institute through research and development of the biofortified cultivars [40].

Conventional breeding is also a more sustainable option for food biofortification
than agronomic approaches [6,8,41]. As more research highlights the inadvertent negative
effects of agricultural practices on the environment, the need to sustainably produce food
has become more important than ever [42–45]. Specifically, the overuse of fertilizers in
agroecosystems has been linked to algal blooms, reduced biodiversity, and polluted air
and waterways [42–45]. In contrast, conventional breeding is considered a sustainable
biofortification process, as it does not depend on the additional use of synthetic inputs in
agroecosystems like some agronomic approaches.

2.2. Limitations of Conventional Breeding

Despite the numerous advantages of utilizing conventional breeding to biofortify
foods, there are several limitations, the first of which is the reliance of this method on
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the standing diversity in the targeted crop gene pools. Biofortification can only occur
if there is trait diversity present in the primary, secondary, or tertiary gene pool of the
targeted crop [7,40]. If no diversity is present, then the targeted crop cannot be biofortified
through conventional breeding. For example, oilseed biofortification has only occurred
through transgenic processes due to its limited genetic diversity, low heritability, and
linkage drag [7]. Additionally, ancillary gene pools that have been underutilized in crop
improvement efforts may provide the greatest opportunity to identify lost beneficial nutri-
tional traits [46–49]. For example, the stay-green phenotype in chickpeas (Cicer arietinum
L.), a potentially lost trait as a result of domestication and breeding processes, was seen to
be associated with greater levels of lutein and β-carotene when compared to conventional
chickpea varieties [50]. Moreover, nutritional analyses of modern crops and their wild
relatives revealed that some modern crops are of lower nutritional value than their wild
counterparts [51–54]. Consequently, the wild relative gene pool may have potentially
more beneficial phenotypes for biofortification than the domesticated gene pool [48,49].
However, the utilization of wild relatives could be a hurdle for several target crops due to
pre- and post-zygotic reproductive barriers [55–58], the potential for unfavorable traits to
be tightly linked to favorable traits [59,60], and wild relatives being severely underrepre-
sented in world gene banks [61]. The limited availability of wild accessions results from
inadequate systematic collection of wild relatives in their native range. Furthermore, the
current collection of wild relatives has become increasingly difficult due to the limited in
situ conservation efforts placed on wild relatives. For example, 2 of 24 sites containing wild
chickpea populations in southeastern Anatolia have been permanently lost due to rapid
human development [47].

Another limitation of conventional breeding is that the process is rather time-
consuming [40,62]. It can take several years before a cultivar is deemed releasable by
the breeding institute. This is because introgressing a trait into an elite cultivar requires
extensive selection, at least until the sixth generation [62]. However, there are strategies
such as high-throughput phenotyping platforms, seed chipping technology, molecular
markers, genomic selecting breeding approaches, and the manipulation of day length that
can expedite the release of a cultivar [62–64]. However, several of these methods have a
higher upfront cost than traditional breeding methods. Thus, they are not widely utilized
in some public breeding institutes even though they are more efficient on a per-dollar
basis [64–67]. Moreover, before a cultivar is released, it needs to be tested in diverse growth
environments, since genetic-by-environment interactions can substantially alter a crop’s
phenotype and potentially the nutritional components of the cultivar [62,68,69]. Therefore,
due to genetic-by-environment interactions, a biofortified crop may lose its enhanced
nutritional trait [68].

3. Agronomic Biofortification Approaches

Agronomic biofortification approaches are globally utilized because they are straight-
forward and timely. These approaches are defined as pre-harvest agronomic practices that
enhance the nutritional content of food [70]. A caveat of these approaches is that they
must occur pre-harvest for the food to be considered biofortified. If the approaches occur
post-harvest, then the food is categorized as fortified [70]. Some agronomic biofortification
practices are the application of soil or foliar inorganic fertilizers, organic fertilizers, and
biofertilizer as well as nutri-priming.

The most prominent agronomic practices used to biofortify food crops are the soil or
foliar application of inorganic fertilizers. The use of these fertilizers has resulted in enhanced
micronutrient content for a variety of crops in various agroecosystems [7,71,72]. For instance,
soil- or foliar-applied zinc fertilizers led to increased zinc content in corn (Zea mays L.) [73–77],
wheat (Triticum aestivum L.) [72,76–79], peas (Pisum sativum L.) [80], chickpeas [81], potatoes
(Solanum tuberosum L.) [82–84], and rice [85–89]. For more examples of crops biofortified
through agronomic approaches, please refer to the cited reviews [7,40,71,89,90].
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A similar method to applying fertilizers and foliar sprays with enhanced micronutrient
content is the supplementation of micronutrient media to soilless cultivated food [91]. In
soilless cultivation, plant productivity is optimized due to strictly regulated environmental
conditions such as temperature, light, and nutrient solution [92,93] and by maximizing root
contact with the nutrient supply [94]. The constant root contact with the nutrient solution
maximizes the uptake, translocation, and accumulation of micronutrients and allows for
consistent crop nutritional quality [91,95]. In addition to these benefits, soilless cultivation
extends the cultivation cycle and allows for year-round production due to, in part, the
avoidance of soil limitations such as soil pollution, soil fertility reduction, and soil-borne
diseases [91,96]. Furthermore, soilless cultivation has been described as having low labor
requirements due to the absence of weeds, straightforward harvesting and processing, and
the utilization of automated systems for plant care [96].

Research has shown that the supplementation of specific micronutrient media in
soilless cultivation results in greater contents of folate in spinach (Spinacia oleracea L.) [97],
silicon in green bean (Phaseolus vulgaris L.) [98], zinc and selenium in lettuce (Lactuca sativa
L.) [99], and zinc in white cabbage (Brassica oleracea L.) [100]. Moreover, the role of micro-
greens as a soilless biofortified food product to combat micronutrient deficiencies, or as
functional food, has become promising in recent years [101,102]. This is because micro-
greens have a high phytonutrient content, flavor-enhancing properties, a short cultivation
cycle (harvested 7-21 days after germination), and can be biofortified through soilless
cultivation [101,102]. For instance, the microgreens basil (Ocimum basilicum L.), coriander
(Coriandrum sativum L.), and tatsoi (Brassica rapa subsp. narinosa (L.H. Bailey)) were bio-
fortified with selenium [103,104], Brassicaceae microgreens with zinc and iron [105], and
buckwheat microgreens (Fagopyrum esculentum (Moench)) with selenium and iodine [106].
Additionally, selenium biofortification of wheat microgreens has also led to increased levels
of carotenoids or other bioactive compounds (phenolics, flavonoids, vitamin C, antho-
cyanin) [107]. More examples of biofortified food through soilless cultivation are specified
in Rouphael et al. [91].

3.1. Limitations of Inorganic Fertilizers to Biofortify Crops

Although the application of inorganic fertilizers is an effective, relatively simple, and
quick agronomic approach to biofortify crops in soil and soilless systems, there are several
limitations to this approach. The primary limitations are the detrimental environmental
effects that result from the overuse of inorganic fertilizers. As previously mentioned, the
overuse of fertilizers in soil systems has led to water pollution, algal blooms, and a reduction
in biodiversity in natural systems [52–55]. Moreover, inorganic fertilizers are expensive
and labor-intensive to apply, which would add further financial strain to impoverished
smallholder farmers, who make up a large portion of farmers in food-insecure areas [39].
Additionally, identifying when to apply fertilizers to achieve the maximum increase in
nutrient content is another challenge [68,108,109]. Phattarakul et al. [101] found that foliar
zinc application to rice after flowering, during the early milk plus dough stages, increased
grain zinc content more than earlier applications [108]. However, Rodrigo et al. [102] found
that foliar selenium application to wheat pre-flowering and in between the booting and
heading stages increased selenium grain content the most [109].

Furthermore, similar to soil cultivation practices, the timing, chemical form, and
amount of fertilizers in soilless cultivation are critical for effective biofortification [91].
For instance, when comparing carrots (Daucus carota subsp. sativus (Hoffm.)) biofortified
hydroponically to field foliar fertilizer applications, the same rate of iodine fertilization
resulted in cumulative toxic levels of iodine in the hydroponically biofortified carrots [110].
Moreover, the biofortification of multiple micronutrients at once may be problematic in
soilless cultivation due to the potential antagonistic effects micronutrients have on crop
accumulation. Germ et al. [96] found that selenium content was greatest in buckwheat
when fertilized in combination with selenium and iodine; however, iodine content was
greatest when fertilized with iodine alone [106]. Therefore, for fertilization to be an effective
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and efficient soil and soilless biofortification approach, the proper timing, amount, and
chemical form of the application are critical.

Furthermore, crop phenotype, genotype, and soil conditions are additional factors
that influence the effectiveness of fertilizers to biofortify crops [111,112]. It has been docu-
mented that phenotypic differences in nutrient uptake, translocation, and accumulation
result from plant genotype [112–114]. For example, rice [68,115] and corn [74] genotypes
differed in grain zinc content when applied with zinc fertilizers. Additionally, soil factors
can exacerbate nutrient accumulation differences between genotypes. Mabesa et al. [68]
showed that only one out of the eight tested rice biofortification breeding lines reached the
targeted zinc concentration when grown in a severe zinc-deficient site with fertilization [68].
Likewise, iron biofortification via iron fertilization of calcareous soil with high pH is ineffec-
tive due to the reduced mobility of iron and the rapid conversion of iron into unavailable
forms [116]. Therefore, crop genotype and the growth environment can severely hinder
the biofortification of crops with fertilizers. Detailed mechanisms of how plants uptake,
translocate, and accumulate micronutrients can be found in White and Broadley [112].
This limitation is less pronounced in soilless systems, as environmental conditions in
these systems can be tailored to any crop genotype. However, soilless biofortification has
several unique limitations: It is considered expensive due to the necessary equipment
and energy costs [117], is not applicable to all crop types, is considered unsustainable in
some regions [117], and is limited in capacity due to the physical constraints of the soilless
system being used (e.g., size of the greenhouse, pots, etc.).

3.2. Benefits and Limitations of Other Agronomic Approaches

Other agronomic approaches to biofortify crops include the application of organic
fertilizers. Organic fertilizers have been categorized as a cost-effective, eco-friendly alterna-
tive to inorganic synthetic fertilizers [118–122]. Organic fertilizers are obtained from animal
or plant sources such as animal manure or green manure, respectively, and have been
shown to increase the micronutrient content in various crops [121,123,124]. For example,
vermicompost (earthworms converting organic waste into fertilizer) increased the content
of zinc by 14% and iron by 7% in barley (Hordeum vulgare L.) [125], and poultry manure
increased the iron content in wheat by 15% [126] and in rice by 10% [127]. However, if
not properly treated, a major disadvantage of some organic fertilizers is that they may
contain human pathogens such as Escherichia coli, antibiotics, and heavy metals [128,129].
Additionally, organic fertilizers are considered an imprecise method to provide nutrients
to crops because the nutrient content in organic fertilizers is highly variable, and when
applied, the nutrients are not immediately available to the crops [122,130]. The amount
of nutrients and the element types in organic fertilizers are mainly dependent on the age,
origin (animal or plant), and environmental conditions from which the organic fertilizers
were derived [130].

Biofertilizers differ from organic and inorganic fertilizers as they are substances that
contain microbial inoculants, consisting of microorganisms that promote the growth and
productivity of the host plant [118,119]. These bacteria are commonly referred to as
plant growth-promoting bacteria. In addition to enhanced growth, these bacteria have
also been shown to augment the nutrient content in crops by increasing the supply or
availability of nutrients [118,119]. Specific biofertilizers such as cyanobacteria (Anabaena
Azotobacter sp. Biofilm and Anabaena sp.–viz. Providencia sp) and Bacillus aryabhattai
facilitated the zinc biofortification of corn [131], wheat [132], and soybeans (Glycine max
L.) [132], respectively. Despite this practical promise, biofertilizers have not been shown
to offset the use of fertilizers in agroecosystems due to several obstacles [133], one of
which is the identification of the proper plant growth-promoting bacterium for each host
crop, particularly one that can withstand packaging, storage, and application on a global
scale [133]. Furthermore, the beneficial effects that biofertilizers may provide may be
short-lived due to the agroecosystem’s environment. This is because environmental factors
such as soil pH have a more substantial influence on the presence of soil microorganisms
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than the host plant [134,135]. Consequently, there is the potential that the supplied plant-
growth-promoting bacteria may be maladapted to the environment, resulting in minimal
crop biofortification.

Another biofortification approach is nutri-priming, which is the method of soaking
seeds in solutions containing nutrients before planting [136–138]. Nutri-priming has been
primarily used for yield improvement, germination, seedling establishment, and root sys-
tem development in crops [136–138]. However, some studies have shown that this process
improves grain nutrient content [138,139]. For instance, zinc nutri-priming increased grain
zinc content by 29% in chickpeas [140] and from 12% to 15% in wheat [140,141]. Further-
more, nutri-priming flax and fenugreek with fish oil increased polyunsaturated essential
fatty acids (i.e., docosahexaenoic acid and eicosapentaenoic acid) in sprouts [142]. An addi-
tional benefit of nutri-priming is that farmers can conduct this approach, as it is considered
a low-cost and simple practice for nutrient enrichment [81,140]. However, the effectiveness
of nutri-priming may be largely affected by crop type, genotype, time (duration of the
priming process), osmotic potential of the priming solution, and environmental conditions
(e.g., light and temperature) [136,137,143].

4. Conclusions

Biofortification of food through conventional breeding and agronomic approaches
has been successful for various crops. As a result, biofortified food has enhanced nutrient
concentration in diets, which benefits human health in food-insecure areas. However, there
are several limitations to conventional breeding and agronomic approaches such as the
detrimental effects of fertilizers on the environment, if misused, or the limited genetic
variation present in some crops. These limitations dampen the efficacy and application of
biofortification methods globally. Nonetheless, the first step in overcoming the described
hurdles is identifying alternative practices, and critical research is required to broaden
the applicability of biofortification approaches. However, if the efficacy and application
of biofortification does increase, biofortification alone is not the sole answer to providing
relief for the two billion people worldwide suffering from hidden hunger. Biofortification
as a whole has limitations. In particular, the process does not address the high cost or acces-
sibility of micronutrient-rich foods. Additionally, biofortified foods are generally limited
in the amount and range of micronutrients [4]. Therefore, an assortment of intervention
approaches, such as diversifying diets and the fortification of commercial food along with
biofortification, will need to be utilized to help alleviate hidden hunger.
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