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Abstract: The solar drying of pig slurries was tested in a pilot-scale greenhouse (10 m? footprint),
operated with forced ventilation under low and high solar irradiation in Mediterranean conditions.
Gaseous emissions were prevented through slurry acidification and by the biofiltration of exhaust
gases. Air relative humidity and temperature in and out the greenhouse, as well as the weight of a
slurry sample, were monitored online to command the ventilation regime. Daily average drying rate
values ranged from 0.3 to 2.8 kg m 2 d ! and displayed a direct dependency with solar radiation
until the pig slurry lost a 60% of its initial weight, with a solar energy efficiency of about 26%. Upon
further drying, the water content from pig slurries stabilized at around 10%. Mass balances between
the initial slurry and dried product were closed for total solids and organic matter, but the recovery of
nutrients ranged from 69% to 81%, apparently because of precipitation and incrustation phenomena.
The NPK composition of the final product was 4.3-2.5-3.8 and fulfilled current regulations for solid
organic fertilizers. Operational costs of the drying process and fertilizing quality parameters were
also discussed.

Keywords: acidification; air biofiltration; dynamic drier; manure; nutrient recovery; organic fertilizers;
solar energy

1. Introduction

Intensive livestock farming has led to the production of large amounts of manure,
which contain more nutrients than what the bystanding crops are able to extract [1]. This
manure excess causes significant nitrate and phosphate pollution of water bodies and soils,
but it also results in harmful atmospheric emissions (greenhouse gases, ammonia, malodors,
etc.). Therefore, manure generation, management, and application has been subjected to
increasing regulatory restrictions [2]. Paradoxically, crop productivity is still sustained
in a large degree thanks to the application of mineral fertilizers that are obtained from
nonrenewable resources (i.e., extracted phosphate rock and ammonia synthesis through the
energy intensive Haber-Bosch process). The key to a sustainable manufacture and export
of organic fertilizers from manure is the on-site concentration of nutrients by removing
its water, either by physical separation methods [3], chemical precipitation [4], or through
thermal or vacuum evaporation [5]. However, these manure processing technologies
require energy, chemical reagents, and costly infrastructure.

Some of the densest livestock production areas worldwide are located in regions
that are exposed to a high solar radiation, such as Catalonia, in south Europe. Several
biomass drying technologies based on capturing radiant energy from the sun have been
devised [6,7]. The most efficient systems commonly make use of greenhouses, which are
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essentially enclosed structures that trap short wavelength solar radiation and store long
wavelength thermal radiation to create a favorable drying environment, while moisture
is removed either through natural convection or by forced ventilation. Extensive reviews
have been published on the use of greenhouses for the dehydration of agricultural and
food products [8,9], but also for the drying of sewage sludge [10,11].

Experiences of greenhouse solar drying on animal dejections have also been per-
formed, but those accounts are mainly limited to poultry manure [12]. Instead, reports on
the application of greenhouses for the drying of animal slurries are practically inexistent.
The main concern upon the application of thermal drying processes to animal dejections is
the volatilization of ammonia and other malodorous compounds. In a previous study on
the solar drying of pretreated sewage sludge, nitrogen losses due to ammonia volatilization
ranged from 22% to 74%, depending on the source and treatment technology [13]. The use
of an acid scrubber for the absorption of gaseous ammonia was suggested in that study.
A Drechsler trap (a type of acid scrubber for the absorption of ammonia) was used in the
solar drying of digestates from different origins [14]. Recently, the direct acidification of
animal dejections has been proposed as a suitable solution to prevent the volatilization of
ammonia during the storage and processing of manure [15].

In the present study, a pilot-scale greenhouse system was assayed for the solar drying
of freshly collected pig slurries. The drying rate (i.e., the daily mass loss of pig slurries) and
environmental parameters in and out of the greenhouse were monitored online. Ammonia
losses were controlled through acidification of the slurries and by treating the emitted
gases in an air biofilter. Special attention was given to the emission of greenhouse gases
(carbon dioxide, methane, and nitrous oxide), ammonia, and hydrogen sulfide, as well as
to the global mass balance of nutrients and energy. Physicochemical and microbial quality
parameters from the dehydrated material obtained are also discussed, with a view on its
potential use as an organic fertilizer.

2. Materials and Methods
2.1. Experimental Setup

The solar drying pilot plant used in this study was installed at the facilities of IRTA-
Torre Marimon (41°36'43.57" N; 2°10'10.76” E). The plant comprised a greenhouse and
a biofilter for the treatment of emitted gases (Figure 1); the most relevant design and
operational parameters of this installation are summarized in Table 1. The greenhouse
was designed as a Quonset shape (a semicylindrical tunnel). A structural frame made of
PVC tubes (32 mm in diameter) supported a 200 um low-density polyethylene sheet, while
a 400 um PET sheet was used at the base of the greenhouse in order to contain the pig
slurries. The greenhouse was mounted on a concrete floor isolated with a geotextile sheet,
in order to provide further thermal isolation and physical protection from the ground. A
sensor for monitoring temperature and relative humidity (EWHS 284, Eliwell, Valencia,
Spain) was placed at the middle of the greenhouse, and a second identical sensor was
installed outdoors. Furthermore, an electronic scale for the continuous weighing of water
evaporation in a pig slurry sample loaded on a tray of approximately 20 x 30 cm was
installed at the final section of the greenhouse, close to the air exhaust. All sensors were
connected to a datalogger (DOP-B03E211, Delta Electronics Inc., Tainan City, Taiwan), and
data measurements were recorded every 15 or 30 min.

Air from the greenhouse was extracted with a ventilator (66 W of power and a nominal
flow of 1 m® min~1!) and forced into the gas biofilter. The ventilator was activated according
to the following regime: (a) activate aeration after 8:00 a.m. and deactivate it after 20:00,
and (b) activate only if the relative humidity in the interior of the greenhouse was more
than 50%. The biofilter bed consisted of a mixture of ripe compost and pine bark (1:5 mass
ratio, 113 L of packed volume) and was encased in a PVC tube (31.5 cm of diameter). A
sampling port was set at the biofilter inlet and outlet for the monitoring and withdrawal of
gas samples.
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Figure 1. Images of the pilot-scale solar drying greenhouse (A) and the biofilter for treating the
exhaust gases (B), and schematic representation (C) of the greenhouse design and dimensions: air
inlet (1), indoor temperature and relative humidity sensor (2), mass scale (3), and air exhaust (4).

Table 1. Design and operational parameters of the pilot plant (Figure 1).

Parameter Type/Value Unit
Greenhouse
Shape Quonset —
Width 1.2 m
Length 8.4 m
Height 0.7 m
Volume (approx.) 6.5 m3
Covered surface 10 m?

Aeration and Biofiltration

3 1

Air flux (nominal) 1 m’ min~
Renovation time ? 6.5 min renov 1
Biofilter shape Cylindrical —
Packing material Pine bark/compost —
Diameter 0.315 m
Packing height 1.500 m
Packing volume 0.117 m3
Gas residence time 7 S

# Time required by the ventilation system to pump an air volume equivalent to that of the greenhouse.

Pig slurries were distributed homogenously inside the greenhouse and remained
static until the end of the drying trial. The total amount of loaded pig slurry and the
extracted dried fraction was weighed by a load cell (maximum standard error 1%). Samples
(approximately 100 g) were taken in triplicate after mixing pig slurries and dried fractions
thoroughly, for subsequent physicochemical and microbiological analysis in the laboratory.
Gas samples from the biofilter inlet and outlet were taken throughout the drying process by
means of a calibrated sampling pump (flow of 1 L min~!) and stored in a 3 L volume gas
sampling bag (SamplePro FlexFilm), for the analysis of greenhouse gases in the laboratory
within 24 h. Hydrogen sulfide was captured in a carbon adsorption tube by means of a
sampling pump calibrated at a flow rate of 0.2 L min~!, equipped with a Teflon prefilter to
prevent interference of sulfates.
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Data on the daily temperature (mean, maximum, and minimum), relative humidity,
precipitation, and solar radiation were obtained from the meteorological station of Caldes
de Montbui (41°36'45.54” N, 2°10'6.10" E), located about 100 m away from the greenhouse.
This meteorological station belongs to the Meteorological Service of Catalonia and the
historical meteorological data used in this study can be obtained online (https://www.
meteo.cat/).

2.2. Analytical Methods

The used pig slurries and the obtained dried material were characterized in terms
of pH, total and volatile solids (TS/VS), chemical oxygen demand (COD), total nitrogen
(Nt), total ammonia nitrogen (TAN), nitrites and nitrates (NO;,~, NO3™), total phosphorus,
(Pt), phosphate (PO,), total potassium (Kt) and sulfate (SO4%), following the Standard
Methods for the Examination of Water and Wastewater [16]. Heavy metals (Cd, Cu, Nij,
Pb, Zn, Hg, and Cr) were analyzed by inductively coupled plasma-mass spectrometry
(ICP-MS), according to the USA Environmental Protection Agency (EPA Method 6020).
The presence of viable bacteria belonging to the species Escherichia coli and Salmonella spp.
were quantified in cultures according to the EPA Methods 1103.1 [17] and 1682 [18]. The
concentration of ammonia at the biofilter inlet and outlet was measured in situ with a
portable electrochemical sensor (VRAE, RAE Systems, San Jose, CA, USA). Two different
gas chromatography (GC) methods were used for the analysis of gases in the laboratory.
Methane was quantified with a Thermo 2000 GC equipped with a flame ionization detector
(FID), in accordance with the method described by Palatsi et al. [19]. The simultaneous
analysis of carbon dioxide and nitrous oxide was carried out with an Agilent 7890A GC
equipped with an electron capture detector (ECD), similar to that described by Martinez-
Eixarch et al. [20]. Hydrogen sulfide was desorbed and measured in the laboratory by
ion chromatography according to the USA National Institute for Occupational Safety and
Health (NIOSH Method 6013).

2.3. Calculations

The total content of specific compounds in fresh and acidified pig slurries, and in the
final dried fraction, was calculated as the product of the average mass and concentration
values. Propagation errors on the resulting absolute content were derived from the mass
and concentration standard deviations/errors, assuming that both variables were inde-
pendent. Mass balances were then performed on selected components (total mass, water,
total solids, organic matter, nitrogen, phosphorus, potassium, sulfur, sodium, calcium and
manganese), between fresh and acidified pig slurry, and between fresh and dried fraction.
Significant differences in total content values were established by one-way ANOVA and a
Tukey—Kramer HSD post hoc test was performed on pairwise treatment comparisons. The
mass loss through water evaporation and the volatilization of carbon and nitrogen com-
pounds via the extracted gases was also determined as the product of the total vented air
volume, estimated from the pump flow and operation time, and the average concentration
of selected gases from three measurements performed throughout the experiment.

3. Results and Discussion
3.1. Process Performance

Two experimental solar drying runs were performed at low (autumn, from 6 October
2014 to 24 October 2014) and high (spring, from 14 April 2015 to 30 April 2015) solar
irradiation conditions. Daily meteorological parameters during these trials are summarized
in the Supplementary Table S1. During the first trial, the greenhouse was loaded with 260 kg
of freshly collected slurry from a farrowing farm, which had previously been acidified to
a pH of 3.3. Meteorological parameters during the first trial were characteristic from the
autumn seasons under Mediterranean conditions, with sporadic rains and variable average
daily temperatures between 8.1 and 19.7 °C (minimum 2.1 °C and maximum 28.6 °C). The
daily average relative humidity and solar radiation during this same period ranged 62-89%
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and 3.5-16.9 MJ, respectively. Inside the greenhouse, the daily average temperature during
the test varied between 19.7 and 27.6 °C, with a record high peak of 45.6 °C, and a daily
average relative humidity that ranged between 76.8% and 91.5%. The weight from the pig
slurry sample (4.6 kg) placed inside the greenhouse displayed a regular decreasing pattern
during operation, corresponding to a daily drying rate of 1.42 kg m~2 d~! until a total
weight loss of a 33% (Figure 2). The greenhouse operation had to be stopped thereafter
because of technical problems and bad weather conditions. At this point, the dried fraction
displayed a strong humidity gradient along the greenhouse length, with values in the
content of TS that ranged from 89.00% at the air inlet to 3.34% at the outlet. The ventilation
system during this time was activated for 176 h, 39% of the total operational time.
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Figure 2. Summary of operational parameters during the solar drying trials in November (left) and April (right): Time-
course evolution of the temperature (top figures) and relative humidity (middle figures), inside (black line), and outside
(gray line) the greenhouse; the dashed line points to temperatures above 55 °C. The bottom graphs display the continuous
monitoring of a pig slurry sample weight inside the greenhouse (solid line) and the ventilation intervals (gray bars); the
linear regression lines correspond to average daily evaporation rate of 1.42 and 1.93 kg m~2 d~!, respectively for trials 1

and 2 (n > 800, r2 = 0.99).

The results obtained during this first experiment were used to refine the setup of the
second experiment, in which the greenhouse was loaded with 315 kg of freshly collected
slurry from a pig fattening farm that was acidified to a pH of 4.70. Meteorological pa-
rameters remained relatively stable during the second trial, with sunny days and average
daily temperatures between 13 and 16 °C (minimum 4 °C and maximum 25 °C), while
the relative humidity ranged between 42% and 84%, and the solar radiation during this
period ranged from 13 to 27 MJ m~2. The daily average temperature inside the greenhouse
during the test varied between 23 °C and 30 °C (record high peak of 63 °C), and the daily
average relative humidity ranged 72-100%. A regular drying pattern was observed for a
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pig slurry sample (1.63 kg) during the first 8 days of operation, with a daily drying rate of
1.93kg m~2 d~! and a weight reduction of the 67% (Figure 2). At that point, the ventilation
system had been active during 77.5 h, which corresponds to a 37% of the run time until
then. The operation was extended for 4 additional days, during which the weight of the
slurry sample stabilized at approximately the 13% of its initial mass. The experimental run
was stopped after 15.5 days of operation, upon appreciation of significant drying of the
pig slurries inside the greenhouse. The daily maximum and minimum evaporation rates,
measured from the weighted slurry sample were reported subsequently on days 7 and 8,
respectively. The highest hourly evaporation rate in the former was measured around the
astronomical noon and corresponded to 0.41 kg m~2 h~!, while no significant evaporation
occurred in the latter. These two days also displayed the highest and the lowest daily
cumulative solar radiation, with 26 and 13 MJ m—2.

Interestingly, a slight mass gain was observed in both trials during the night/morning
hours when the ventilation system was off, especially towards the end of the experiment,
when pig slurries were relatively dehydrated (Figure 2). This phenomenon points to the
fact that pig slurries, like many salt solutions, might display hydroscopic properties and
rehydrate under relatively high humidity conditions. When comparing the cumulative
daily evaporation with that resulting from the difference between the daily maximum and
minimum water content, thus excluding rehydration from the global balance, it became
apparent that the hygroscopic behavior of pig slurry reduced the process efficiency from 8%
in the second trial up to 59% during the first one, when the outdoor RH and T values where
less favorable to evaporation (Figure 2). The humidity in the dried material tended to
concentrate at the inner core of agglomerated particles, and mixing of the slurries inside the
greenhouse is a common practice to enhance the drying process at industrial scale [7-10].

The measured daily average evaporation rate was linearly correlated to the solar
radiation interval between 10 and 30 MJ m~2, with estimated drying rates ranging from 0.4
to 3.8 kg m 2 (Figure 3). This drying performance is similar to that obtained with a similar
experiment using the same setup for the dehydration of activated sludge from a winery
wastewater treatment plant [11], suggesting that pig slurries have similar dehydration
behavior to that of sewage sludge.
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Figure 3. Correlation between the daily solar radiation and weight loss inside the greenhouse due
primarily to water evaporation, during the first of days of relative steady drying of trials 1 (circles)
and 2 (crosses), as determined from the data of Figure 2 (only irradiances above 10 MJ m~2 d !
were considered).
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3.2. Chemical Characterization and Atmospheric Emissions

During the second trial, freshly collected pig slurry and the acidified fractions gener-
ated before and after drying were characterized in physicochemical terms (Table 2). Despite
the heterogeneity of these materials, the relative standard deviation obtained for the pa-
rameters determined by triplicate was generally below 10%. The pig slurry composition
corresponded to that from a rather typical pig fattening farm in Catalonia [21]. Concerning
the different nitrogen species, the concentration Nt was 7.2 g N kg~!, while TAN was
5.1 gN kg~ !. The presence of nitrite was not detected and a small amount of nitrate could
be quantified before acidification (30.9 mg NO;™-N kg~ 1).

Table 2. Chemical composition of fresh and acidified pig slurries from a fattening farm, and of the dried fraction after 16

days of treatment (second trial). Some of the values correspond to the average and standard deviation (between brackets) of

three independent samples.

) Initial Conditions (t = 0 days) Final Conditions (t = 16 days)
Parameter ¢ Units
Fresh Slurry Acidified Slurry Dried Fraction
pH — 7.70 4.37 —
TS (%) 10.53 (0.06) 11.69 (0.54) 89.60 (0.06)
VS (%) 7.76 (0.06) 8.30 (0.35) 66.02 (0.69)
COD (gOx kg™) 128.52 9.79) 120.56 (8.80) 965.80 (60.76)
Nt (mg Nkg1) 7178.86 (49.13) 6830.43 (23.59) 43,144.65 (193.36)
TAN (mg N kg1 5059.99 (78.75) 4697.99 (21.95) 29,340.00 (333.00)
NO, -N (mgNkg1) <0.6 <0.6 <0.6
NO;~-N (mg N kg1 30.85 (0.05) <0.5 <0.5
Pt (mgPkg™1) 1620.00 (130.00) 1677.00 (83.00) 10,947.00 (101.00)
PO~ -P (mgPkg™1) 20.09 0.17) 1610.19 (6.62) 9330.53 (9.26)
SO42-S (mgSkg™1) 101.78 (2.02) 8559.21 (100.56) 43,240.84 (284.57)
Na* (mg Nakg™1) 1503.82 (25.58) 1412.70 (89.49) 7256.29 (219.70)
K* (mg Kkg™1) 5499.27 (15.07) 5671.02 (110.41) 31,462.52 (346.15)
Ca?* (mg Cakg™) 1671.88 (73.78) 2199.17 (97.23) 5092.41 (168.28)

? TS: total solids; VS: volatile solids; COD: chemical oxygen demand; Nt: total nitrogen; TAN: total ammonia nitro§en; NO, ™ -N: total

nitrite nitrogen; NO3 ~-N: total nitrate nitrogen; Pt: total phosphorus; PO,3~-P: total phosphorus as phosphate; SO,

-S: total sulfur as

sulfate; Na*: sodium; K*: potassium; Ca?*: calcium.

The concentration of ammonia, nitrous oxide, methane, carbon dioxide and hydrogen
sulfide was monitored at the greenhouse inlet (background air) and exhaust (biofilter inlet),
as well as at the final discharge (biofilter outlet), during the second trial (Table 3). Relatively
low concentrations of ammonia were detected at the greenhouse exhaust/biofilter inlet
(0.5-1.0 mg NH3-N m~3), but the concentration of this compound in the biofilter outlet
was below the detection level of the sensor (<0.35 mg NH3-N m~3). On the other hand, the
concentration of greenhouse gases (methane and nitrous oxide) at the biofilter inlet and
outlet were not significantly different from those present in the background air. Concerning
the impact of odor emissions, the average concentration of hydrogen sulfide of 1.45 mg m 3
(Table 3) was above the odor threshold of 12 g m 3 [22], and could be clearly perceived
during the olfactory assessment. However, the reported concentrations remained well
below the threshold limit value for occupational exposure of 14 mg m ™~ for this compound.
Furthermore, about 60% of the emitted hydrogen sulfide was removed in the air biofilter.
A qualitative appreciation of the odor character from the biofilter off-gases based on
descriptors typical from waste materials [23] highlighted the improved olfactory perception
of the greenhouse exhaust air after treatment by biofiltration (Table 3).

The emission of sulfide might be attributed to the pig slurry acidification with sulfuric
acid and to the metabolism of sulfate-reducing bacteria. This group of microorganisms
competes with the methanogens under anaerobic conditions by using sulfate as the elec-
tron acceptor and reducing it to hydrogen sulfide. Furthermore, the prevailing aerobic
conditions due to the thin water sheet, the relatively low pH, and the fluctuating tempera-
ture conditions, might also limit the microbial activity of anaerobic microorganisms, thus
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preventing methane emissions. The concentration of carbon dioxide at the greenhouse
exhaust was a 21% higher than in the background air (Table 3), indicating a certain degree
of microbial aerobic activity, despite the imposed growth limiting conditions.

Table 3. Average and standard deviation (indicated between brackets, from three measurements taken at days 1, 8, and 16)

of the concentration of selected contaminants in the air biofilter inlet and outlet during the second trial. The odor sensory

descriptors in the air from the biofilter inlet and outlet, the removal efficiency, and the composition of the outdoor air are

also indicated.

Parameter Outdoor Air Biofilter Inlet Biofilter Outlet Removal
(mg m—3) (mg m—3) (mg m—3) Efficiency (%)
Carbon dioxide 1016 1229 (237) 1144 (218) 6.9
Methane 1.80 1.57 (0.153) 1.60 (0.346) 0.0
Ammonia nd* 0.75 (0.375) nd“? — >53.3 ¢
Nitrous oxide 0.79 1.04 (0.172) 1.02 (0.167) 1.9
Hydrogen sulfide 0.0005 145 (0.212) 0.55 (0.071) 62.1°¢
Fatty Earthy
Odor descriptors — Sulfur Musty —
Fecal Terpene

“ Below the limit of detection (LOD) for ammonia (0.35 mg m~3). b Statistical significance of p < 0.061 between biofilter inlet and outlet
concentrations; the LOD/2 and the “range rule of thumb” were used for estimating the mean and the standard deviation, respectively.
¢ Statistical significance at p < 0.002 between biofilter inlet and outlet concentrations.

3.3. Mass and Energy Balances

Mass balances were performed on the content of different fractions and chemical
compounds present in the fresh and acidified slurries, and in the final dried material of the
second trial (Table 4). The acidification of pig slurry had little effect on the mass balance of
water/total solids, organic matter, nitrogen, phosphorus, potassium, and sodium. But, in
addition to the expected increase of sulfate due to the added sulfuric acid, it significantly
increased the amounts of calcium and manganese as well. As for the drying process, the
initial 321 kg of acidified pig slurries were reduced to 40 kg of dried fraction, an 88% mass
decrease. Most of this loss must correspond to evaporated water which, based on the total
solids of the acidified slurry and the dried fraction, amounted to 279 kg.

Mass balances between acidified and dried slurries were rather accurate for total
solids and organic matter, with closing errors within the +5% range (Table 4). Carbon
loss via methane emissions were nonsignificant while about 3% of initial carbon might
have been lost as carbon dioxide. As for nitrogen, only 78% of the total content was
recovered with the final dry fraction. Considering the low level of measured ammonia
emissions due to acidification, this significant gap in the nitrogen mass balance might be
attributed to sampling errors at the relatively bulky scale of the pilot plant. Nonvolatile
substances such as phosphorus, potassium, sodium, and manganese also displayed similar
recoveries in the dried fraction, ranging from 63% to 81%, although for calcium recovery
it was as low as 29%. A likely explanation for this phenomenon is the formation of fine
mineral-like precipitates on the PET foil used to contain the liquid slurry, which could
not be properly recovered with the dried fraction. The precipitation of phosphate and
ammonia as struvite crystals is a well-known phenomenon in pig slurries, which occurs at
relatively high pH values when calcium and magnesium are present, but it might also take
place under increased ionic strength [3].

In what relates to the energy balance, considering that under normal conditions the
vaporization enthalpy of water is 2.442 M] kg~ ! and that from days 1 to 8 of steady drying
about 163 kg of water were effectively evaporated, at least 398 M] were needed for this
purpose. On the other hand, the cumulative incident solar radiation on the greenhouse
footprint during this same period was of 1514 MJ (Table S1). Hence, such energy balance
corresponds to an average solar energy efficiency of 26%. The remaining energy fraction
might have been initially reflected by the greenhouse cover, reemitted to the environment
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as thermal radiation, lost through conduction into the ground, and via convection with
the extracted hot air. Concerning the nonsolar energy inputs, taking into account the
nominal electrical power of the air pump (66 W) and its the working time of 74.5 h during
steady drying phase, it was estimated that about 17.7 MJ were consumed. Since 1.717 kg
of nitrogen were recovered with the final dried fraction, this corresponded to a specific
electricity consumption of 2.9 kW h per kg of separated nitrogen. This value is well
below the energy requirements reported for conventional mechanical separation units,
which range from 4.3 to 7.9 kW h per kg of nitrogen recovered in the solid fraction [24].
Furthermore, mechanical systems display separation efficiencies in the final solid fraction
(30-70% for total solids, 9-29% for nitrogen, and 60-90% for phosphorus, depending on
the technology and the use of flocculants) that are significantly lower than those reported
in this work, and are also prone to higher atmospheric emissions. Yet, the economic cost
and hazards of applying a concentrated acid must be considered as an inconvenience of
the solar drying technology, along with the large footprint required by the greenhouse and
the seasonality of solar irradiation.

Table 4. Average and standard deviation (between brackets) of mass fractionation values of selected chemical categories in
freshly collected pig slurries (mFS), acidified slurries loaded in the greenhouse (mAS), the final dried fraction (mDF), and the
volatilized fraction (mVF) lost during the second drying trial. The recovery of these substances in mAS and mDF, and the
losses through mVE, are also indicated in relative amounts. Significant differences between initial and recovered fractions
are highlighted: (*) p < 0.05; (**) p <0.01; n =3.

Parameter mFS (kg) mAS (kg) mDF (kg) mVF (kg)  mAS/mFS (%) mDF/mAS (%) mVE/mAS (%)
Mass 315.000 (3.150) ~ 321.000 (3.210)  39.800 (0.398) 280.488 “ 102 12 ** 89
Water 281.831 (3.244) (21%3549785) 4139 (0.041)  279.366" 101 1% 99

Total solids 33.170 (0.382)  37.525(1.774)  35.661 (0.357) —c 113 * 95 —c

Organic matter (COD)  40.484 (3.110) 38.700 (2.851) 38.439 (2.449) 1.1394 96 99 3

Nitrogen 2.261 (0.027) 2.193 (0.023) 1.717 (0.019) 0.006 ¢ 97* 78 ** 0

Phosphorus 0.510 (0.041) 0.538 (0.027) 0.436 (0.004) —° 105 81 ** —°

Potassium 1.732 (0.018) 1.820 (0.040) 1.252 (0.019) —¢ 105 * 69 ** —¢

Sulfur 0.032 (0.001) 2.748 (0.042) 1.721 (0.021) 0.007 ¢ 8570 ** 63 ** 0
Sodium 0.474 (0.009) 0.453 (0.029) 0.289 (0.009) _c 9% 64 ** —c
Calcium 1.732 (0.024) 1.820 (0.032) 1.252 (0.007) —c 134 % 29 ** —c

Manganese 0.463 (0.012) 0.554 (0.011) 0.405 (0.004) —¢ 120 ** 73 ** —¢

7 Sum of all the subse:
fraction/compound.

guently listed volatile species. ! Calculated from the water content difference between mAS and mDF. ¢ Nonvolatile

Calculated as chemical oxygen demand (COD), N, and S equivalents from the concentration of CO,, CHy, NH3,

N;O, and SHj at the greenhouse exhaust, upon subtraction of the air background concentration (Table 3).

3.4. Fertilizer Quality Parameters of the Dried Material

The recovered dried material at the end of the experiment had the aspect of a brownish
powder with a very low water content (10.4%) and, therefore, it exhibited a high stability
during long-term storage conditions. The nutrients recovered with this fraction had a
composition equivalent to a NPK index of 4.3-2.5-3.8 (mass percentage equivalent to
Nt, P,Os5, and K,O; Table 5). If sulfur is included in accordance to the elemental NPKS
nomenclature, the resulting material would have a mass distribution ratio of 4.3-1.1-3.1-2.2.
Concerning nitrogen, 68% of the total was recovered in the form of ammonium and the
remaining 32% as organic nitrogen (neither nitrites nor nitrates were detected). Concerning
the European regulations for fertilizing products [25], the dried material obtained in this
study should be regarded as a solid organic fertilizer (Product Function Category 1A-I).

As for the content of heavy metals and metalloids, the dried fraction complies with
the European acceptance criteria, but the content of zinc surpassed the thresholds for
which it should be notified in the product label (Table 5). The reason for the relatively high
content of zinc is because of its general use as a dietary supplement in pig feeding, as it
has been shown to improve daily gain and feed conversion ratios, but it is also excreted
with the dejections [26]. Zinc is an essential element for life and presents a relatively low
toxicity level, but its high biotransformation potential may create accumulation exceeding
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the recommended doses in food products [27]. Testing the presence of specific human
pathogenic bacteria, usually Escherichia coli and Salmonella spp., has been included in
the most stringent regulations on organic fertilizers, especially for compost arising from
lifestock manure [28]. The absence or very low amount of these target bacteria on the
finished dried product from this study complied with these biosafety requirements (Table 5).
A previous study on the composting of pig manure and straw mixtures showed that
temperatures above 55 °C for 2 h were sufficient for the inactivation of E. coli [29]. These
conditions must have been met during the second trial under spring conditions, since the
cumulative time of indoor greenhouse temperatures above 55 °C amounted about 21 h,
but solar radiation during the first trial in autumn was insufficient to raise the temperature
inside the greenhouse above this value (Figure 2).

Table 5. Fertilizer quality parameters of the dried pig slurry fraction in relation to standard threshold
values for solid organic fertilizers in the European Union.

Parameter Unit Measured Value  Regulatory Threshold ®
Dry matter (DM) (% mass) 89 40 (min)
NPK“* (% mass) 4.3-2.5-3.8 2.5-2.0-2.0 (min)
NPKS (elemental) * (% mass) 4.3-1.1-3.1-2.2 -
Organic nitrogen (% mass) 32 -
Ammonia nitrogen (% mass) 68 -
Cadmium (mg kg DM 1) <0.5 1.5
Copper (mg kg DM 1) 152 200 ¢
Nickel (mg kg DM 1) 7 50
Lead (mg kg DM 1) <5 120
Zinc (mg kg DM 1) 1357 600 €
Mercury (mg kg DM 1) <0.4 1
Hexavalent chromium (mg kg DM 1) <1 2
Escherichia coli (cfugT™1) <10 1000
Salmonella spp. (P/A25¢) Absent Absent

? NPK: percentage by weight of the macronutrients nitrogen, phosphorus (as phosphorus pentoxide), and
potassium (as potassium oxide); NPKS: elemental mass percentage of the macronutrients nitrogen, phosphorus,
potassium, and sulfur.  Proposal for a regulation of the European Parliament and of the Council laying down
rules on the making available on the market of CE marked fertilizing products and amending Regulations (EC)
No 1069/2009 and (EC) No 1107/2009). € To be declared in the label if the content is above the threshold value.

Finally, the powdery format and biochemical stability of the dried fraction facilitates
its use in the manufacture of mixed organic—mineral fertilizers, upon supplementation
with selected mineral nutrients, so that these final tailor-made formulations meet the
specific requirements of a wide range of crops. Under the current political agenda of
promoting circular economy principles, it is to be expected that the market for such mixed
organic—mineral fertilizers will increase substantially in the forthcoming years.

4. Conclusions

We demonstrated in a pilot study that the direct exploitation of solar energy for drying
pig slurries is feasible, when combined with acidification and air biofiltration for controlling
ammonia loses and other gaseous emissions. The obtained dried fraction retained and
concentrated the nutrients that were originally present in pig slurries, and can therefore
be valorized as an organic fertilizer. Operation during relatively low solar irradiation
conditions (autumn) in a Mediterranean climate was sufficient to dry pig slurries. The
process efficiency improved significantly during high solar irradiation conditions (spring),
and the dried product was adequately hygienized. In contrast, the operation was clearly not
viable during winter time due to the low solar radiation, so that slurry storage capacity or
alternative manure treatment systems would be needed to compensate for the differences
in the treatment rates.

Our results also highlight the necessity to implement specific measures to regulate
and reduce the dietary use of zinc in farm animals, so that organic fertilizers with high
quality parameters can be manufactured. Further research on the solar drying of animal



Agronomy 2021, 11, 222 11 of 12

dejections is focused on the mathematical modeling of the process in order to maximize the
process efficiency through optimized design parameters and operational conditions. The
mixing of partially dried pig slurries was also identified as a convenient improvement for
a large-scale implementation, in order to break the formation of crusted agglomerates and
to homogenize the water content along the greenhouse. Alternative acidification strategies
(organic acids, bioacidification) to prevent sulfide emissions and reduce operational costs,
as well as agronomical assays with dried fractions, are presently being performed to
validate and improve this innovative treatment technology.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2073-439
5/11/2/222/s1, Table S1: Meteorological data.
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