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Abstract: Nature-friendly approaches for crop protection are sought after in the effort to reduce the
use of agrochemicals. However, the transfer of scientific findings to agriculture practice is relatively
slow because research results are sometimes contradictory or do not clearly lead to applicable
approaches. Common scab of potatoes is a disease affecting potatoes worldwide, for which no
definite treatment is available. That is due to many complex interactions affecting its incidence and
severity. The review aims to determine options for the control of the disease using additions of
micronutrients and modification of microbial communities. We propose three approaches for the
improvement by (1) supplying soils with limiting nutrients, (2) supporting microbial communities
with high mineral solubilization capabilities or (3) applying communities antagonistic to the pathogen.
The procedures for the disease control may include fertilization with micronutrients and appropriate
organic matter or inoculation with beneficial strains selected according to local environmental
conditions. Further research is proposed to use metagenomics/metabolomics to identify key soil–
plant–microbe interactions in comparisons of disease-suppressive and -conducive soils.

Keywords: micronutrients; mineral solubilization; inoculation; suppressive soils; antagonistic strains

1. Introduction

At present, both agriculture science and management seek to understand ecolog-
ical processes which are relevant to the control of plant diseases [1,2]. New findings
are expected to diminish the use of agrochemicals, which decrease the biodiversity of
non-target organisms, including microbial communities in agroecosystems [3]. Proposed
approaches focus on biological protection, mostly using microorganisms supporting plant
growth and health [4]. However, more traditional approaches can also be used. One of
the well-studied mechanisms of plant protection concerns providing plants with sufficient
resources/nutrients such as nitrogen, phosphorus or potassium but also trace elements [5].
Many agricultural soils are deficient in one or more nutrients, and the production of crops
depletes, particularly, micronutrients, because macronutrients are typically supplied in
high amounts [6]. That leads not only to suboptimal plant growth but also to decreased
plant immunity, which is influenced by their metabolic status [7,8]. Thus, composed plant
nutrition is critical for disease control. That is because a delicate balance between the
specific nutrient requirements of various potato cultivars and the soil chemical conditions
need to be established [9–14].

Common scab (CS) is a disease potentially affected by plant mineral nutrients [15].
Previous studies associated nitrogen, phosphorus, potassium, calcium, magnesium, iron,
zinc, manganese, copper and aluminum with CS severity or incidence by their content
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either in soil or plant tissue [15–17]. The use of nutrients to control CS was investigated
but the effects differed by location, cultivar and year [16–21].

The second studied mechanism of disease control involves plant–microbe–soil in-
teractions, which include (1) antibiosis; (2) competition with pathogens, (3) induction of
systemic defense response, (4) plant growth promotion and also (5) increased availability
of nutrients, which all affect plant defense [22]. It was suggested that, particularly, the
soil [23] and potato plant microbiomes [24,25] are important in controlling plant diseases.

Common scab of potatoes (CS) is a disease caused by pathogenic Streptomyces spp.,
which are distributed worldwide and, thus, adapted to various soil conditions [26]. In the
past, the disease was treated by several pesticides, e.g., formaldehyde, urea formaldehyde,
manganese sulphate, pentachloronitrobenzene and chloropicrin, whose use is now limited.
In spite of increased research efforts, no treatments provide a reliable control of the disease
across locations [26].

Most of the generally known microbial activities connected to plant disease control
were also observed in CS-related interactions, particularly in suppressive soils [27–30].
Extensive research was conducted with supplementation of antagonistic strains to soil
or improvement of the whole microbial communities using organic substrates reviewed
in [31]. Above that, many cases of pathogen suppression by the microbial community were
also related to the soil nutrient status [32,33]. Yet, no conclusive results useful for disease
management were determined.

Consequently, in this review, we combine the chemical, physiological and microbiolog-
ical research concerning CS to uncover the underlying processes which could be used for
disease control. We focus on the effects of micronutrients because their sufficient amount is
required for many physiological processes which support the defense against plant diseases.
Additionally, micronutrient availability is relatively easy to manage [6]. We also recognize
that microorganisms are integral components of soils, and therefore, their participation in
potato plant nutrition and protection against CS needs to be considered in disease control.
Finally, we recommend approaches for the most appropriate management strategies.

2. Individual Nutrients Affect CS Severity

Potatoes require optimal levels of essential nutrients throughout the growing season.
Therefore, disease severity may be influenced by nutrient limitation, particularly at periods
of fast growth [34]. Potato plants respond to the presence of the CS pathogen and nutrient
conditions by accumulating various macro- and microelements. A significant correlation
was shown between the degree of infestation by CS and the contents of Ca, Mn, K, P, Fe
and Mg [15–17,35] in potato periderm or other parts of plants. The ability to accumulate
different macro- and microelements also differs between cultivars and is further associated
with resistance to CS [36]. However, it seems that the accumulation of different nutrients
in potato periderm results from various processes, and thus, only some interactions are
indicative of CS effects or can be used for its suppression.

2.1. Micronutrients
2.1.1. Calcium (Ca)

Ca relationships to CS are some of the most studied, in combination with soil pH.
High total calcium levels in soil and also composed exchangeable Ca are often positively
correlated with CS severity [17,27,28,37]. However, addition of Ca and K to acidic and
neutral soils increased CS severity only in the neutral soil, showing that pH and Ca:K ratio
are more important than the content of Ca in soil alone [38]. Similarly, the irregular relation-
ship between soil pH, exchangeable Ca and CS development (e.g., [35]) was explained by
interactions with other nutrients, including phosphorus, nitrogen and manganese [17,39]
(Table 1).

Limitation of plant growth is relatively unlikely with Ca because it is a component of
several primary and secondary minerals and is commonly present in ionic form (positively
charged Ca2+), which is considered biologically available. Limitations may occur when
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it is adsorbed on soil colloidal complexes or due to human-induced acidification of soils,
when Ca deficiency is caused by antagonistic plant uptake of metals such as aluminum,
potassium and manganese [5,40].

However, limited Ca uptake influences the disease development because in plants,
Ca affects the stability and function of membranes and cell wall structures [5,40,41]. Fur-
thermore, Ca serves as a second messenger triggered by different environmental stimuli,
including pathogens, so it is needed for plant defense [40]. In CS lesions, the Ca level is
elevated [42] and it is even higher in dry soil conditions [43]. Thus, the high Ca level in the
tuber periderm of diseased plants [36] shows an effect of infection rather than a cause [35].
However in healthy potatoes, a positive correlation between the Ca content and CS severity
suggested that susceptible cultivars accumulate higher amounts of Ca [44].

Consequently, the total Ca content in the soil does not seem to be a good predictor
of CS disease because it interacts with many other soil nutrients, pH and soil moisture
and is affected by potato plant genetics. However, occasional liming of low-pH soils is
recommended for prevention of Ca limitation, which also leads to increased disease severity.
Above that, manipulation of soil Ca leads to fluctuations in soil pH, which may further
improve CS prevention because different pathogenic streptomycetes are adapted to specific
soil pH levels, and thus, its decrease or increase may suppress their populations [15,45]. In
contrast, the selection of cultivars which accumulate lower amounts of Ca in the periderm
may be a good strategy for CS control (Table 1).

2.1.2. Sulphur (S)

The application of elemental sulfur, calcium sulfate and ammonium sulfate reduced
CS infection and severity [46,47], and above that, sulfate fertilizers enhanced biodiversity
and antibiosis [46,48]. CS severity was also negatively correlated with soil S content [32].
Yet the effect of elemental sulfur and ammonium sulfate on the reduction in CS was not
consistent [47].

Sulfur availability in soil depends highly on soil bacteria because more than 95% of
total sulfur is bound to organic molecules in the form of sulfate esters or carbon-bonded
sulfur (sulfonates or amino acid sulfur). Bacteria participate in both the formation of those
compounds (sulfur immobilization) and sulfur release in the form of sulfate, which is
available to plants [49]. Additionally, different microbial communities are involved in the
consumption of various sulfur sources and supplying of sulfur to potato plants [50].

In the plant, organically bound sulfur in the form of various sulfur-containing metabo-
lites is involved in cellular self-defense processes including detoxification of reactive
oxygen species and other redox reactions, collectively termed sulfur-induced resistance
or sulfur-enhanced defense [51]. Additionally, sulfur deficiency also has an indirect effect
on plants as it reduces uptake of other elements such as P and K [40,52]. To improve CS
control, it seems that the increase in decomposition processes by priming with additions of
new organic matter may lead to the release of S from older soil organic matter and support
microorganisms increasing S availability.

2.1.3. Magnesium (Mg)

In several studies, CS decreased and no pathogen (Streptomyces scabiei) was detected on
potatoes grown in soils with high composed exchangeable cations including Mg [37]. Simi-
larly, CS-suppressive soils were enriched in total Mg compared to CS-conducive soils [27].
A connection of Mg and CS suppression was also found in a resistant potato cultivar that
also had a higher Mg content in the periderm compared to a susceptible cultivar [28].
However, in another study, the number of thaxtomin gene copies (txtB) representing the
quantity of the pathogens in potato periderm was found positively correlated to periderm
Mg content [32].

Mg availability in soil depends on soil weathering, moisture, pH and root–microbial
activity, which are key factors determining the plant-available Mg pool [53]. Yet Mg is
usually not limiting because it is present in various types of silicates and is relatively mobile
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compared to other cations such as K, Ca and NH4
+ [54]. However, similar to other cations,

deficiency of Mg2+ in the plant may be induced not only by its low soil content but also by
other cations that compete with Mg2+ for binding to negatively charged clay particles or
root apoplasm [55].

Magnesium is an important co-factor of more than 300 enzymes [53], including Ru-
BisCO, a central part of a chlorophyll molecule [40], and also functions as a carrier of
phosphorus in plants. Nevertheless, excess Mg2+ may also inhibit photosynthesis, particu-
larly during dehydration [56] (Table 1).

Thus, for improvement of Mg-related limitation of plant growth and health, mostly a
selection of cultivars with better Mg utilization may be recommended [44] or, in case of
larger limitation, soil can be supplemented with dolomite, the most common Mg fertilizer.

2.1.4. Manganese (Mn)

High Mn content (Mehlich 3-extractable) was strongly correlated with low CS disease
severity of soils in Canada [16]. Soil amendments which reduced Mn availability such as
liming and nitrate fertilizers also increased the severity of CS [57]. Furthermore, direct
Mn soil applications reduced the common scab of potato, especially when manganese
sulfate was applied to Mn-deficient soils [58]. However, Barnes [59] found no effect on
CS incidence when up to 125 kg/ha of MnSO4 was applied on tubers or sprayed at tuber
initiation (Table 1).

The availability of manganese depends on soil acidity. However, in soil, not only may
limitation occur, but sometimes, a level toxic to plants was observed at some
locations [57,60,61]. Yet more often, Mn is deficient, and that is connected with the increas-
ing severity of various plant diseases.

In the plant, Mn serves as a co-factor of various enzymatic activities at low concentra-
tions, while at high concentrations, it acts as their inhibitor [57]. Above that, Mn deficiency
leads to an inhibition of cell elongation and decrease in tuber yield [61]. Thus, Mn limi-
tation not only affects the overall growth of plants but also the thickness of the cell wall,
which serves as protection for pathogen invasion [6]. Finally, Mn may affect the disease
resistance of plants by controlling lignin and suberin biosynthesis, phenol biosynthesis and
photosynthesis [5,41,62].

Limitation of Mn may not be related only to its availability in soil. Since Mn is
required at much higher concentrations by higher plants compared to fungi or bacteria,
some pathogens are known to exploit this difference in requirement [63]. For example,
some plant pathogens, including S. scabiei oxidize Mn, making it unavailable for the plant
host and, thus, increasing the plant stress [64].

Consequently, Mn limitation may strongly affect disease control and should be as-
sessed when macronutrients are in balance. The form of supplementation might be evalu-
ated based on soil pH and organic matter content because both inorganic and organic forms
can be applied for the improvement of Mn availability. Some organic amendments such as
dried grass meal may also increase the number of manganese-reducing microorganisms [65]
which make manganese available to plants.
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Table 1. Mineral nutrients availability in relation to common scab (CS) development.

Element Factors of Availability to
Plants Function in Plant Relation to Plant

Defense/Pathogenesis in General Possible Relation to CS Main References

Cation Exchange Capacity
(CEC)

Higher CEC in clay than
sandy soils; low CEC and Ca
especially correlated with low
pH

A measure of soil capacity to
hold nutrients (Ca, Mg, K, Na,
Al and H)

Different effects of Ca, Mg, K and
their ratio;
imbalanced nutrients promote
impaired biosynthesis and
accumulation of low-molecular
weight substances readily available
for parasites

CS disease severity related to
exchangeable Ca, Mg and K
cations; CEC is lower in
suppressive soil; the higher
CEC, the greater uptake of
Ca2+; uptake of monovalent
cations (K+) increases at
lower CEC

[5,37,60,66]

K Leached out in acid soils; Al
dominates the CEC, limits the
soil’s ability to absorb and
hold K

Control of cation–anion
homeostasis, membrane
polarization, more than 60
enzymes in photosynthesis
and transport of
photosynthetic products to
storage organs; starch
synthesis; increased plant
resistance to pests, diseases
and abiotic stresses

Correlated with K:Mg, K:Ca and K:N
ratios; decrease in some plant
diseases if N and P are sufficient;
high content of N increases plant
susceptibility to diseases—this
adverse effect can be neutralized by
balanced N:K ratios of fertilizers

Special Ca:K ratio reduces
scab severity and incidence,
while the imbalance or excess
of K or Ca promotes the
disease

[38,40,64,66]

Ca pH Stability and function of
membranes and cell walls;
second messenger triggered
by different stimuli including
pathogens

At low Ca level, cells leak
compounds used as food by
parasites; supports some pathogens
by stimulating the action of
pectolytic enzymes dissolving plant
cell wall; inhibits the activity of other
pectolytic enzymes

Ca may simulate the aerial
mycelium formation and
spore germination of S.
scabiei; high calcium levels in
the absence of changes in pH
induce scab

[35,40,41,66]

Mg Mg deficiency can be induced
by higher K supply

Allosteric activator of more
than 300 enzymes; a central
part of chlorophyll molecules;
in the structural integrity of
cell components

Decreases the susceptibility to
pathogen-produced macerating
enzymes as long as Ca level remains
sufficient

Soils suppressive to CS
disease had a higher content
of Mg; the CS-resistant potato
cultivar has a higher Mg
content in periderm

[27,28,40,53]
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Table 1. Cont.

Element Factors of Availability to
Plants Function in Plant Relation to Plant

Defense/Pathogenesis in General Possible Relation to CS Main References

Mn More available with lower
pH; Mn uptake increased by
seed inoculation with
pseudomonads, organic
amendments increased
Mn-reducing microorganisms

Co-factor of enzymatic
activity/an inhibitor at high
concentrations; control of
lignin and suberin
biosynthesis, phenol
biosynthesis, photosynthesis

Mn is required at much higher
concentrations by higher plants than
by fungi and bacteria

High Mn correlates with low
CS; S. scabiei oxidize Mn
making it unavailable for the
plant; soil amendments
reducing Mn availability
(liming, nitrate fertilizers)
increase CS severity;
herbicide glyphosate, toxic to
Mn reducing organisms

[55,57]

Fe Predominant ferric ion (Fe+3)
is sparingly soluble; more
available at lower pH as
reduced form Fe+2; bacteria
supply iron to plants and
backward

DNA synthesis, respiration,
photosynthesis; in prosthetic
groups of many enzymes
(cytochromes); synthesis of
chlorophyll; essential for
maintenance of chloroplast
structure and function

Plants, bacteria and fungi compete
for Fe in the rhizosphere;
microorganisms have lower Fe
requirements than plants; promotes
antifungals’ production by soil
bacteria for plant benefit; activates
both enzymes involved in the
infection and in plant defense

S. scabiei produces
siderophores
desferrioxamine, scabichelin
and pyochelin to compete for
iron; lower CS severity in
soils with more available iron;
higher Fe in the periderm of
tubers grown in suppressive
soil; enrichment with
available iron and peat
suppressed CS

[5,27,33,67–70]
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2.1.5. Iron (Fe)

In CS-suppressive soils, potatoes were less affected due to the available iron [33]. Fur-
thermore, the concentration of Fe in the periderm of potato tubers grown in CS-suppressive
soils significantly increased during the maturation period, whereas in conductive soils,
it slightly decreased [36]. Overall, although cultivars differ in Fe requirements [71], the
Fe content in various cultivars was usually not related to the CS disease [44]. Finally,
the enrichment of soil with soluble iron (directly or through a decrease in soil pH by
peat amendments) suppressed the CS severity, although the abundance of thaxtomin
biosynthetic gene copies (txtB genes) remained the same in the soil. This indicates that
iron supports plant defense and reduces pathogen virulence rather than eliminating the
pathogen population [27,33] (Table 1).

Although iron is the fourth most abundant element on Earth, it is not readily as-
similated by either bacteria or plants in aerobic soils because its oxidized form, Fe3+, is
only sparingly soluble. Plant availability of Fe is also greatly reduced in calcareous soils
(pH > 7) [7]. That is in contrast with requirements of high iron levels by both microorgan-
isms and plants. It is particularly problematic in the rhizosphere, where plants, bacteria and
fungi compete for it [69]. Plants have developed two strategies for iron uptake: (1) mostly
dicots acidify the rhizosphere by the production of organic acids and phenolic compounds
to activate ferric chelate reductase and Fe2+ transporters; while (2) monocots produce
phytosiderophores and respective transporters [69]. Bacteria have developed similar
strategies of producing organic acids and synthesizing low-molecular-mass siderophores
(∼400–1500 Da), molecules with a high affinity for Fe3+ as well as membrane receptors able
to bind the Fe–siderophore complexes [72]. Many plant pathogens, including S. scabiei, use
chelating compounds during iron uptake, and those can act as essential virulence determi-
nants by limiting the plant’s access to iron. S. scabiei produces three types of siderophores:
desferrioxamine, scabichelin and pyochelin [73,74] (Table 1).

The effect of iron deficiency is critical for plants in metabolic processes such as DNA
synthesis, respiration and photosynthesis because it serves as a co-factor of many enzymes,
such as cytochromes of the electron transport chain. It is involved in the synthesis of
chlorophyll and is essential for the maintenance of chloroplast structure and function [67].
Additionally, iron may participate directly in the activation of enzymes involved in infection
as well as those involved in plant defense [75]. In addition, the availability of iron is
important for the protective microbial community because it is required for the production
of biocontrol metabolites, which may suppress various diseases [22].

The availability of iron seems to be the most overlooked factor in the protection of
potato plants from different diseases, but particularly CS, because the pathogenic strepto-
mycetes are well equipped for competition with the plants for iron supplies. The deficiency
is likely in all alkaline soils but also in soils with low microbial activities. Thus, the avail-
ability of iron can be improved by supplementation with organic matter which increases
microbial activities but also by fertilization by organically bound iron.

2.2. Macronutrients

Even though macronutrients are not in the main focus of CS disease control, nitrogen,
phosphorus and potassium are often limiting factors and have also been demonstrated to
affect CS severity, despite their regular amendments to arable soils. Similarly to micronu-
trients, particularly their balanced soil contents and availability are important because of
many common interactions [5].

2.2.1. Nitrogen (N)

Most soils are poor in nitrogen, so it is generally supplied; yet its local recycling is often
overlooked. The soil nitrogen pool is mostly replenished by ammonium released from dead
biomass by microbial decomposers in natural conditions [76,77] and from the atmosphere
by nitrogen fixation by symbiotic bacteria [78] or free-living bacteria and archaea [79].
The processes are attenuated by fertilizers containing large amounts of nitrogen. To
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understand local nitrogen status, the proportion of ammonia-oxidizing bacteria to archaea
in the rhizosphere represents a potential bioindicator because it correlates with soil health
status [80]. In addition, nitrogen-rich rocks occurring at some locations should not be
overlooked because they offer a potentially large pool of nitrogen, and thus, no fertilization
is required [81].

In CS, some studies showed that adding N-rich soy meal, meat and bone meal to soil
led to an increase in ammonia, nitrite, nitrate, pH and bacterial quantity and suppressed
CS [82]. Furthermore, the temporary initial increase in soil pH to eight or higher by the
addition of organic materials resulted in an increase in free ammonium levels that might be
toxic to populations of S. scabies [83]. It was also shown that oligotrophic conditions of low
soil C and N are associated with CS control, possibly because the low N content constrains
the pathogens, favoring copiotrophic soil conditions [27].

The observed differences in nitrogen’s impact on CS may be the result of a partially
different utilization by potato cultivars [84]. A high content of N is known to increase
the plant susceptibility to several diseases, but the adverse effect can be neutralized by
balanced N:K ratios of fertilizers [66].

Thus, soil N content should be checked for balance with other nutrients, and fertil-
ization by nitrogen should be evaluated carefully for CS control so as not to eliminate
microbial activities. Furthermore, ammonium levels may be important indicators of micro-
bial processes relevant to CS control.

2.2.2. Phosphorus (P)

The relationship of soil P to CS has been studied for a long time. Recently, a high
soil phosphorus content was observed in CS-suppressive fields [27], and CS severity was
negatively correlated with the total phosphorus content in both soil and potato perid-
erm [32,44]. Similar to other nutrients, there is a combination of the nutrient’s effects on the
plant and the pathogen, which need to be disentangled to suggest an appropriate strategy
for CS control.

Ecosystems begin their existence with a fixed amount of P, which cannot be readily
replenished. Consequently, ecosystems with very old soils can become P-limited [2]. P in
soil is subject to an extensive set of physico-chemical and biological reactions, while only a
small part of total soil P is in a biologically available form [85]. In particular, in calcareous
soils, precipitation of calcium phosphate is presumed to be a major factor in the loss of P
availability over time [86]. As one of six macroelements, phosphorus is directly involved
in all processes in the plant. Additionally, potatoes have a relatively high P requirement
but are rather inefficient in soil P uptake [34], so deficiency is likely to occur.

In the plant, phosphorus deficiency results in a broad range of stress and adaptation
responses [87], including changes in the root system morphology and increased expression
of phosphoenolpyruvate carboxylase, resulting in root exudation of organic acids, which
changes P equilibrium in the plant rhizosphere and may influence the development of
specific microbial groups, including pathogens [88]. Similarly, phosphate-solubilizing
microorganisms, e.g., the genera Bacillus, Pseudomonas, Agrobacterium, Acetobacter, Strepto-
myces and Nocardia, release P from parent rocks and other sparingly soluble forms of soil
P by secreting organic acids, and during the process, they decrease the particle size [66].
Yet, microbial communities differ by P release, possibly also due to a pressure by preda-
tors, which speeds up its recycling. This was suggested as a partial mechanism in some
disease-suppressive soils [14].

However, it was observed that the content of available soil P is related to the amounts
of carbon, lignin, cellulose, polyphenol and nitrogen. For this reason, their quantities may
be used as predictors of the P release in various soils [86].

To assist the optimal P levels for CS disease control, solubilization activities by mi-
croorganisms can be supported by an increase in organic matter, particularly if it is slightly
acidic. Selection of potato cultivars with higher capacity of P uptake is also recommended
because potato cultivars vary in the efficiency of P utilization [44].
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2.2.3. Potassium

Potassium has the highest concentrations in potato tubers out of all macronutrients [40,
62] but the impact of its content on CS varies greatly. Potassium concentration measured
in the tuber periderm was not related to CS occurrence or severity in various potato
cultivars [36]. Yet in other studies, CS severity positively correlated with the available
soil K content [16], and CS was less severe in soils with a relatively high concentration of
exchangeable Ca, Mg and K [37].

The sources of potassium are minerals—feldspars and micas—which release this
element in the course of their weathering. Weathered potassium appears in solution as an
exchangeable ion, K+, which is adsorbed to or released from surfaces of clay particles or
organic matter [89]. Therefore, the presence of K-rich minerals and soil clay content needs
to be considered before its supplementation. Similar to other nutrients, K-solubilizing
microorganisms assist its availability, so their enrichment may benefit plants in soils where
K is present but not in forms available to plants [90].

Similar to other macronutrients, potassium in plants controls major pathways such as
cation–anion homeostasis, membrane polarization and enzymatic activity [40]. K is also
involved in more than 60 enzymes participating in photosynthesis, moving photosynthetic
products to storage organs such as seeds and tubers [66] and starch synthesis [40]. K plays
an important role in increasing plant resistance to pests, diseases and abiotic stresses [66].
Its deficiency leads to impaired synthesis of high-molecular-weight compounds (proteins,
starch and cellulose), while low-molecular-weight organic compounds accumulate and are
easily available to the invading plant pathogens [5].

Potassium’s equilibrium with other macronutrients is particularly important for the
prevention of CS. However, cultivars with a higher K uptake may be also selected to
prevent K limitation because various cultivars differ strongly in K accumulation [44].

3. Organic Matter Modifies Microbial Communities and Increases Antibiosis

The application of organic amendments to soil was proposed as a strategy for the
management of diseases caused by soil-borne pathogens [91]. Soil organic matter (SOM)
supplementation can produce suppressive soils on which pathogens do not establish or
persist [92,93]. Though many attempts have been made to suppress various plant diseases,
they have generally been met with varied success [91,94].

Many studies showed also CS reductions with the addition of various organic ma-
terials, including compost [95], peat [33], green manure [92,96], several types of animal
manure [83,97,98] and fish emulsion [21] (Table 2). Although the effect of organic amend-
ments was found to be mostly beneficial, rarely were the causes for the observed effects on
CS (intensification or suppression) resolved. It seems that the results depend on the organic
matter quality but also on the period and frequency of application [98,99]. Therefore, a
more precise understanding of organic matter supplementation is needed for successful
CS control.

Currently known mechanisms of SOM impact on the development of plant diseases
include (1) decrease in soil pH and increase in nutrient availability [100], (2) improvement
of soil nutrient-holding capacity and stability [101] and (3) disease-suppressive activities
of soil microbial communities [22]. Regarding CS specifically, direct suppression of the
pathogen S. scabies by harmful organic compounds was achieved by fertilization with
chestnut waste [102]. Finally, the connection between CS severity and SOM content may
be explained by the preferential food hypothesis, according to which carbon substrate-
deprived Streptomyces develop a pathogenic tendency, while their usual lifestyle is benign
and saprophytic [103].
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Table 2. Effects of organic matter amendments on incidence and severity of potato common scab.

Material Quantity Method Effect Reference

Compost 0.4 mt ha−1 CS suppression 42% [95]

Aerobic compost tea 140 L ha−1 Back-pack sprayer CS suppression 81%

Indian mustard green
manure

In the year before
potatoes CS suppression 25% [96]

Barley/ryegrass
rotations

Rotated prior to
potatoes CS suppression 13–34% [104]

Lopsided oat (Avena
strigosa) 150 kg ha−1 Rotovator prior to

potatoes CS suppression [105]

Rice bran 3 t ha−1 In the furrow with the
seed tubers CS suppression (DS) [106]

Soybean green manure,
with wheat straw

Incorporated before
planting CS suppression [107]

Green manure (Brassica
napus)

Grown for approx.
2 months in the fall

Decrease in CS incidence and
severity [92]

Compost 2.5 kg m−2 5 days before planting CS suppression: 61% to 28%
DI, 30% to 16% DS a [108]

Compost tea 1 kg m−2 in 5 L water Soil drenching CS suppression: 61% to 32%
DI, 30% to 15% DS

Fish emulsion 1% Soil amendment No effect [21]

Processed swine
manure 2 g per seed Seed covering Increased DI [109]

Processed swine
manure with chitosan

2 g per seed; 1%
chitosan Seed covering no effect

Chicken manure 66 t ha−1 Incorporated to 15-cm
depth CS suppression [83]

Swine manure 5.5 m3 ha−1 CS suppression

Dairy cattle manure 100 t ha−1 No effect

Poultry manure 1.54–12.32 Mg C ha−1
Applied dehydrated,

pelletized prior to
planting potatoes

CS suppression [98]

Poultry manure,
forestry residues and

organic waste compost
45 Mg ha−1

Incorporated to a depth
of 15 cm in October, a
year before planting

CS suppression [97]

Meat and bone meal 37 t ha−1 Incorporated to 15-cm
depth CS suppression [16]

Soymeal 37 t ha−1 CS suppression

Poultry manure 66 t ha−1 CS suppression

Poultry manure 20 t ha−1 No effect

Nature Safe 10-2-8
(poultry feathers) 10 t ha−1 CS suppression by 50–100%

Ammonium
lignosulfonate 1000 L ha−1 Marketable yield 60–80%

compared to 10% in the control

Peat 2.5 L peat /10 L soil In submerged pots CS suppression [33]
a DS—disease severity (percentage of surface covered with lesions); DI—disease incidence (proportion of infected tubers).
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Green manures seem to particularly affect the availability of nutrients such as P, Mn
and Zn, which are related to plant defense [91,110]. The application of peat or other low-N,
low-pH SOM may also result in solubilization of nutrients, particularly Fe, but also other
metals. The additions of low-pH SOM can be also followed by shifts of microbial com-
munity composition towards the increase in suppressive activities [33,91]. Green manures
combined with appropriate crop rotation may also increase the protective streptomycetes
soil sub-community [5,104,111].

Soil suppressiveness reinforced by activities of microbial communities was observed
after addition of older compost, aerobic compost tea [95], decomposed wheat straw or
soybeans [107], lopsided oat [105] or rice bran [106]. Those manipulations were later
connected to increased lignin content, which can induce the production of secondary
metabolites controlling the pathogen [112].

As efficient soil saprophytes, streptomycetes are especially likely to respond to the
incorporation of organic material into the soil and are often implicated as microbial agents
responsible for amendment-induced suppression [106,113]. This was demonstrated by
organic amendments, which enriched, especially, some Streptomyces populations [113,114],
but also with actinobacteria isolates derived from the rice bran-amended soil, which
showed antagonistic activity against pathogenic S. scabiei and S. turgidiscabies [106] (Table 2).
However, the use of antibiotic-resistant S. scabies mutants indicated that some strepto-
mycetes strains can reduce pathogen populations even when they are not sensitive to
antibiotic inhibition. It demonstrated that competition by non-pathogenic streptomycetes
for space and resources rather than antibiotic activities efficiently eliminates Streptomyces
pathogens by competitive exclusion. Thus, both antibiotic inhibition and competition be-
tween pathogenic and non-pathogenic Streptomyces are likely to be important mechanisms
of natural suppression of potato scab [29].

In contrast, increased CS severity and/or incidence was observed after fertilization
with fresh animal manure but also with compost [91,99]. In another study, CS-suppressive
and -conducive soils were discriminated by specific low-molecular-weight organic com-
pounds [27,115]. Finally, in the same study, the quantity of CS pathogens (thaxtomin
biosynthetic gene txtB copies) was positively correlated with the soil total C and N contents,
whose proportion approximates the type of SOM and its degradability by soil microorgan-
isms [27].

It was suggested that CS pathogens can persist in soil for many years, surviving on
decaying plant debris, especially where heavy loads of animal manure were applied [116],
and that they possibly survive there by feeding on oligosaccharides released by ligninolytic
and cellulolytic microorganisms [117,118]. This “cheating” behavior of CS pathogens sug-
gests that competitive relationships may occur between them and ligninolytic or cellulolytic
streptomycetes. The intensity of the competition might be dependent on the quality of
available SOM [29,112,114]. Some of these oligosaccharides also act as environmental
signals to plant pathogenic Streptomyces inducing the production of thaxtomin [117] so that
they may further support their pathogenicity, but the regulation of those pathways is not
completely resolved [119].

The inconsistent effects of various SOM additions on CS severity and incidence
together with the knowledge on the importance of different carbohydrates in the induction
of specific metabolic pathways in both pathogenic and beneficial streptomycetes suggest
that a more precise SOM characterization is needed in future research, because only gross
measurements have been provided for field testing so far [115]. Thus, we propose that
organic matter supplements containing oligo- and monosaccharides should be avoided,
while fresh low-pH SOM will help in nutrient release, and older, more decomposed SOM
will benefit activities of antagonistic streptomycetes.

4. Rhizosphere Microorganisms Influence Nutrient Recycling and Produce
Beneficial Metabolites

Microbial communities of the crop rhizosphere are essential not only for plant nutrition
and health but also for nutrient cycling in agroecosystems. Therefore, there is a need to link
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soil properties, especially the content and character of organic matter, with the distribution
and activity of microorganisms and their use in plant protection.

Soil type and pH exert the most profound influence on the structure and function
of bacterial communities [120]. In the rhizosphere, microbial communities are addition-
ally shaped by the plant through its root exudates [121–124]. In return, the rhizosphere
and also soil-derived endophytic microorganisms support the plant growth, health and
metabolism [125]. The main activities of these plant-associated microorganisms are related
to recycling of nutrients through mineralization of root exudates, nitrogen fixation or
solubilization of minerals. Some microbes may also produce plant hormones and increase
root growth [55]. This interaction is particularly important in plant management strategies
because the population density of microorganisms in the rhizosphere is several times
greater than that in bulk soil [126].

The composition of microbial communities in the rhizosphere is also influenced
by the invasion of pathogens, which poses consequences not only for the particular
disease but also for the functioning of the whole community [127]. Then, suppres-
sive soils may act differently than conducive soils with respect to microbial community
changes [22,28]. Furthermore, the suppressive effect is differentiated between induced
suppressive soils of long-term monoculture and natural suppressive soils that undergo
regular crop rotation [27,31,128,129].

Induced suppressive soils for CS contained a higher proportion of Acetobacteraceae,
Bacillaceae and Lysobacter (Xanthomonadaceae) but also non-pathogenic Streptomyces (Acti-
nobacteria) and lower proportions of some Acidobacteria, Nocardioidaceae and Pseudomon-
adaceae [130]. The naturally suppressive soils were enriched in Pseudomonadaceae, Bradyrhi-
zobiaceae, Acetobacteraceae and Paenibacillaceae, which are all families of known plant growth-
promoting microbes [28]. Some of the taxa occurring in suppressive soils were also enriched
in soils supplemented with organic matter, which also led to CS suppression. These in-
clude Bacillus, Streptomyces [106] as well as Solirubrobacteraceae, Xanthomonadaceae and
Sphingomonadaceae [33] (Table 3).

The suppressivity of soils is not only connected to the bottom-up control of the micro-
bial communities, which is represented by soil physical characteristics [131], contents of
nutrients (e.g., [27,33]), production of plant hormones [132] and organic matter quality [97],
because the second half of the story is the top-down control by a range of bacterial and
eukaryotic consumers and predators. Furthermore, predation by protists is also consid-
ered the missing link to understand soil suppressiveness because they are increasingly
recognized as an essential component in nutrient recycling, shaping plant physiology,
nutrition and health [14]. Those findings come from experiments conducted in controlled
environments, where protists could influence the disease-suppressive ability of microbial
communities directly by decreasing their numbers or via changes in the community compo-
sition [133]. Regarding CS, the micro-eukaryotic community was enriched with Chlorophyta
together with Myxogastria, Apicomplexa and Ciliophora in CS-conducive soil, which conse-
quently displayed increased micro-eukaryotic diversity and a higher number of putative
interactions. Furthermore, micro-eukaryotic community was correlated with soil pH and
contents of C, N, P, Ca and Fe in conducive soil but with S content in suppressive soil [28].
Thus, although the results are only preliminary, it seems that not only nutrient cycling and
plant nutrition but also disease protection may be affected by trophic relationships [134].

Modification of plant-associated microbial communities can be achieved by planting
various cultivars, because their tuberospheres are inhabited by cultivar-specific bacterial
communities, which also comply with the cultivars’ resistance to CS [28,135]. For example,
Nitrospirae and Acidobacteria were enriched in a resistant cultivar together with a decreased
ratio of Thaumarchaeota/Euryarchaeota. Out of these, Nitrospirae and Thaumarchaeota belong
among important nitrifiers and ammonia-oxidizers, respectively, which points to their
connection with nitrogen cycling. The increase in Acidobacteria suggests that a decrease
in pH and an increase in Euryarchaeota points to the modification of pH, moisture or the
carbon cycle [28,136]. In another study, microbial communities associated with resistant
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cultivars exhibited lower abundance of bacteria, higher diversity, higher co-occurrence
network complexity and increased community functioning.

Table 3. Microbial community changes associated with lowered CS severity due to soil suppressivity, potato cultivar or
soil amendment.

Manipulation Affected Bacterial Groups Reference

Suppressive soil

Higher frequency of antagonistic pseudomonads and streptomycetes
and higher proportion of pathogenic streptomycetes by cultivation;

different microbial community by terminal restriction fragment
analysis

[137]

Suppressive soil

Higher proportion of Acetobacteraceae, Bacillaceae and Lysobacter
(Xanthomonadaceae), lower Acidobacteria group 6, Nocardioidaceae,

Pseudomonadaceae, unclassified Acidobacteria group 11 and unclassified
Bacilli

[130]

Suppressive soil

Enriched in Pseudomonadaceae, Bradyrhizobiaceae, Acetobacteraceae and
Paenibacillaceae; decreased ratio of Thaumarchaeota/Euryarchaeota in

tuberosphere of susceptible cultivar; higher proportions of
Ascomycota and Basidiomycota and lower proportions of
Chlorophyta, Ciliophora, Myxogastria and Apicomplexa

[28]

Resistant cultivar

Same as in suppressive soil and enriched in Nitrospirae and
Acidobacteria; decreased tuberosphere ratio of

Thaumarchaeota/Euryarchaeota in conducive soil; Chlorophyta and
Cercozoa in lower proportions

Resistant cultivar More non-pathogenic streptomycetes than in susceptible cultivar [138]

Resistant cultivar
Cloning/Sanger sequencing analysis of root, tuber and rhizosphere

bacterial communities of 8 cultivars differing in resistance to CS;
higher abundance of S. turgidiscabies in susceptible cultivars by qPCR

[30]

Susceptible cultivar

Variovorax, Stenotrophomonas and Agrobacterium were positively, and
Geobacillus, Curtobacterium and unclassified Geodermatophilaceae

negatively, correlated with the scab severity level, estimated absolute
abundance of pathogenic Streptomyces and txtAB genes

[23]

Biocontrol strain Pseudomonas fluorescens
LBUM223

Inoculation does not significantly alter the autochthonous
rhizosphere nor geocaulosphere microbiomes in the field [139]

Rice bran amendment
Bacillus, Streptomyces, Chitinophaga and Actinomadura significantly

increased; unclassified Koribacteraceae and unclassified Gaiellaceae were
significantly reduced

[106]

Iron amendment Bacillales and Gaiellales [33]

Peat amendment Rhizobiales, Burkholderiales, Xanthomonadales and Bacillales

Peat and iron amendment

Proteobacteria and Bacteroidetes increased at the proportional expense
of Actinobacteria; proteobacterial Burkholderiales, Xanthomonadales and
Sphingomonadales and actinobacterial order of Gaiellales were the most
responsive groups; actinobacterial families Micromonosporaceae and

Thermomonosporaceae were elevated

Furthermore, a metagenomic approach showed that particularly the enrichment of
antibiotic biosynthesis pathways within members of bacterial communities was typical for
the tuberosphere soil of healthy tubers. In contrast, the tuberosphere soil of diseased tubers
was enriched in Variovorax, Stenotrophomonas and Agrobacterium together with several ABC
transporter genes, genes of bacterial secretion system, quorum sensing, cytochrome P450
and also genes for nitrogen metabolism [23]. Comparison between the metagenomes
differently affected by the pathogen populations supports the previously mentioned obser-
vations that, in the vicinity of tubers, antibiosis and possibly also nitrogen-related process
are important in CS disease control (Figure 1, Table 3).
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potato plants in a system affected by common scab.

The research also demonstrated that the plant–microbe interactions connected to CS
severity are detectable only in the nearest vicinity to the potato tuber. In particular, out of
the potato tuberosphere, rhizosphere, root zone or bulk soil, the effects of manipulations
were detectable only in the tuberosphere soil [23,28]. That closely connects the soil and
plant microbiomes, which seem to share not only members but also functions such as
activation of both basal and inducible plant defense systems [25,140].

The changes in the microbial community associated with increased CS control might
be achieved by addition of specific organic compounds, but also by addition of nutrients
(see above).

Consequently, the current knowledge on microbial interactions in the rhizosphere
is still limited in terms of being clearly resolved in terms of CS control. However, many
examples of successful manipulation of microbial communities by supplementation or
cultivars are already available to consider for the improvement of soil health.

5. Inoculation with Antagonistic Strains

Disease occurrence is often accompanied by changes in microbial communities such
as altered microbial abundance, composition and function, which are studied as markers
of soil health but also for their potential to set conditions favorable for plant protection.
Various taxa participate in those activities, or their combinations [22,141].

CS-suppressive soils revealed that non-pathogenic Streptomyces act as the agents
responsible for suppression [129,130]. However, different studies showed that a broad
range of bacterial and fungal taxa contribute to CS suppression, with antagonistic activities
found in strains of the genera Streptomyces [142–145], Bacillus [146,147], Brevibacillus [148]
and Pseudomonas [149], and they were successfully used to control the disease in pot and
field trials (Table 4).

Application of the individual strains or strains with organic or inorganic fertilization
mostly resulted in significant decreases in CS severity (e.g., [143,144,147,150–155]). In a few
studies, the suppression of pathogenic strains or the decrease in genes from the pathogenic
island were also determined [149,156]. Surprisingly, in some studies, no effect on the
autochthonous microbial community was observed after inoculation [111,139], while in
others, proportions of several taxa were altered [146].
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Table 4. Soil inoculation affecting CS severity, tuber yield and associated bacterial community.

A. Complex Inocula

Inoculum Effect Reference

Swine feces with coprophilous actinobacteria CS suppression; viable counts of Streptomyces scabies decreased, antagonistic
fluorescent pseudomonads increased [156]

Broth treatment and inoculation with
antagonistic Bacillus sp. in pot assay with

sterile soil
CS suppression by 40% [154]

Pseudomonas mosselii with vermicompost CS suppression [150]

Bacillus subtilis GB03 and Rhizoctonia solani
hypovirulent isolate Rhs1A1, compost

CS suppression by 10–34%, increased yield, reduction in stem and stolon
canker by 20–38%, black scurf by 30–58% [151]

Trichoderma virens, Bacillus subtilis and
Rhizoctonia solani, compost, rapeseed rotation Reduced disease and increased yield [92]

Vermiculite cultures of non-pathogenic
Streptomyces isolates mixed with soil CS suppression [157]

Conducive soil inoculated with Streptomyces
isolates

No effect of inoculation; variability of streptomycete community increasing
from planting to mid-season (by pyrosequencing); pathogen suppressive

capacity of antagonistic streptomycetes negatively correlating with CS
severity (by cultivation)

[111]

B. Individual strains

Inoculum Effect Reference

Streptomyces melanosporofaciens
EF-76 in chitosan beads

Increased numbers of geldanamycin-resistant actinobacteria on harvested
potato tubers [142]

Pesticide and antibiotic-resistant Streptomyces
spp. CS suppression by 55–>60% [144]

S. violaceusniger AC12AB CS reduction up to 90% in greenhouse and field, increased yield up to 26.8%
in field trial [145]

Streptomyces sp. WoRs-501 CS severity decreased by 78–94% in field pot trial [143]

Streptomyces strain 272
CS severity reduced by 43% on susceptible potato cultivar Bintje, both disease
incidence and severity reduced by 43 and 59% on the scab-tolerant cultivar

Nicola
[158]

Pseudomonas fluorescens
LBUM223

CS reduced by approximately 30% in plots after biweekly applications,
increased yield by 46%; did not reduce pathogen soil populations,

down-regulated txtA expression in the geocaulosphere
[149,159]

Bacillus megaterium KBA-10, P. putida K-19B, B.
megaterium TV- 91C, Pantoea agglomerans RK-92 Biocontrol efficacy 18.7–60.3%, tuber yield increase by 20.4–40% [160]

B. subtilis and Trichoderma harzianum in
diatomaceous earth
(225–300 kg ha−1)

CS index decreased by 30.6–46.1%; 19-23-fold higher Pseudomonadales; CS
severity negatively correlated with relative abundances of Agrobacterium,

Achromobacter and Pseudomonas and positively with Acidobacteria,
Actinobacteria, Chloroflexi and Gemmatimonadetes

[146]

Brevibacillus laterosporus AMCC100017 CS severity decreased from 2.60 to 0.77, i.e., biocontrol efficacy 70.51%;
reduced pathogen, transient impact on the native bacteria community [148]

Bacillus subtilis Decrease in common scab severity up to 70%, and 67% in field trials [147]

B. amyloliquefaciens Ba01 CS reduced from 14.4 ± 2.9% (naturally occurring) to 5.6 ± 1.1% in the field [161]

B. velezensis 8-4 CS control efficiency reached 51.83 ± 8.53%, the yield increased by
19.91 ± 3.56% [155]

Trichoderma virens Decrease in CS incidence and severity [92]

Phages Stsc1 and Stsc3 Prevented CS symptoms on radish seedlings [162]
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Table 4. Cont.

C. Mechanisms of CS suppression

Biocontrol Strain Observed Property Reference

Streptomyces violaceusniger
AC12AB

Production of azalomycin, indole-3-acetic acid and siderophores, nitrogen
fixation and phosphate solubilization => CS reduction up to 90% in
greenhouse and field trials, increased yield up to 26.8% in field trial

[145]

Pseudomonas fluorescens
LBUM223

Phenazine-1-carboxylic acid (PCA) production => growth inhibition of S.
scabiei, repression of thaxtomin biosynthesis genes (txtA and txtC); activities

were lost in phzC- mutant deficient in PCA production
[163]

Phenazine-1-carboxylic acid production => 12%–14% of all S. scabiei genes
were differentially expressed, including key genes involved in

pathogenicity/virulence, mycelium differentiation and increased oxidative
stress

[164]

Fragments of γ-glutamyl transpeptidase from
Bacillus subtilis BU108 In vitro growth inhibition of S. scabiei [165]

S. melanosporofaciens EF-76 Geldanamycin production => disease index was reduced from 6.30 to 4.81 and
from 2.83 to 2.49 in growth chamber and field experiments, respectively [166]

Streptomyces A1RT Production of isatropolone C and indole-3-acetic acid => reduction in average
disease severity index by 82.4–95.7% [4]

Streptomyces isolates (strains 93 and 63) and
their spontaneous mutants

The mutants lost in vitro inhibitory activity against S. scabiei in antibiotic and
co-plate assay, while retaining the biocontrol ability in soil [167]

B. amyloliquefaciens subsp. plantarum FZB42 Production of cyclic lipopeptides and volatiles => pathways of induced
systemic resistance [168]

Agrobacterium tumefaciens C58 attM gene
introduced to S. scabiei

No disease symptoms in planta, altered morphological
differentiation—quorum quenching paralyzing γ-butyrolactone signaling

pathway
[161]

The variation in the microbial community response might be connected to the mech-
anisms of suppression provided by the inoculated strains. Mostly, production of an-
tibiotics against the pathogens is involved, while the identified compounds include gel-
danamycin [166], phenazine-1-carboxylic acid [163,164], isatropolone C [4], azalomycin [145]
or antimicrobial peptides [154,165]. However, the strains also produce compounds such as
indole-3-acetic acid or siderophores and enable nitrogen fixation and phosphate solubiliza-
tion [145] or remove signaling through γ-butyrolactone pathway [161].

In conclusion, the inoculated strains control CS severity not only directly by antibiosis
against pathogens but also through nutrition, metabolism and signaling in the plant–
soil–microbe interactions. Thus, it seems that inoculation with locally isolated biocontrol
strains may be a safer and more effective approach compared to application of globally
distributed products, because the local strains might be more adapted to local soil and
climate conditions and also to local microbial communities. That might be useful not only
for lower disturbance but also for easier adaptation of inoculated strains [31,169].

6. Conclusions

Soil mineral nutrients are often in an unbalanced state due to fertilization and inten-
sive soil exploitation by agriculture practices [64]. That negatively affects plant growth,
productivity and health as well as soil quality and biodiversity. This review suggests that
balanced nutrition together with promotion of suppressive microbial communities repre-
sent key components in the management of potato common scab. Two approaches can be
used to improve the current state of soil, which leads to improved CS suppression. Firstly,
supplying soils with the limiting nutrient and/or microbial strain(s) that solubilize the
missing nutrients, and secondly, supporting microbial communities that are competitive or
antagonistic to the pathogen by addition of peat or a long-decomposed and largely recalci-
trant organic matter. In contrast, additions of organic matter or fertilizers containing high
amounts of nitrogen should be carefully evaluated, because nitrogen recycling seems to
influence CS severity in both directions. To further support CS suppression, it is necessary
to carefully select potato cultivars according to their different micronutrient requirements
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and accumulation [44,71]. Furthermore, it is important to consider that individual cultivars
have various interactions with rhizosphere microorganisms, and those may enhance but
also diminish the plant–microbe interactions [28,33,135]. Inoculated biocontrol strains
affect not only the pathogen but also the potato plants, the autochthonous microbial com-
munity and the soil chemistry, so their impact on the local microbial community also needs
to be evaluated prior to their application. Soil chemical status and organic matter should
be regularly assessed in more detail to determine the missing elements and the quality
of humus.

Focusing on future research, more attention should be paid to plant–microbe–soil
interactions occurring in the nearest compartments surrounding potato tubers. These may
include the transfer of microorganisms between soil and plant microbiomes, decomposition
pathways which lead to compounds influencing the pathogenicity of streptomycetes or
metagenomic and metabolomic studies aiming to determine the processes involved in the
development of soil suppressiveness. Although long-term monoculture was suggested as
the best strategy to achieve long-lasting suppression by streptomycetes [31], new knowl-
edge about the general suppression of CS may bring novel inspiration for management of
the disease.
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