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Abstract: Malting barley requires sensitive methods for N status estimation during the vegetation
period, as inadequate N nutrition can significantly limit yield formation, while overfertilization
often leads to an increase in grain protein content above the limit for malting barley and also to
excessive lodging. We hypothesized that the use of N nutrition index and N uptake combined with
red-edge or green reflectance would provide extended linearity and higher accuracy in estimating
N status across different years, genotypes, and densities, and the accuracy of N status estimation
will be further improved by using artificial neural network based on multiple spectral reflectance
wavelengths. Multifactorial field experiments on interactive effects of N nutrition, sowing density,
and genotype were conducted in 2011–2013 to develop methods for estimation of N status and to
reduce dependency on changing environmental conditions, genotype, or barley management. N
nutrition index (NNI) and total N uptake were used to correct the effect of biomass accumulation and
N dilution during plant development. We employed an artificial neural network to integrate data
from multiple reflectance wavelengths and thereby eliminate the effects of such interfering factors
as genotype, sowing density, and year. NNI and N uptake significantly reduced the interannual
variation in relationships to vegetation indices documented for N content. The vegetation indices
showing the best performance across years were mainly based on red-edge and carotenoid absorption
bands. The use of an artificial neural network also significantly improved the estimation of all N
status indicators, including N content. The critical reflectance wavelengths for neural network
training were in spectral bands 400–490, 530–570, and 710–720 nm. In summary, combining NNI or
N uptake and neural network increased the accuracy of N status estimation to up 94%, compared to
less than 60% for N concentration.

Keywords: artificial neural network; grain yield; Hordeum vulgare; nitrogen status; hyperspectral
reflectance

1. Introduction

Malting barley ranks among the most challenging crops, concerning its nitrogen (N)
nutrition. This is mainly due to the very narrow N optima of barley, which is constrained
by grain yield on the one hand, and by grain protein content on the other, extensively
affecting malting quality [1,2]. Insufficient N nutrition, particularly at the beginning of
vegetation, leads to weak tillering, reduced grain size, and low grain yield [3]. Conversely,
excessive N nutrition and, in particular, greater N availability at later growth stages leads to
an immediate increase of protein content in grain, also negatively influencing other malting
quality parameters [4]. The grain protein content is closely related to canopy N due to its
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extensive translocation to grain and the transformation into grain protein during grain
filling. However, these processes are also significantly modulated by water availability
and temperatures, limiting the starch synthesis and accumulation in grain, resulting in an
altered relative proportion of protein and starch in grain [3,5].

Moreover, N overfertilization has adverse effects through increasing crop density
and subsequent lodging, which can lead to reduced yields and other indirect negative
impacts on grain quality, such as contamination by mycotoxins [6,7]. The difference
between suboptimal and excessive N nutrition status may, in malting barley, be less
than 30 kg N ha−1, and its demands change considerably through different stages of the
crop’s development. Precise optimization of N nutrition is thus essential to ensure high
production and top quality of malting barley in parallel.

Methods presently used for optimizing N status based on soil and plant analyses are
relatively expensive, labor-intensive, and scarcely allow for evaluating spatial and temporal
variability in N availability on large scales [8]. Therefore, the application of remote sensing,
and in particular of reflectance spectroscopy, has recently received considerable attention
for estimating N status [9,10]. Diagnostics of N status in plants using spectral reflectance is
usually based on a very close correlation between the concentrations of N and chlorophyll,
and thus on the absorption properties of chlorophyll a + b [11]. Although specific absorption
coefficients of chlorophylls are high for the critical absorption bands (red and blue), the
depth of light penetration into the leaf is low, and the changes of reflectance in these
bands with changing chlorophyll content are saturated already at medium chlorophyll
concentrations per area unit [12]. As a result, widely applied indices based on red and blue
reflectance have been found to be insufficiently sensitive to changes at medium and high
chlorophyll or N content [13]. One of the essential prospects for improving the estimation of
N status thus lies in using green and, particularly, red-edge reflectance regions [14], which
provide greater sensitivity to chlorophyll and N at higher contents with simultaneous
increase of linearity [15]. Despite these improvements in N status estimation, many authors
still indicate considerable effects of genotype, year, growth stage, and crop density on
estimation accuracy [16–19].

Besides the use of sensitive vegetation indices, the way to improve the estimation of
N status under such variable conditions leads through estimating indicators of N status,
which are less dependent on growth stage, biomass, variety, or density. The relative N
nutrition index (NNI) was introduced in order to allow expression of N status under the
rapid dilution of N content during growth [20]. NNI provides the opportunity to express
the relative N status independently of the growth stage based upon the so-called critical
or dilution N curve, which reflects the minimum N concentration required to achieve
maximum growth or yield [21]. NNI or integrated N uptake per area unit (N uptake) also
seem to be more easily estimated by remote sensing methods and are more stable in time
than the estimation of N content in plant biomass [10].

Neither the use of more sensitive reflectance indices based on green and red-edge
wavebands nor NNI or N uptake can provide complete decoupling of the relationship
between spectral reflectance and N status from the effects of such other factors as canopy
structure, genotype, or other environmental conditions. However, it is possible to eliminate
uncertainties given by the impact of different factors on spectral reflectance signature
by using sophisticated multifactorial methods such as PLS regression or artificial neural
networks if trained on sufficiently complex data [22].

We hypothesized that the combination of vegetation indices based on red-edge and
green reflectance with NNI and N uptake as indicators of N status in malting barley would
provide extended linearity and higher accuracy in estimating N status across different years,
genotypes, and densities, as compared to indices based on red or blue reflectance, and also
compared to N content in dry matter. We also assumed that an artificial neural network
based on multiple reflectance wavelengths would reduce the uncertainties of N status
estimation caused mainly by interannual variation, genotype, and canopy structure. The
main objective of this study was to improve prediction of N status in malting barley using
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spectral reflectance, and particularly to increase the versatility of its use across variable
years, genotypes, and management practices, by using three approaches: (i) selecting
vegetation indices providing improved linearity of response to N status and, at the same
time, low interannual variability of response; (ii) using the N status indicators which are
less sensitive to changing biomass, growth stage, and rapid dilution of N; (iii) employing
the artificial neural networks trained on a wide range of factors that may affect the direct
estimation of N status in malting barley by vegetation indices.

2. Materials and Methods

Evaluation of the N status, canopy reflectance, and yield of spring barley was per-
formed in small-plot field experiments established at the edge of the city of Kroměříž in
Central Moravia (Czech Republic) with coordinates 49◦17′5” N, 17◦21′35” E within the
period of three consecutive years (2011–2013). The location is characterized by a warm,
slightly humid climate with a mean annual temperature of 9.1 ◦C and precipitation of
567.7 mm. Weather data during the vegetation period in individual years were collected by
a permanent meteorological station located within 500 m of the experimental field (Table 1).
The soil type at the site is Luvi-Haplic Chernozem, and the texture is clay loam. The previ-
ous crop was maize for grain in all three years. Standard plant protection measures were
used during the growing season to avoid negative interactions with weeds, diseases, and
pests. Each experimental treatment represented a combination of three factors, ensuring
contrasting differences in the canopy density, structure, and nutritional status: (i) malt-
ing barley varieties with different tillering intensity (Bojos—middle, Prestige—low, and
Sebastian—high); (ii) sowing density (2.5, 4, and 5.5 million germinating seeds ha−1); (iii) N
nutrition (0, 45, and 90 kg N ha−1). N was applied before sowing in the form of ammonium
nitrate. Each treatment was established in five replications. The plot size was 10 m2,
and the five replications were arranged in randomized block design. Three replications
were harvested for grain yield, and two were used for sampling during vegetation, which
enabled the analyses of aboveground biomass and N content. In sampling plots, squares of
size 0.25 m2 (0.5× 0.5 m) were marked out to obtain plants for analyses of canopy structure
in two developmental stages: end of tillering to the beginning of stem elongation (DC
29–31) and end of stem elongation (DC 39). Measurements of canopy reflectance in the
range 350–2500 nm were made using a FieldSpec 4 HiRes spectroradiometer (ASD, Boulder,
CO, USA) and fiber optic cable fixed in pistol grip (25◦ field of view). The reflectance
measurements were conducted from a distance of ca. 0.8 m perpendicular to the canopy
surface, which ensured the collection of spectra from a circle with a diameter of about
0.36 m. Smooth movement during spectra collection in the distance ca. 2 m along the plot
allowed measurement of reflectance for an area of ca. 0.2 m2. Two reflectance spectra were
taken from each plot/replication. Before each new plot, the reference spectrum was mea-
sured using the reflectance standard (Spectralon; Labsphere, North Sutton, NH, USA). The
reflected radiances were directly converted to spectral reflectance within the RS3 Spectral
Acquisition Software (ASD). PCA analysis and preliminary correlation with N nutrition
indicators showed that outside the reflectance range 380–850 nm was the contribution to
the explanation of N status as marginal; therefore, only the average reflectance spectrum in
this range from all replications of each treatment was used to calculate vegetation indices
(Supplementary Table S1), perform correlation analysis for simple reflectance ratios and
normalized difference indices, and to train neural networks.

Analyses of canopy structure and biomass production were performed manually,
which involved assessing the numbers of plants and tillers (data not shown) and the
quantity of aboveground dry biomass. The aboveground biomass was dried in an oven at
80 ◦C until constant weight. The dried plant samples were then analyzed for N content
using a LECO elemental analyzer (LECO, St. Joseph, MI, USA). The harvest was carried
out using a Sampo 2010 small-plot harvester equipped with an automatic weighing and
sampling system (Sampo Rosenlew, Pori, Finland). The correlation analysis (coefficients
of determination, R2) and neural network training were performed using Statistica 12
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software (StatSoft Inc., Tulsa, USA). Prior to neural network training, the number of input
reflectance wavelengths was reduced on the basis of PCA analysis, when reflectance
wavelength with the highest PCA scores and lowest (or close to 180◦) angle in relation
to N status indicators were selected. For the neural network training, each dataset was
randomly divided into training (70%), test (15%), and validation (15%) sub-datasets. The
training was conducted on 10,000 networks with the maximum number of hidden units as
20 and identity, logistic, exponential, and hyperbolic tangents used for both hidden and
output neurons. This allowed achieving high diversity of neural networks from which a
set of 10 networks was chosen for each training set on the basis of the lowest training and
validation error and the highest R2 for the relationship between predicted and observed
values. These networks were subjected to another 50 training cycles with new random
dividing on training, test, and validation datasets for each. The network showing the lowest
variation between training cycles was then selected as the best network. If the variation
of performance during 50 training cycles was higher than 25%, the process was repeated.
The correlation matrix for normalized difference indices combining all wavelengths of the
selected range was analyzed in the software R 3.1.1 (R Foundation for Statistical Computing,
Vienna, Austria).

Table 1. Mean daily temperatures and monthly precipitation sums for vegetation period in 2011–2013
and comparison to long-term average values for the period 1971–2010.

Characteristic Year March April May June July

Mean temperature
(◦C)

2011 5.3 11.8 14.6 18.4 18.0
2012 6.6 10.6 16.3 19.1 20.8
2013 1.2 10.1 14.2 17.5 21.2

Long-term average
(1971–2010) 4.3 9.4 14.5 17.3 19.2

Precipitation sum
(mm)

2011 35.9 45.5 84.2 72.0 119.7
2012 3.1 29.2 23.8 137.2 35.3
2013 51.0 33.3 87.2 129.1 2.7

Long-term average
(1971–2010) 32.8 40.7 66.1 80.6 73.6

3. Results
3.1. Correlations between Spectral Reflectance and Indicators of N Status

Evaluation of the index of determination (R2) was made for the normalized difference
indices NDIxy = (Rx − Ry)/(Rx + Ry) at 1 nm step, wherein Rx and Ry represent reflectance
in wavelengths x and y. These normalized indices were correlated to the relative N content
in dry aboveground biomass (% mass), N nutrition index (NNI; dimensionless), and N
uptake by aboveground biomass per area unit (N uptake; kg ha−1) separately in the
growth stages DC 29–31 and DC 39. Correlations were made across all experimental
years, barley genotypes, sowing densities, and N doses. The results of the correlation
analysis are shown in Figure 1, in which the R2 are expressed using a color scale for each
combination of wavelengths. These results generally show low values of R2 for N content
in the aboveground biomass, while for NNI, and particularly for N uptake, R2 increased
significantly. This analysis identified several combinations of reflectance wavelengths with
the potential for evaluating N status. Higher R2 values were achieved for the combination
of reflectance wavelengths in the range of 400–500 nm with 650–690 nm. Another area
with relatively high R2 values is delineated on both axes by wavelengths in the range
450–490 nm. This narrowly defined area has a particularly closer correlation to the N
status in the growth stage DC 29–31. Similarly, a very narrowly delineated area exhibiting
high R2 in relation to N status is defined by reflectance wavelengths in the range 530–
550 nm on both axes. In this case, however, the higher R2 values were obtained only at
the later growth stage (DC 39). Similar results were obtained in the area delineated by
reflectance wavelengths 560–590 nm. Reliable estimation of N status was also provided
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by NDIxy when combining reflectance in the range 710–730 nm with band 730–800 nm.
The combination of these bands achieves similar results in both the DC 29–31 and DC
39 growth stages. Comparable results were also performed by a combination of bands
550–650 nm and 730–800 nm. Generally, although these areas overlap for the N content in
plants, NNI, and N uptake, the highest values of R2 were obtained for N uptake and the
lowest R2 for N content.
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Figure 1. Matrix plots of coefficients of determination (R2) for the relation of all combinations of wavelengths in the range
380–820 nm used for a linear regression analysis of the normalized difference index NDIxy = (Rx − Ry)/(Rx + Ry), wherein
Rx and Ry represent reflectance in wavelengths x and y, against N content in dry matter (left), nitrogen nutrition index
(NNI, middle), and N uptake by aboveground biomass (right). The correlations were calculated separately at stage DC
29–31 (upper) and DC 39 (bottom).

3.2. Evaluation of N Status Using Vegetation Indices

From the results of correlation analysis across all experimental years (Table 2), it is evi-
dent that in both sampling dates, generally higher R2 values were achieved for estimating
NNI and N uptake than for the N content in plants. At the same time, the closest correlation
to N status was demonstrated for indices based on a combination of reflectances in bands
430 and 680 nm (SRPI, NPCI) and also for indices based on reflectance in the red-edge
region (700–730 nm), e.g., NRERI, ZM, or ANMB650–725. For such widely used vegetation
indices as NDVI, RDVI, and OSAVI, which exploit the differences in reflectance between
red and near-infrared bands, the increase of R2 with later growth stage was evident. Even
in the growth stage DC 39, however, these indices do not outperform the indices based
on reflectance in regions around 430 nm or red-edge band in estimating N status. As the
performances of indices within the abovementioned groups were very similar, we used for
further analyses the representatives showing the highest average performance across both
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growth stages and all N status indicators: SRPI for the region around 430 nm and NRERI
for the red-edge region. The vegetation index NDVI was selected as representative of the
group of indices based on reflectance in the red region due to its common use. However,
its performance was slightly lower compared to some others within this group.

Table 2. Coefficients of determination (R2) and root mean square errors (RMSE) for linear relationships between reflectance
indices and nitrogen status parameters (N content in dry matter, NNI and N uptake by aboveground biomass) at individual
growth stages (DC 29–31 and DC 39). Coefficients of determination significant at p < 0.05 are indicated in bold.

Reflectance
Indices

N Content in Dry Matter (%) NNI N Uptake (kg ha−1)

DC 29–31 DC 39 DC 29–31 DC 39 DC 29–31 DC 39
R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

ANMB650–750 0.19 0.437 0.21 0.378 0.61 0.137 0.52 0.126 0.68 17.00 0.60 19.68
NDVI 0.08 0.464 0.18 0.385 0.40 0.169 0.50 0.128 0.47 22.00 0.60 19.55
NDGI 0.13 0.452 0.16 0.390 0.47 0.159 0.51 0.128 0.54 20.54 0.64 18.70
NRERI 0.23 0.424 0.17 0.386 0.62 0.135 0.53 0.125 0.68 17.02 0.66 17.98
RDVI 0.09 0.461 0.23 0.372 0.42 0.167 0.58 0.119 0.50 21.38 0.65 18.43
MSR 0.11 0.457 0.13 0.397 0.37 0.174 0.47 0.133 0.44 22.63 0.62 19.20

MT VI1 0.08 0.463 0.25 0.368 0.39 0.171 0.56 0.121 0.47 21.97 0.60 19.52
TCARI 0.01 0.482 0.11 0.401 0.03 0.215 0.08 0.175 0.07 29.17 0.03 30.50
OSAVI 0.09 0.461 0.21 0.377 0.42 0.166 0.56 0.121 0.50 21.32 0.65 18.35

TCARI/OSAVI 0.32 0.399 0.01 0.422 0.44 0.164 0.15 0.169 0.41 23.18 0.26 26.70
G 0.07 0.468 0.18 0.385 0.29 0.184 0.48 0.139 0.36 24.08 0.56 20.68

TVI 0.08 0.465 0.25 0.367 0.38 0.172 0.56 0.121 0.47 22.07 0.60 19.75
ZM 0.17 0.440 0.13 0.397 0.50 0.155 0.47 0.133 0.57 19.85 0.63 18.98

SRPI 0.20 0.433 0.36 0.339 0.65 0.129 0.67 0.105 0.73 15.60 0.66 18.20
NPQI 0.11 0.457 0.26 0.365 0.04 0.215 0.36 0.146 0.01 29.98 0.31 25.74
PRI 0.18 0.439 0.25 0.368 0.61 0.136 0.29 0.154 0.66 17.61 0.23 27.23

NPCI 0.19 0.437 0.34 0.344 0.65 0.129 0.64 0.109 0.73 15.65 0.63 18.82
SIPI 0.09 0.461 0.15 0.391 0.40 0.169 0.48 0.131 0.47 22.06 0.60 19.68

VOG3 0.18 0.439 0.12 0.399 0.47 0.159 0.46 0.134 0.54 20.57 0.63 18.87
VOG2 0.18 0.439 0.12 0.398 0.48 0.158 0.47 0.133 0.54 20.36 0.64 18.67
GM1 0.15 0.447 0.08 0.408 0.42 0.167 0.40 0.141 0.48 21.81 0.59 19.93
GM2 0.16 0.443 0.14 0.394 0.47 0.159 0.48 0.131 0.54 20.40 0.63 18.85

Because the effect of year was the main source of variability in the relationships
between vegetation indices and indicators of N status, detailed regression analysis for
selected vegetation indices was carried out separately for individual years. The results are
summarized in Table 3 and Figures 2–4. It is evident from these analyses that splitting the
relationships by individual year led, in major cases, to higher R2 values and lower root
mean square errors (RMSE), and this was particularly true for indices NDVI and NRERI
and for N status indicators NNI and N uptake. If the relationships are analyzed separately
in each year, the R2 values are very similar for all three indices (NDVI, NRERI, and SRPI),
but especially for estimation of NNI and N uptake. This means that, in particular, the
index NDVI, and partly also NRERI, shows a significant effect of the experimental year on
relationships between vegetation index and N status indicators. In the case of NDVI, the
between-year variation is evident in both the intercept and slope of linear relationships. In
NDVI, moreover, an evident change of the index value range was observed for the later
growth stage. The NDVI values increased with the later growth stage while the range
simultaneously narrowed. This resulted in a rising slope with the later growth stage. In the
case of NRERI, a shift of intercept was particularly evident. The slope of linear relationships
varied far less, even when comparing the two growth stages. The smallest between-year
variation in relationships to N status was found for the index SRPI. Generally, the highest
between-year variation in relationships is evident for the N content in aboveground dry
matter. Similarly, the largest differences in relationships between growth stages were
observed for this indicator of N status. The smallest differences in the relationships among
growth stages were recorded for N uptake.
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Table 3. Regression parameters of linear relationships between selected reflectance indices (y = y0 + a*x, where y is the nitrogen status parameter, a is slope of linear relationship, and y0
is the intercept), coefficients of determination (R2), and root mean square errors (RMSE) analyzed separately for individual year and all years together. Coefficients of determination
significant at p < 0.05 are indicated in bold.

Growth
Stage DC

Nitrogen Status
Parameter

Reflectance
Index

a y0 R2 RMSE

2011 2012 2013 2011–2013 2011 2012 2013 2011–2013 2011 2012 2013 2011–2013 2011 2012 2013 2011–2013

29–31

N content in
dry matter (%)

NDVI 4.72 7.95 0.56 1.38 −1.34 −3.45 2.54 1.77 0.29 0.46 0.04 0.08 0.375 0.458 0.317 0.464
NRERI 3.29 9.59 2.29 3.14 0.97 −2.19 1.84 1.21 0.39 0.6 0.13 0.23 0.346 0.393 0.302 0.424
SRPI 1.82 4.38 0.51 1.55 1.35 −0.63 2.57 1.64 0.35 0.46 0.06 0.2 0.359 0.457 0.314 0.433

NNI
NDVI 4.07 3.37 1.34 1.38 −2.89 −1.89 −0.29 −0.37 0.72 0.64 0.73 0.4 0.128 0.133 0.096 0.169
NRERI 2.53 3.81 3.39 2.31 −0.7 −1.22 −0.95 −0.48 0.78 0.74 0.86 0.62 0.113 0.113 0.068 0.135
SRPI 1.45 1.87 1.02 1.27 −0.45 −0.7 −0.06 −0.26 0.74 0.66 0.74 0.65 0.124 0.13 0.095 0.129

N uptake
(kg ha−1)

NDVI 609.5 408.1 205 206.9 −478.9 −253.9 −97.8 −103.9 0.76 0.68 0.8 0.47 17.409 14.777 12.1 21.997
NRERI 375.4 448.1 508.9 335.2 −150.4 −166 −192.9 −113.7 0.81 0.74 0.91 0.68 15.587 13.272 8.279 17.017
SRPI 216.3 229.2 157.5 185.7 −114.9 −112.2 −62.9 −83.8 0.77 0.71 0.83 0.73 17.01 14.041 11.326 15.602

39

N content in
dry matter (%)

NDVI 0.23 6.69 4.81 3.41 1.52 −3.75 −2.07 −1 0.01 0.55 0.16 0.18 0.182 0.302 0.334 0.385
NRERI 0.37 5.13 3.48 2.23 1.5 −0.89 0.11 −0.68 0.04 0.59 0.25 0.17 0.179 0.287 0.315 0.386
SRPI 0.24 2.37 2.08 1.67 1.54 0.06 0.4 0.62 0.05 0.58 0.29 0.36 0.178 0.29 0.306 0.339

NNI
NDVI 1.83 3.14 5.02 2.47 −1.01 −2.03 −3.84 −1.52 0.66 0.69 0.64 0.5 0.081 0.104 0.113 0.128
NRERI 1.24 2.39 3.04 1.68 −0.15 −0.67 −1.19 −0.34 0.75 0.73 0.71 0.53 0.07 0.097 0.1 0.125
SRPI 0.68 1.09 1.73 0.97 0.08 −0.22 −0.85 −0.14 0.72 0.71 0.75 0.67 0.074 0.101 0.093 0.105

N uptake
(kg ha−1)

NDVI 452.3 477 949.2 460.4 −326 −333.1 −784.7 −330.3 0.76 0.74 0.75 0.6 15.745 13.976 16.425 19.546
NRERI 300.5 360.4 556.3 320 −108.2 −125.6 −271.8 −114.8 0.83 0.78 0.79 0.66 13.388 12.918 15.095 17.979
SRPI 164.5 164.6 312 149.9 −52 −57.7 −206.1 14.4 0.78 0.75 0.8 0.66 15.01 13.721 14.499 18.203



Agronomy 2021, 11, 2592 8 of 19

Agronomy 2021, 11, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 2. Linear relationships between vegetation index NDVI and nitrogen content in aboveground dry mass (upper), 

nitrogen nutrition index (NNI, middle), and nitrogen uptake by aboveground biomass per area unit (lower), analyzed 

separately for growth stage beginning of stem elongation (DC 29–31, left) and end of stem elongation (DC 39, right), and 

for individual years (2011—white points and light grey line, 2012—grey points and dark grey line, and 2013—black points 

and black line). Coefficients of determination (R2), root mean square errors (RMSE), and significant correlations (* at p < 

0.05 and ** at p < 0.01) are indicated for each relationship. 

NDVI

0.6 0.7 0.8 0.9

N
 u

p
ta

ke
 (

kg
 h

a
–

1
)

0

50

100

150

0.6 0.7 0.8 0.9

N
N

I 
(d

im
e
n
si

o
n
le

ss
)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
 c

o
n
te

n
t 

in
 d

ry
 m

a
tt

e
r 

(%
)

1

2

3

4

2011
2012
2013
Fit 2011
Fit 2012
Fit 2013

DC 29-31 DC 39

R
2
=0.29**

RMSE=0.375R
2
=0.46**

RMSE=0.458

R
2
=0.04

RMSE=0.317

R
2
=0.01

RMSE=0.182

R
2
=0.55**

RMSE=0.302

R
2
=0.16*

RMSE=0.334

R
2
=0.73**

RMSE=0.096

R
2
=0.64**

RMSE=0.133
R
2
=0.72**

RMSE=0.128
R
2
=0.66**

RMSE=0.081

R
2
=0.69**

RMSE=0.104

R
2
=0.64**

RMSE=0.113

R
2
=0.76**

RMSE=17.409
R
2
=0.68**

RMSE=14.777

R
2
=0.80**

RMSE=12.1

R
2
=0.76**

RMSE=15.745

R
2
=0.74**

RMSE=13.976

R
2
=0.75**

RMSE=16.425

Figure 2. Linear relationships between vegetation index NDVI and nitrogen content in aboveground dry mass (upper),
nitrogen nutrition index (NNI, middle), and nitrogen uptake by aboveground biomass per area unit (lower), analyzed
separately for growth stage beginning of stem elongation (DC 29–31, left) and end of stem elongation (DC 39, right), and for
individual years (2011—white points and light grey line, 2012—grey points and dark grey line, and 2013—black points and
black line). Coefficients of determination (R2), root mean square errors (RMSE), and significant correlations (* at p < 0.05
and ** at p < 0.01) are indicated for each relationship.
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Figure 3. Linear relationships between reflectance index NRERI and nitrogen content in aboveground dry mass (upper),
nitrogen nutrition index (NNI, middle), and nitrogen uptake by aboveground biomass per area unit (lower), analyzed
separately for growth stage beginning of stem elongation (DC 29–31, left) and end of stem elongation (DC 39, right), and for
individual years (2011—white points and light grey line, 2012—grey points and dark grey line, and 2013—black points and
black line). Coefficients of determination (R2), root mean square errors (RMSE), and significant correlations (* at p < 0.05
and ** at p < 0.01) are indicated for each relationship.
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Figure 4. Linear relationships between reflectance index SRPI and nitrogen content in aboveground dry mass (upper),
nitrogen nutrition index (NNI, middle), and nitrogen uptake by aboveground biomass per area unit (lower), analyzed
separately for growth stage beginning of stem elongation (DC 29–31, left) and end of stem elongation (DC 39, right), and for
individual years (2011—white points and light grey line, 2012—grey points and dark grey line, and 2013—black points and
black line). Coefficients of determination (R2), root mean square errors (RMSE), and significant correlations (* at p < 0.05
and ** at p < 0.01) are indicated for each relationship.
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3.3. Relationships between Indicators of N Status and Grain Yield

The relationships between indicators of nutritional status (i.e., N content in above-
ground dry matter, NNI index, and N uptake per area unit) and grain yield achieved were
evaluated separately for each year (Figure 5). Generally, these relationships exhibit a rectan-
gular hyperbola shape, although it is evident that in some cases, the upper asymptote was
not reached. The greatest variation in relationships was observed for the N content in dry
matter. While in 2013, there was almost no correlation between N content and yield, in 2011,
a very steep and significant relationship without reaching the upper asymptote was found.
In 2012, the typical rectangular hyperbola relationship was observed. Conversely, the
relationships between NNI and N uptake per area unit showed the rectangular hyperbola
course in virtually all combinations of year and growth stage. At the same time, the shape
of the relationship changed only a little, but the upper asymptote changed significantly
between years. This means that the maximum yield is generally obtained in all years at the
same level of nutritional status, whether it is defined as NNI or N uptake. For NNI, the
maximum yield was achieved at values just above 1.0 in both growth stages, whereas for
N uptake, a slight shift of the maximum was found. The yield maximum was reached at N
uptake of about 100 and 120 kg N ha−1 in growth stage DC 29–31 and DC 39, respectively.

3.4. Artificial Neural Networks Based on Hyperspectral Data for Estimating N Status

For purposes of training neural networks, it was first necessary to reduce the initial
reflectance dataset to optimize the range of the input variables. Reflectance data were first
reduced by using the 10 nm step and in the range 380–850 nm. Subsequently, principal
component analysis (PCA) was used to select only the reflectance wavelengths with major
explanatory importance for indicators of N status. In total, 17 reflectance wavelengths with
the highest PCA scores (components 1 and 2), and also minimum differential angle (or close
to 180◦ for negative association) to the PCA loadings for N status indicators, were selected
for subsequent neural network training. The set of 162 observations was randomly divided
into training (114 observations), test, and validation (each with 24 observations) datasets.
From 10,000 trained networks for each combination of N status indicator and growth
stage, a set of 10 networks was chosen for each training set (N status indicator and growth
stage combination), having the lowest training and validation error and highest R2 for the
relationship between predicted and observed values. These networks were subjected to
50 training cycles with new random dividing on training, test, and validation datasets for
each. The network showing the lowest variation between training cycles was then selected
as the best network. If the variation of performance during 50 training cycles was higher
than 25%, the process was repeated. The scatterplots of predicted and observed data for
best networks and their comparison with the 1:1 line are shown in Figure 6. It is evident
from these results that neural networks substantially enable elimination of interannual
variability, and therefore significantly improve the accuracy of N status estimation. This
is especially the case for N content in the dry aboveground biomass. While for the best
of vegetation indices—SRPI—R2 values of 0.2 and 0.36 had been achieved in the growth
stages DC 29–31 and 39, respectively, through the use of neural networks, R2 was increased
to 0.75 and 0.8, respectively. For NNI index and N uptake, the R2 value increased from the
range 0.58–0.73 for the best vegetation indices to 0.83–0.87 when using neural networks. An
overview of the best neural networks, their performance in the training, test, and validation
dataset, and also the activation functions used for each estimated parameter of N status and
growth stage are shown in Table 4. A sensitivity analysis describing the explanatory value
of reflectance in each individual wavelength for the neural network model is shown in
Supplementary Table S2. It is noteworthy that the reflectance wavelength with the highest
sensitivity ranking differs substantially between estimated N status parameters and also
between growth stages.
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Figure 5. Rectangular hyperbola relationships between nitrogen content in aboveground dry mass (upper), nitrogen
nutrition index (NNI, middle), nitrogen uptake by aboveground biomass per area unit (lower) and grain yield, analyzed
separately for growth stage beginning of stem elongation (DC 29–31, left) and end of stem elongation (DC 39, right), and
for individual years (2011—white points and light grey line, 2012—grey points and dark grey line, and 2013—black points
and black line). Coefficients of determination (R2), root mean square error (RMSE), and significant correlations (* at p < 0.05
and ** at p < 0.01) are indicated for each relationship.
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Figure 6. Comparison of observed nitrogen content in aboveground dry mass (upper), nitrogen nutrition index (NNI,
middle), and nitrogen uptake by aboveground biomass per area unit (lower) with predicted values by winning artificial
neural networks. The 1:1 lines are plotted to evaluate deviations from observed data. Root mean square errors (RMSE) are
indicated for each predicted set of data.
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Table 4. Characteristics and performance of winning neural networks (MLP—multilayer perceptron) for estimation of
individual nitrogen status parameters at growth stage DC 29–31 and DC 39. Network performance is given separately for
training, test and validation datasets. Exponential, logistic, and hyperbolic tangent activation functions (TanH) are indicated
for the hidden and output layer of the neural network.

Network Performance Activation Function

Growth
Stage Estimated Parameter Network

Name Training Test Validation Hidden Output

DC 29–31
N content in dry matter (%) MLP 17-15-1 0.897 0.753 0.923 TanH TanH

NNI MLP 17-8-1 0.927 0.856 0.938 Exponential TanH
N uptake (kg ha−1) MLP 17-11-1 0.920 0.877 0.958 Exponential Logistic

DC 39
N content in dry matter (%) MLP 17-13-1 0.924 0.887 0.883 TanH Logistic

NNI MLP 17-6-1 0.955 0.950 0.950 TanH Exponential
N uptake (kg ha−1) MLP 17-12-1 0.922 0.975 0.965 TanH Exponential

4. Discussion

The N status of malting barley requires relatively precise optimization because nitro-
gen deficiency leads, in particular, to reduced tillering and impaired yield formation. On
the other hand, the N excess causes an increase in grain protein content, aggravating the
malting quality, but it also leads to increased lodging and associated adverse effects such
as yield reduction or mycotoxin contamination [6,7]. From the economic point of view, the
impact of N nutrition on grain protein content is crucial. Although it also depends on a
number of other factors, such as sufficient water availability and optimum temperature, it
significantly impacts the price and economics of malting barley production. Water stress
and excessive temperatures limit starch accumulation more than nitrogen translocation,
resulting in higher grain protein content, while under sufficient water availability is the
grain protein content, transformed from translocated N, diluted in higher starch accumula-
tion [23]. Although environmental conditions can significantly modulate the translation
of N status into grain protein content and should always be carefully considered when
making decisions about N nutrition in malting barley, N status is still one of the most critical
parameters for the final grain protein content that can be affected by agronomic practices.
Therefore, accurate and reliable methods of N status monitoring during vegetation are
required to achieve the malting quality of grain needed.

The main objective of this study was to improve the estimation of N status in malting
barley using hyperspectral data, and in particular, to eliminate the sources of variability
given by the effect of year, canopy structure, and genotype, doing so through the use
of more robust reflectance indices, N status indicators, and, finally, by using artificial
neural networks.

4.1. Hyperspectral Estimation of NNI

The N nutrition index (NNI) was introduced to assess the relative N status with
respect to rapidly changing N content in plant biomass during plant development, which
is characterized by the so-called critical or dilution curve [20]. N dilution is caused by a
gradual change in the ratio between metabolic and structural tissues in favor of structural
tissues, which contain much less N [24]. NNI represents the ratio between actual and
critical N content and indicates the relative value of actual N status compared to min-
imum N content for maximum biomass or yield production [20]. The main advantage
of using NNI to assess N nutrition status is that it provides an objective parameter that
is comparable throughout the entire vegetation season, irrespective of growth stage and
biomass accumulation. An NNI value greater than 1 indicates N surplus, and an NNI
value less than 1 points to N deficiency. Although NNI is an effective tool in terms of
increasing the accuracy and simplifying the assessment of N status, it has rarely been used
for estimating N status from hyperspectral data. One of the first studies within which
NNI was estimated in winter wheat using the red edge inflexion point (REIP) spectral
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reflectance index was published by Mistele and Schmidhalter [25]. They also showed the
effects of year and growth stage on the relationship between REIP and NNI. Especially
at early growth stages, the relationship differs from the typical relationship found after
canopy closure. Houles et al. [26] also showed that NNI corresponds to the N status of
the whole canopy rather than to actual N or chlorophyll content at the leaf level, which
can explain some differences due to canopy development. We achieved similar results
within the present study. While the relationships between vegetation indices and N content
in the aboveground dry matter were generally weak and highly variable between years,
for NNI, close relationships were found that varied only a little between years. The R2

values for relationships between NNI and vegetation indices were approximately three
times higher than those determined for relationships between the indices and N content
in the aboveground dry matter (Table 3, Figures 2–4). However, the relationships to NNI
showed an effect of growth stage on both intercept and slope of relationship, indicating
that NNI cannot completely decouple the effect of biomass and leaf area even for the best
vegetation indices.

Later, Erdle et al. [27] demonstrated that significantly more accurate estimation of
the N nutrition status by spectral reflectance is achieved using NNI in comparison with
the detection of N content in plants. Generally, the best estimate of NNI was achieved
using indices based on the red-edge band reflectance, and in particular, using the REIP
index. Chen et al. [28] introduced a new spectral index based on red-edge, known as the
double-peak canopy N index (DCNI), for improved estimation of N content as input for
NNI calculation. Such indirect estimation of NNI requires, however, the knowledge of
biomass that may increase the estimation error because it is necessary to estimate two
parameters showing interactions in their effects on spectral reflectance. Our results, too,
showed a reliable estimation of NNI using spectral indices based on the red-edge band
(NRERI, ANMB650–725, ZM; Table 2, Figure 3). Even better results, however, were achieved
for indices employing reflectance at 430 nm (R430; SRPI and NPCI; Table 2, Figure 4). These
indices are mostly related to the ratio between total carotenoids and chlorophylls [29].
Although the correlation matrix for NNI (Figure 1) shows that the sensitive area in the blue
reflectance region narrows with the growth stage, the correlation for reflectance indices
based on R430 is almost not changed with the growth stage (Table 1). The sensitivity to N
status of reflectance indices based on R430 had been shown already by Filella et al. [30].
N deficiency generally increases the total carotenoids and chlorophylls ratio because
carotenoids persist longer than do chlorophylls in senescing leaves [31], and N deficit
induces leaf senescence [32].

Based on our results, direct estimation of NNI using spectral reflectance appears to be
more accurate than the separate estimation of N content and plant biomass, even though
the relationship is slightly modified by the growth stage. On the contrary, the relationships
for N content in aboveground dry biomass show variation in slope and R2 between both
growth stages and years, probably due to the rapid dilution of N in biomass. This leads
to a significant decrease of R2 if the data are analyzed across years, and even more so if
performed across growth stages. Conversely, only small changes in R2 were observed when
such data were analyzed for NNI. The use of calibration, even in the case of NNI, however,
may be beneficial for improving estimation accuracy.

4.2. Hyperspectral Estimation of N Uptake by Aboveground Biomass

Optimization of N nutrition based upon total N uptake is, in principle, a simpler
method than evaluating NNI, and it also has some practical advantages. These lie particu-
larly in the possibility to optimize N nutrition on the basis of total N balance for expected
yield and grain protein content, the latter of which is one of the key grain quality pa-
rameters for malting barley. N uptake can also be relatively easily estimated by spectral
reflectance with the best estimation performance of the normalized red-edge index [33].
Similarly, Erdle et al. [27] demonstrated the best performance for the simple ratio index
based on red-edge reflectance for estimation of both NNI and N uptake. This is in line with
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our results showing a good estimation of N uptake by red-edge indices NRERI, ZM, or
ANMB650–725. On the other hand, N uptake does not enable direct estimation of relative
N status, which requires comparison with optimum N uptake for a given growth stage
or biomass. This can be derived from the critical N curve as a critical N uptake [34], but
it requires knowledge of biomass production. In our study, estimation of N uptake by
aboveground biomass using spectral reflectance generally had significantly higher accuracy
than did the estimation of N content, and it also slightly outperformed the estimation of
N status by NNI. This is due to the fact that N uptake per unit area integrates the effects
both of biomass and of N content in dry matter. Higher N uptake may be given by higher
biomass production at the same N content or by higher N content at the same biomass
production. However, actual N uptake at the given stage can be compared with optimum
uptake for required yield without any information about biomass production.

In earlier studies in winter wheat, it was demonstrated that N optimization could
be successfully carried out on the basis of remote sensing estimation of early-season N
uptake and estimation of grain yield potential [35,36]. These optimization algorithms
were based on NDVI estimation between the end of tillering and the beginning of stem
elongation, and the yield potential was estimated as NDVI divided by growing degree
days. Such estimation of yield potential can also be useful in spring barley, as the NDVI
show particularly higher values at the high yielding year 2011 when evaluated at the
early growth stage (DC 29–31) even for the same N uptake levels. On the other hand,
SRPI can be used to estimate the N uptake without the effect of yield potential. Optimum
N dose can thus be derived from yield potential (and optimal N uptake for such yield)
estimated from NDVI and actual N uptake estimated from SRPI. The maximum yield for
a given N response curve is limited mainly by genotype and environment/year [37]. As
demonstrated in our recent work [3], the yield potential of spring barley is determined in
the early growth stages up to the beginning of stem elongation (DC 31), which supports
the idea of early estimation of yield potential from NDVI for N dose optimization.

4.3. Artificial Neural Network for Estimating N Status Using Hyperspectral Data

The application of artificial neural networks has, in recent decades, become rather
popular in the analysis of remotely sensed data [38]. The most common applications are in
image processing, particularly as classification algorithms (e.g., for land-cover classifica-
tion). Artificial neural networks also have been applied to retrieve biophysical parameters
of vegetation. For example, Bacour et al. [39] developed neural network algorithms for
estimating leaf area index, canopy chlorophyll content, and absorbed photosynthetically
active radiation, Liu et al. [40] used neural networks to discriminate fungal infection in rice
panicles from hyperspectral reflectance, and Christensen et al. [41] adopted neural network
for classification of barley growth stage from hyperspectral data.

In our study, we demonstrated the considerable potential of artificial neural networks
for improving the direct estimation of N content in barley aboveground biomass from
hyperspectral data in comparison with best spectral reflectance indices. The neural network
model reduces not only the variability within one year given by genotype or sowing density
but also the interannual variation, which is a much more important source of inaccuracy.
The effect of year changes both intercepts and slopes of relationships between spectral
reflectance indices and N content. A similar improvement of N content estimation by the
artificial neural network, compared to the linear regression model, was reported for rice by
Yi et al. [42]. They also demonstrated that both multiple linear regression and principal
component analysis were suitable to select input variables for neural network training.
Wang et al. [43] demonstrated the strength of neural network predictions in comparison
with stepwise regression for N content in rape. Recently, Sun et al. [44] showed that the
neural network provided the best performance in estimating N content in rice from both
active and passive reflectance sensors.

The employment of artificial neural networks in remote sensing provides a number of
advantages in comparison to regression models [45]. First, the neural network allows the
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development of complex models with multiple input parameters and by employing diverse
nonlinear response functions. Secondly, neural networks allow combining different types
of input data, including categorical ones and thus improving the model by introducing the
data, e.g., regarding the preceding crop, soil, genotype, weather, etc. Finally, high adaptivity,
given by the possibility to retrain the model on the new dataset, is of significant advantage
if the model is used in new conditions. Neural networks also allow joint estimation of
multiple biophysical and biochemical variables [39].

5. Conclusions

We demonstrated that the use of indirect N status indicators, such as NNI or N
uptake per ground area unit, could significantly improve the estimation accuracy from
spectral reflectance data, compared to N content in dry aboveground biomass. From
spectral reflectance indices tested, the red-edge indices (NRERI, ZM, or ANMB650–725) and
carotenoid indices (SRPI and NPCI) showed the lowest interannual variability. Although
the maximum yield varied significantly between years, the NNI and N uptake estimated
by spectral reflectance may be used in both growth stages as accurate estimators of N
status in malting barley. The use of the artificial neural network for N status estimation
from hyperspectral data reduced both intra- and interannual variability significantly and
provided estimation accuracy above 90%. A more than the twofold increase of estimation
accuracy with the use of a neural network model was found for N content in aboveground
dry mass. Although the significance of individual wavelength varied with the N status
indicator and growth stage, the key reflectance bands for most neural network models
were around 430, 530, and 710 nm.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11122592/s1, Table S1: List of vegetation indices used in correlation analyses with
nitrogen status parameters, equations for their calculation from reflectances in given wavelength
(Rx is the reflectance in wavelength x nm), and the references for each index. Table S2: Sensitivity
analysis for individual input reflectance wavelength in winning neural networks for estimation of
nitrogen status parameters.
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