# Row Orientation and Canopy Position Affect Bud Differentiation, Leaf Area Index and Some Agronomical Traits of a Super High-Density Almond Orchard

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Site and Orchard

^{−1}). The cultivar was Guara (syn. Tuono [35,36]), an important self-compatible hard-shelled cultivar, planted in 2014 near Andria, southern Italy (41°09′47” N, 16°13′29” E; altitude 260 m). Rootpac-20 (Prunus pumila var. besseyi (Bailey) Gleason × Prunus cerasifera Ehrh.), a new size-controlling rootstock, was used. The climate of the region was typical Mediterranean, with an annual rainfall of 523 mm concentrated in autumn, winter and spring; the lowest monthly rainfall occurs in July (22 mm) and the highest in November (61 mm). Average annual temperature is 15.3 °C; the hottest month is August (23.8 °C) and the coldest January (7.8 °C). The soil is clay-loam, 40 cm deep. The orchards were managed using practices common in the area; drip lines were installed for controlled deficit irrigation, with a seasonal irrigation volume of 3000 m

^{3}/ha. The plots were fertilized with 80 kg/ha N, 80 kg/ha K and 40 kg/ha P. After the 2018 harvest and before that of 2019, the trees were mechanically topped at a height of 2.2 m, hedged and trimmed. Two experimental plots, separated by approximately 20 m, were established: one with rows extending North–South (N-S) and the other East–West (E-W). Each plot consisted of five rows in which the three central rows were the sampling area. Three blocks of five trees, randomly labelled, were identified in each row. The two hedgerow orientations had the same canopy dimensions: height 2.30 m and width 1.20 m; the canopy started at 0.5 m above the soil surface.

#### 2.2. Definition of Canopy Position

#### 2.3. Bud Differentiation

#### 2.4. PAR and LAI

#### 2.5. Phenology

#### 2.6. Yield and Quality Parameters

#### 2.7. Data Analysis

## 3. Results

#### 3.1. Bud Differentiation

#### 3.2. LAI and PAR

^{2}/m

^{2}) than in layers B (2.9 m

^{2}/m

^{2}) and A (2.1 m

^{2}/m

^{2}) (Table 5). For N-S orientation, mean LAI (3.8 m

^{2}/m

^{2}) in layer C was 29% and 47% higher than in layers B (2.7) and A (2.0). For E-W orientation, mean LAI (3.9 m

^{2}/m

^{2}) in layer C was always the highest, 23% and 44% higher than in layers B (3.0) and A (2.2). The same situation was found for the different exposures: mean LAI in layer C was always the highest (4.0, 3.6, 3.8 and 4.0 m

^{2}/m

^{2}for east, west, north and south exposure, respectively) and that in layer A was the lowest (2.0, 1.9, 2.3 and 2.2 m

^{2}/m

^{2}, respectively).

^{−2}s

^{−1}, respectively) was highest, whereas on the north side it was the lowest (759.3). Mean PAR on the south side stood in the middle (869.9 μmol photons m

^{−2}s

^{−1}). In layer B, mean PAR was highest on the west side (787.7), and lowest on the north side (583.0). Mean PAR on the east and south sides was intermediate between values on the west and north sides, the former being higher than the latter (657.7 and 618.9, respectively). In layer C, mean PAR was higher on the west side (411.5), and lower on the east side (298.6). Mean PAR was quite similar on the north and south sides (367.6 and 349.3, respectively).

#### 3.3. Phenology

#### 3.4. Agronomical Parameters

#### 3.5. Yield Quality Parameters

## 4. Discussion and Conclusions

^{−2}s

^{−1}[44].

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Food and Agriculture Organization of the United Nations—FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 30 December 2020).
- Global Almond Market 2019—After Five Years of Robust Growth of In-Shell Nut Imports, India Emerges at the Most Promising Market. Available online: https://www.globaltrademag.com/global-almond-market-2019-after-five-years-of-robust-growth-of-in-shell-nut-imports-india-emerges-as-the-most-promising-market/ (accessed on 30 December 2020).
- Iglesias, I.; Foles, P.; Oliveira, C. El cultivo del almendro en España y Portugal: Situación, innovación tecnológica, costes, rentabilidad y perspectivas. Revista de Fruticultura
**2021**, 80. [Google Scholar] - Fadón, E.; Herrera, S.; Guerrero, B.I.; Guerra, M.E.; Rodrigo, J. Chilling and Heat Requirements of Temperate Stone Fruit Trees (Prunus spp.). Agronomy
**2020**, 10, 409. [Google Scholar] [CrossRef] [Green Version] - Iglesias, I. Costes de producción, sistemas de formación y mecanización en frutales, con especial referencia al melocotonero. Rev. Fruticult.
**2019**, 69, 50–59. [Google Scholar] - Iglesias, I. El almendro en España: Situación, innovación tecnológica, costes y retos para una producción sostenible. Horticulture
**2020**, 350, 14–28. [Google Scholar] - Expósito, A.; Berbel, J. The Economics of Irrigation in Almond Orchards. Application to Southern Spain. Agronomy
**2020**, 10, 796. [Google Scholar] [CrossRef] - Camposeo, S.; Palasciano, M.; Vivaldi, G.A.; Godini, A. Effect of increasing climatic water deficit on some leaf and stomatal parameters of wild and cultivated almonds under Mediterranean conditions. Sci. Hortic.
**2011**, 127, 234–241. [Google Scholar] [CrossRef] - Iglesias, I. Sistemas de plantación 2D: Una novedad en almendro, una realidad en frutales. Hacia una alta eficiencia. Rev. Fruticult.
**2019**, 67, 22–44. [Google Scholar] - Caruso, T.; Campisi, G.; Marra, F.P.; Camposeo, S.; Vivaldi, G.A.; Proietti, P.; Nasini, L. Growth and yields of the cultivar Arbequina in high density planting systems in three different olive growing areas in Italy. Acta Hortic.
**2014**, 1057, 341–348. [Google Scholar] [CrossRef] [Green Version] - Camposeo, S.; Vivaldi, G.A.; Gattullo, C.E. Ripening indices and harvesting times of different olive cultivars for continuous harvest. Sci. Hortic.
**2013**, 151, 1–10. [Google Scholar] [CrossRef] - Vivaldi, G.A.; Strippoli, G.; Pascuzzi, S.; Stellacci, A.M.; Camposeo, S. Olive genotypes cultivated in an adult high-density orchard respond differently to canopy restraining by mechanical and manual pruning. Sci. Hortic.
**2015**, 192, 391–399. [Google Scholar] [CrossRef] - Camposeo, S.; Vivaldi, G.A. Yield, harvesting efficiency and oil chemical quality of cultivars Arbequina and Arbosana harvested by straddle machine in two Apulian growing areas. Acta Hortic.
**2018**, 1199, 397–402. [Google Scholar] [CrossRef] - Connor, D.J.; Goméz-del-Campo, M.; Rousseaux, M.C.; Searles, P.S. Structure, management and productivity of hedgerow olive orchards: A review. Sci. Hortic.
**2014**, 169, 71–93. [Google Scholar] [CrossRef] - Pellegrini, G.; La Sala, P.; Camposeo, S.; Contò, F. Economic sustainability of the oil high and super-high density cropping systems in Italy. Glob. Bus. Econ. Rev.
**2017**, 19, 553–569. [Google Scholar] [CrossRef] - Russo, G.; Vivaldi, G.A.; De Gennaro, B.; Camposeo, S. Environmental sustainability of different soil management techniques in a high-density olive orchard. J. Clean. Prod.
**2015**, 16, 498–508. [Google Scholar] [CrossRef] - Pellegrini, G.; Ingrao, C.; Camposeo, S.; Tricase, C.; Contò, F.; Huisingh, D. Application of Water Footprint to olive growing systems in the Apulia region: A comparative assessment. J. Clean. Prod.
**2016**, 112, 2407–2418. [Google Scholar] [CrossRef] - Roca, J.M.; Gòmez, J.M.; Lòpez, M. El almendro en seto SHD. La recolecciòn con màquinas cabalgantes. Olint
**2014**, 25, 35–45. [Google Scholar] - Rodas, A. SHD en el mundo. Paìses con presencia de plantaciones en sistema superintensivo de almendro. Olint
**2015**, 28, 24–25. [Google Scholar] - Casanova-Gascòn, J.; Figueras-Panillo, M.; Iglesias-Castellarnau, J.; Martin-Ramos, P. Comparison of SHD and Open-Center Training Systems in Almond Tree Orchards cv. “Soleta”. Agronomy
**2019**, 9, 874. [Google Scholar] [CrossRef] [Green Version] - Iglesias, I.; Torrents, J. Diseño de nuevas plantaciones adaptadas a la mecanización en frutales. Horticulture
**2020**, 346, 60–67. [Google Scholar] - Trentacoste, E.R.; Connor, D.J.; Goméz-del-Campo, M. Effect of olive hedgerow orientation on vegetative growth, fruit characteristics and productivity. Sci. Hortic.
**2015**, 192, 60–69. [Google Scholar] [CrossRef] - Trentacoste, E.R.; Connor, D.J.; Goméz-del-Campo, M. Effect of row spacing on vegetative structure, fruit characteristics and oil productivity of N-S and E-W oriented olive hedgerows. Sci. Hortic.
**2015**, 193, 240–248. [Google Scholar] [CrossRef] - Trentacoste, E.R.; Moreno-Alìas, I.; Goméz-del-Campo, M.; Beyà-Marshall, V.; Rapoport, H.F. Olive floral development in different hedgerow positions and orientations as affected by irradiance. Sci. Hortic.
**2017**, 225, 226–234. [Google Scholar] [CrossRef] - Hunter, J.J.; Volschenk, C.G.; Booyse, M. Vineyard row orientation and grape ripeness level effects on vegetative and reproductive growth cheracteristics of Vitis vinifera L. cv. Shiraz/101-14 Mgt. Eur. J. Agron.
**2017**, 84, 47–57. [Google Scholar] [CrossRef] - Giacosa, S.; Marengo, F.; Guidoni, S.; Rolle, L.; Hunter, J.J. Anthocyanin Yield and skin softening during maceration, as affected by vineyard row orientation and grape ripeness of Vitis vinifera. Food Chem.
**2015**, 174, 8–15. [Google Scholar] [CrossRef] [PubMed] - Dalla Marta, A.; Di Stefano, V.; Cerovic, Z.G.; Agati, G.; Orlandini, S. Solar radiation affects grapevine susceptibility to Plasmopara viticola. Sci. Agric.
**2008**, 65, 65–70. [Google Scholar] [CrossRef] [Green Version] - Thomas, C.S.; Marois, J.J.; English, J.T. The effects of wind speed, temperature, and relative humidity on development of aerial mycelium and conidia of Botrytis cinerea on grape. Phytopathology
**1988**, 78, 260–265. [Google Scholar] [CrossRef] - Grifoni, D.; Carreras, G.; Zipoli, G.; Sabatini, F.; Dalla Marta, A.; Orlandini, S. Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy. Int. J. Biometeorol.
**2008**, 52, 755–763. [Google Scholar] [CrossRef] - Hunter, J.J.; Volschenk, C.G.; Zorer, R. Vineyard row orientation of Vitis vinifera L. cv. Shiraz/101-14 Mgt: Climatic profiles and vine physiological status. Agric. For. Meteorol.
**2016**, 228–229, 104–119. [Google Scholar] [CrossRef] - Cherbiy-Hoffmann, S.U.; Hall, A.J.; Rousseaux, M.C. Fruit, yield, and vegetative growth response to photosynthetically active radiation during oil synthesis in olive trees. Sci. Hortic.
**2013**, 150, 110–116. [Google Scholar] [CrossRef] - Trentacoste, E.R.; Connor, D.J.; Goméz-del-Campo, M. Row orientation: Applications to productivity and design of hedgerows in horticultural and olive orchards. Sci. Hortic.
**2015**, 187, 15–29. [Google Scholar] [CrossRef] - Connor, D.J.; Goméz-del-Campo, M.; Trentacoste, E.R. Relationships between olive yield components and simulated irradiance within hedgerows of various row orientations and spacings. Sci. Hortic.
**2016**, 198, 12–20. [Google Scholar] [CrossRef] - Dias, A.B.; Caeiro, L.; Félix, G.; Falcao, J.M. Evaluation of biometric parameters of ‘Belona’, ‘Guara’ and ‘Lauranne’ cultivars in a superhigh density orchard. Acta Hortic.
**2018**, 1219. [Google Scholar] [CrossRef] [Green Version] - Dicenta, F.; Sànchez-Pèrez, R.; Rubio, M.; Egea, J.; Battle, I.; Miarnau, X.; Palasciano, M.; Lipari, E.; Confolent, C.; Martìnez-Gòmez, P.; et al. The origin of the self-compatible almond ‘Guara’. Sci. Hortic.
**2015**, 197, 1–4. [Google Scholar] [CrossRef] - Felipe, A.J. On the origin of “Guara” almond. FAO-CIHEAM Nucis-Newsl.
**2017**, 17, 16–18. [Google Scholar] - Sakar, E.H.; El Yamani, M.; Boussakouran, A.; Rharrabti, Y. Codification and description of almond (Prunus dulcis) vegetative and reproductive phenology according to the extended BBCH scale. Sci. Hortic.
**2019**, 247, 224–234. [Google Scholar] [CrossRef] - Acebedo, M.M.; Cañete, M.L.; Cuevas, J. Processes affecting fruit distribution and its quality in the canopy of olive trees. Adv. Hort. Sci.
**2000**, 14, 169–175. [Google Scholar] - Pastor, M.; García-Vila, M.; Soriana, M.A.; Vega, V.; Fereres, E. Productivity of olive orchards in response to tree density. J. Hortic. Sci. Biotechnol.
**2007**, 82, 555–562. [Google Scholar] [CrossRef] - Losciale, P.; Pierpaoli, E.; Corelli Grappaldelli, L. Gestione dell’energia radiante nelle piante da frutto: Utilizzazione, foto-protezione e foto-danno. Quali implicazioni per la produttività? Italus Hortus
**2009**, 16, 1–22. [Google Scholar] - Gregoriou, K.; Pontikis, K.; Vemmos, S. Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in Olive (Olea europaea L.). Photosynthetica
**2007**, 45, 172–181. [Google Scholar] [CrossRef] - Ranjbarfordoei, A.; van Damme, P.; Samson, R. Elevated ultraviolet-B radiation influences photosysnthetic pigments and soluble carbohydrates of sweet almond (Prunus dulcis (Miller) D. Webb). Electr. J. Environ. Agric. Food Chem.
**2009**, 8, 1078–1084. [Google Scholar] - Ranjbarfordoei, A.; Samson, R.; Van Damme, P. Photosynthesis performance in sweet almond [Prunus dulcis (Mill) D. Webb] exposed to supplemental UV-B radiation. Photosynthetica
**2011**, 49, 107–111. [Google Scholar] [CrossRef] [Green Version] - De Herralde, F.; Biel, C.; Savé, R. Leaf photosynthesis in eight almond tree cultivars. Biol. Plant.
**2003**, 46, 557–561. [Google Scholar] [CrossRef] - Proietti, P.; Tombesi, A. Translocation of assimilates and -sink influences on productive characteristics of the olive tree. Adv. Hortic. Sci.
**1996**, 10, 11–14. [Google Scholar] - Fabbri, A.; Benelli, C. Flower bud induction and differentiation in olive. J. Hortic. Sci. Biotechnol.
**2000**, 75, 131–141. [Google Scholar] [CrossRef] - Palmer, J.W. The effects of row orientation, tree height, time of year and latitude on light interception and distribution in model apple hedgerow canopies. J. Hortic. Sci.
**1989**, 64, 137–145. [Google Scholar] [CrossRef] - Khemira, H.; Lombard, P.B.; Sugar, D.; Azarenko, A.N. Hedgerow Orientation Affects Canopy Exposure, Flowering, and Fruiting of ‘Anjou’ Pear Trees. HortScience
**1993**, 28, 984–987. [Google Scholar] [CrossRef] - Day, K.; DeJong, T.; Johnson, R. Orchard-system configurations increase efficiency, improve profits in peaches and nectarines. Calif. Agric.
**2005**, 59, 75–79. [Google Scholar] [CrossRef] [Green Version] - Mutsaers, H. The effect of row orientation, date and latitude on light absorption by row crops. J. Agric. Sci.
**1980**, 95, 381–386. [Google Scholar] [CrossRef] - Tous, J.; Romero, A.; Hermoso, J.F.; Msallem, M.; Larbi, A. Olive orchard design and mechanization: Present and future. Acta Hortic.
**2014**, 1057, 231–246. [Google Scholar] [CrossRef] - Intrieri, C.; Silvestroni, O.; Rebucci, B.; Poni, S.; Filippetti, I. The effects of row orientation on growth, yield, quality and dry matter partitioning in Chardonnay vines trained to simple curtain and spur-pruned cordon. In Proceedings of the 4th International Symposium on Cool Climate Viticulture and Enology, Rochester, NY, USA, 16–20 July 1996; pp. 10–15. [Google Scholar]
- Trought, M.C.T.; Naylor, A.P.; Frampton, C. Effect of row orientation, trellis type, shoot and bunch position on the variability of Sauvignon Blanc (Vitis vinifera L.) juice composition. Austr. J. Grape Wine Res.
**2017**, 23, 240–250. [Google Scholar] [CrossRef] - Gómez-del-Campo, M.; Centeno, A.; Connor, D.J. Yield determination in olive hedgerow orchards. I. Yield and profiles of yield components in north–south and east–west oriented hedgerows. Crop Pasture Sci.
**2009**, 60, 434–442. [Google Scholar] [CrossRef] - Dicenta, F.; Garcìa, J.E.; Carbonell, E.A. Heritability of fruit characters in almond. Sci. Hortic.
**1993**, 68, 121–126. [Google Scholar] [CrossRef] - Hill, S.J.; Stephenson, D.W.; Taylor, B.K. Almond yield in relation to tree size. Sci. Hortic.
**1987**, 33, 97–111. [Google Scholar] [CrossRef] - Sottile, F.; Palasciano, M.; Godini, A. Le liste varietali 2009 per il mandorlo. Inf. Agr.
**2009**, 23, 54–55. [Google Scholar] - Palasciano, M. Tutte le varietà consigliate per il mandorlo 2015. Inf. Agr.
**2015**, 20, 47–49. [Google Scholar] - Kester, D.E.; Hansche, P.E.; Beres, W.; Asay, R.N. Variance components and heritability of nut and kernel traits in almond. J. Am. Soc. Hortic. Sci.
**1977**, 102, 264–266. [Google Scholar] - Sànchez-Pérez, R.; Ortega, E.; Duval, H.; Martìnez-Gòmez, P.; Dicenta, F. Inheritance and relationships of important agronomic traits in almond. Euphytica
**2007**, 155, 381–391. [Google Scholar] [CrossRef] - Martínez-García, P.J.; Ortega, E.; Cremades, T.; Dicenta, F. Heritability and phenotypic variation of double seeds in almond (Prunus dulcis). Euphytica
**2014**, 198, 91–99. [Google Scholar] [CrossRef] - Arteaga, N.; Socias i Company R. Heritability of fruit and kernel traits in almond. Acta Hort.
**2001**, 591, 269–274. [Google Scholar] [CrossRef] - Felipe, A.J.; Rius, X.; Rubio-Cabetas, M.J. El Cultivo del Almendro; Araconsa: Zaragoza, Spain, 2017; p. 86. ISBN 978-0-646-97816-1. [Google Scholar]

**Figure 1.**Wood and flower buds percentage per shoot for a given exposure (North, South, East, West). The 100% represents the total buds number per shoot. The letters denote significant differences among exposures (p = 0.01; SNK test).

**Figure 2.**Available PAR (μmol photons m

^{2}s

^{−1}) in relation to layer (layers A, B and C) on east and west sides of orchard with north-south orientation on three DOYs. The first letter denotes significant differences between layers for a given exposure and DOY (n = 45; p = 0.05/0.01; SNK test); the second letter denotes significant differences between exposure for a given layer and DOY (n = 90; p = 0.05/0.01; SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

**Figure 3.**Available PAR (μmol photons m

^{2}s

^{−1}) in layers (A, B and C) of orchard with east-west orientation (north and south exposures) on three DOYs. The first letter denotes significant differences between layers for a given exposure and DOY (n = 45; p = 0.05/0.01; SNK test); the second letter denotes significant differences between exposure for a given layer and DOY (n = 90; p = 0.05/0.01; SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

**Table 1.**Mean total number of buds per shoot (TB). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 44.6 A,A | 47.3 A,A | 45.9 A,A | 39.1 A,A | 39.3 A,A | 39.2 A,A |

Layer B (60–120 cm) | 45.3 A,a | 43.4 A,a | 44.4 A,A | 41.1 A,a | 34.2 A,ab | 37.7 A,A |

Layer C (0–60 cm) | 45.3 A,a | 42.4 A,a | 43.8 A,A | 35.6 A,a | 27.3 B,b | 31.4 A,B |

Mean | 45.1 A | 44.4 A | 44.7 A | 38.6 B | 33.6 B | 36.1 B |

**Table 2.**Mean number of wood buds per shoot (WB). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 29.8 a,A | 32.4 a,A | 31.1 A,A | 35.5 a,A | 33.0 a,A | 34.3 A,A |

Layer B (60–120 cm) | 21.3 b,B | 24.7 ab,ab | 23.0 B,B | 35.5 a,a | 29.2 a,ab | 32.3 A,A |

Layer C (0–60 cm) | 16.4 b,b | 16.7 b,b | 16.5 C,B | 25.3 b,a | 23.9 b,ab | 24.6 B,A |

Mean | 22.5 B | 24.6 B | 23.5 B | 32.1 A | 28.7 A | 30.4 A |

**Table 3.**Mean number of flower buds per shoot (FB). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 16.1 b,ab | 16.6 b,a | 16.3 B,A | 5.3 b,b | 9.4a,ab | 7.2 A,B |

Layer B (60–120 cm) | 27.0 ab,A | 20.5 ab,A | 23.7 AB,A | 6.7 ab,B | 6.1 ab,B | 7.4 A,B |

Layer C (0–60 cm) | 31.5 a,A | 27.8 a,A | 29.7 A,A | 10.7 a,B | 3.8 b,B | 6.4 A,B |

Mean | 24.9 A | 21.6 A | 23.3 A | 7.6 B | 6.4 B | 7.0 B |

**Table 4.**LAI (m

^{2}m

^{−2}) seasonal pattern recorded in different layers (layer A 120–180 cm, layer B 60–120 cm, layer C 0–60 cm) for two row orientations. The letter denotes statistical differences between DOYs for each layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation North-South | ||||||||||||

DOY | ||||||||||||

82 | 96 | 110 | 127 | 139 | 152 | 167 | 180 | 194 | 208 | 237 | Mean | |

Layer A (120–180 cm) | 0.79 D | 0.97 D | 1.38 C | 1.58 BC | 1.63 BC | 1.69 AC | 1.85 AB | 1.95 A | 1.47 C | 1.37 C | 0.81 D | 1.40 |

Layer B (60–120 cm) | 1.17 E | 1.54 D | 1.93 C | 2.03 BC | 2.22 BC | 2.30 BC | 2.44 AB | 2.69 A | 2.10 BC | 2.09 BC | 1.13 E | 1.97 |

Layer C (0–60 cm) | 1.70 G | 2.07 F | 2.64 E | 2.94 DE | 3.14 CD | 3.30 BC | 3.59 AB | 3.78 A | 2.93 ED | 2.65 E | 1.53 G | 2.75 |

Mean | 1.22 F | 1.53 E | 1.98 D | 2.18 CD | 2.33 BD | 2.43 BC | 2.63 AB | 2.81 A | 2.17 CD | 2.04 D | 1.16 F | 2.04 |

Orientation East-West | ||||||||||||

DOY | ||||||||||||

82 | 96 | 110 | 127 | 139 | 152 | 167 | 180 | 194 | 208 | 237 | Mean | |

Layer A (120–180 cm) | 1.00 E | 1.18 DE | 1.47 CD | 1.67 BC | 1.87 AB | 2.01 AB | 2.14 A | 2.23 A | 2.00 AB | 1.86 AB | 1.32 CE | 1.70 |

Layer B (60–120 cm) | 1.31 D | 1.49 D | 2.03 C | 2.26 BC | 2.30 BC | 2.58 AB | 2.67 AB | 2.99 A | 2.62 AB | 2.50 AB | 1.57 D | 2.21 |

Layer C (0–60 cm) | 1.59 D | 2.04 D | 2.85 C | 3.13 BC | 3.27 BC | 3.52 AB | 3.84 A | 3.92 A | 3.58 AB | 3.17 BC | 1.81 D | 2.97 |

Mean | 1.30 D | 1.57 D | 2.11 C | 2.35 BC | 2.48 B | 2.70 AB | 2.88 A | 3.05 A | 2.73 AB | 2.51 B | 1.57 D | 2.29 |

**Table 5.**Mean LAI (m

^{2}m

^{−2}) at DOY 180. The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 2.0 C,A | 1.9 C,A | 2.0 C,A | 2.3 B,A | 2.2 C,A | 2.2 C,A |

Layer B (60–120 cm) | 2.9 B,A | 2.5 B,A | 2.7 B,A | 3.0 b,A | 3.0 B,A | 3.0 B,A |

Layer C (0–60 cm) | 4.0 A,A | 3.6 A,A | 3.8 A,A | 3.8 a,A | 4.0 A,A | 3.9 A,A |

Mean | 2.9 A | 2.7 A | 2.8 A | 3.0 A | 3.0 A | 3.1 A |

**Table 6.**Mean PAR (μmol photons m

^{−2}s

^{−1}) in the canopy. The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 944.9 A,A | 957.4 A,A | 951.2 A,A | 759.3 A,C | 869.9 A,B | 814.6 A,B |

Layer B (60–120 cm) | 657.7 B,B | 787.7 B,A | 722.7 B,A | 583.0 B,C | 618.9 B,BC | 601.0 B,B |

Layer C (0–60 cm) | 298.6 C,C | 411.5 C,A | 355.1 C,A | 367.6 C,B | 349.3 C,B | 363.0 C,A |

Mean | 633.7 A | 718.9 A | 676.3 A | 570.0 A | 612.7 A | 591.4 A |

**Table 7.**Mean numbers of fruits per layer (FL). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Layer/Exposure | East | West | Mean | North | South | Mean |

120–180 cm | 79.7 b,A | 73.5 B,A | 76.6 B,A | 53.3 B,A | 52.6 A,A | 52.9 B,B |

60–120 cm | 114.5 a.ab | 127.9 A,a | 121.2 A,A | 93.1 A,b | 95.7 A,b | 94.4 A,B |

0–60 cm | 75.3 b,a | 56.1 B,b | 65.7 B,A | 55.5 B,b | 43.1 B,B | 49.3 B,B |

Mean | 89.8 A | 85.8 AB | 87.8 A | 67.3 AB | 63.8 B | 65.6 B |

**Table 8.**Mean percentage fruit set (FS, %). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 33.6 a,A | 48.8 a,A | 41.2 a,A | 46.7 A,A | 37.8 A,A | 42.2 A,A |

Layer B (60–120 cm) | 28.7 ab,A | 41.3 ab,A | 35.0 ab,b | 51.7 A,A | 56.0 A,A | 53.9 A,a |

Layer C (0–60 cm) | 20.9 b,B | 27.0 b,ab | 23.9 b,B | 50.8 A,ab | 59.3 A,a | 55.0 A,A |

Mean | 27.7 B | 39.0 AB | 33.5 B | 49.7 A | 51.0 A | 50.4 A |

**Table 9.**Mean hulled fruit yield (FY, g). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 333.3 ab,A | 315.3 B,A | 324.3 B,A | 256.0 B,A | 235.3 B,A | 245.7 b,A |

Layer B (60–120 cm) | 476.0 a,A | 506.7 A,A | 491.3 A,A | 427.3 A,A | 466.7 A,A | 447.0 a,A |

Layer C (0–60 cm) | 298.7 B,a | 238.7 B,ab | 268.7 B,A | 254.0 B,ab | 187.3 B,B | 220.7 b,A |

Mean | 369.3 A | 353.6 A | 361.4 A | 312.4 A | 296.4 A | 304.4 A |

**Table 10.**Mean weight of hulled almonds (AW, g). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 4.1 A,A | 4.2 A,A | 4.2 A,A | 4.9 A,A | 4.5 A,A | 4.7 A,A |

Layer B (60–120 cm) | 4.1 A,A | 3.9 A,A | 4.1 A,A | 4.7 A,A | 5.9 A,A | 5.3 A,A |

Layer C (0–60 cm) | 4.0 A,A | 4.3 A,A | 4.1 A,A | 4.6 A,A | 4.4 A,A | 4.5 A,A |

Mean | 4.1 A | 4.2 A | 4.1 A | 4.8 A | 5.0 A | 4.9A |

**Table 11.**Mean hulled almond polar gauge (PG, mm). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 33.8 A,A | 34.1 A,A | 33.9 A,B | 35.3 a,A | 34.6 A,A | 35.0 A,A |

Layer B (60–120 cm) | 32.7 A,b | 34.0 A,ab | 33.4 A,B | 34.6 ab,a | 34.7 A,a | 34.6 A,A |

Layer C (0–60 cm) | 33.1 A,A | 33.6 A,A | 33.3 A,A | 33.1 B,A | 33.7 A,A | 33.4 B,A |

Mean | 33.2 b | 33.9 ab | 33.5 B | 34.4 a | 34.3 a | 34.3 A |

**Table 12.**Mean shelling percentage (SP, %). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 32.6 A,A | 33.1 ab,A | 32.8 b,A | 31.2 A,A | 30.9 ab,A | 31.0 B,B |

Layer B (60–120 cm) | 32.6 A,a | 32.1 b,ab | 32.4 B,A | 30.3 A,ab | 29.7 B,b | 30.0 B,B |

Layer C (0–60 cm) | 34.5 A,ab | 35.4 a,a | 34.9 a,A | 31.7 A,b | 32.8 a,ab | 32.2 A,B |

Mean | 33.2 A | 33.6 A | 33.4 A | 31.1 B | 31.1 B | 31.1 B |

**Table 13.**Mean percentage of hull-tight nuts (HT, %). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 3.2 A,A | 2.7 A,A | 3.0 A,A | 1.3 ab,A | 1.4 A,A | 1.4 A,B |

Layer B (60–120 cm) | 3.3 A,A | 3.5 A,A | 3.4 A,A | 0.6 b,B | 1.3 A,B | 0.9 A,B |

Layer C (0–60 cm) | 3.3 A,A | 3.7 A,A | 3.5 A,A | 3.7 a,A | 1.7 A,A | 2.7 A,A |

Mean | 3.2 a | 3.3 a | 3.3 A | 1.9 ab | 1.5 b | 1.7 B |

**Table 14.**Mean percentage of double seeds (DS, %). The first letters denote significant differences between layers for a given exposure; the second letters denote significant differences between exposures for a given layer (SNK test). Lower case letters denote statistical differences with p = 0.05. Capital letters denote statistical differences with p = 0.01.

Orientation | North-South | East-West | ||||
---|---|---|---|---|---|---|

Exposure | East | West | Mean | North | South | Mean |

Layer A (120–180 cm) | 7.1 A,A | 7.6 A,A | 7.4 A,A | 10.0 A,A | 9.5 A,A | 9.7 A,A |

Layer B (60–120 cm) | 7.9 A,A | 9.5 A,A | 8.7 A,A | 6.1 A,A | 6.8 A,A | 6.5 A,A |

Layer C (0–60 cm) | 9.9 A,A | 9.5 A,A | 9.8 A,A | 6.6 A,A | 9.2 A,A | 7.9 A,A |

Mean | 8.2 A | 9.0 A | 8.6 A | 7.6 A | 8.5 A | 8.1 A |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Maldera, F.; Vivaldi, G.A.; Iglesias-Castellarnau, I.; Camposeo, S.
Row Orientation and Canopy Position Affect Bud Differentiation, Leaf Area Index and Some Agronomical Traits of a Super High-Density Almond Orchard. *Agronomy* **2021**, *11*, 251.
https://doi.org/10.3390/agronomy11020251

**AMA Style**

Maldera F, Vivaldi GA, Iglesias-Castellarnau I, Camposeo S.
Row Orientation and Canopy Position Affect Bud Differentiation, Leaf Area Index and Some Agronomical Traits of a Super High-Density Almond Orchard. *Agronomy*. 2021; 11(2):251.
https://doi.org/10.3390/agronomy11020251

**Chicago/Turabian Style**

Maldera, Francesco, Gaetano Alessandro Vivaldi, Ignasi Iglesias-Castellarnau, and Salvatore Camposeo.
2021. "Row Orientation and Canopy Position Affect Bud Differentiation, Leaf Area Index and Some Agronomical Traits of a Super High-Density Almond Orchard" *Agronomy* 11, no. 2: 251.
https://doi.org/10.3390/agronomy11020251