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Abstract: Salt stress is one of the abiotic factors that causes adverse effects in plants and there is
an urgent need to detect salt stress in plants as early as possible. Multicolor fluorescence imaging,
as a powerful tool in plant phenotyping, can provide information about primary and secondary
metabolism in plants to detect the responses of the plants exposed to stress in the early stage. The
purpose of this study was to evaluate the potential of multicolor fluorescence imaging’s application
in the early detection of salt stress in plants. In this study, the measurements were conducted on
Arabidopsis and the multicolor fluorescence images were acquired at 440, 520, 690, and 740 nm with a
self-developed imaging system consisting of a UV light-emitting diode (LED) panel for an excitation
at 365 nm, a charge coupled device (CCD) camera, interference filters, and a computer. We developed
a classification method using the imaging analysis of multicolor fluorescence based on principal
component analysis (PCA) and a support vector machine (SVM). The results showed that the four
principal fluorescence feature combinations were the ideal indicators as the inputs of the SVM model,
and the classification accuracies of the control and salt-stress treatment at 5 days and 9 days were
92.65% and 98.53%, respectively. The results indicated that multicolor fluorescence imaging combined
with PCA and SVM could act as a tool for early detection in salt-stressed plants.

Keywords: multicolor fluorescence imaging; salt stress; principal component analysis (PCA); support
vector machine (SVM)

1. Introduction

Salinity has become one of the most challenging problems in plant development
and crop productivity worldwide [1,2]. Salt stress affects plant growth in various ways,
such as through osmotic effects, ion toxicity, and nutrition disorder [3,4], which greatly
inhibits agricultural production. Thus, in order to accelerate the process of breeding
and the cultivation of salt-resistant crops, it is essential to monitor the growth status
of plants. At present, the evaluation of plant growth performance is often conducted
via the analysis of the physiological, biochemical, and molecular responses of plants to
environmental stress [5–7]. However, these methods of analyses are prone to being affected
by environmental and genetic factors, and are sometimes destructive for plants. Therefore,
the development of noninvasive, fast, and efficient technologies for detecting plant growth
status to promote the selection of useful plant traits has become a research focus in recent
years [8,9].

Spectral imaging technologies are powerful non-destructive tools that have been
widely applied in evaluating the performance of plants exposed to abiotic stresses, such as
salinity, water, and heat [10–14]. These imaging technologies include red–green–blue (RGB)
imaging, thermal imaging, hyperspectral imaging, and kinetic chlorophyll fluorescence
imaging. RGB imaging technology has been used to assess the effect of soil and water
salinity on date palm growth, which provided supports for the application of RGB imaging
in monitoring salinity-stressed plants [15]. Thermal infrared imaging technology can be
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utilized to analyze the responses of plants to water stress via characterizing the change
of canopy and leaf temperature in plants [16,17]. Combining hyperspectral imaging and
machine learning allowed for the estimation of the salinity tolerance of 13 okra genotypes
by investigating fresh weight, SPAD, and transpiration rate [18]. The photoinhibition
and reduction of plants exposed to heat and salinity stress was revealed by using kinetic
chlorophyll fluorescence imaging [19].

The studies listed above indicated that spectral imaging technologies can be used
to analyze plant phenotype changes responding to abiotic stresses and provide useful
information for the detection of the plants exposed to abiotic stresses [15–19]. However, the
early responses of plants to stress are often manifested in physiological and biochemical
microscopic changes, so RGB imaging is limited in early detection as it only can recognize
the visible changes observed by human inspection. Although hyperspectral imaging,
thermal infrared imaging, and kinetic chlorophyll fluorescence imaging could reveal the
microscopic performance of plants to stress, they also have limitations, such as requiring an
expensive and complex device, being subject to the impact of environmental temperature,
and requiring dark adaptation.

Multicolor fluorescence with the excitation of UV light and its emission spectrum is
usually characterized by four bands near 440 nm (blue; F440), 520 nm (green; F520), 690 nm
(red; F690), and 740 nm (far-red; F740) [20]. The blue and green fluorescence are often
grouped as blue–green fluorescence (BGF) emitted by secondary metabolites bound to cell
walls. Additionally, red, and far-red fluorescence are treated as chlorophyll fluorescence
(ChlF) emitted by chlorophyll a in the chloroplasts of green mesophyll cells [21]. Multicolor
fluorescence imaging can evaluate the physiologic state of plants before the symptoms
induced by different environmental stress factors become evident [22], which has an ad-
vantage in the early stress detection of plants. Thus, multicolor fluorescence imaging has
been applied to evaluate the physiological state of plants in many studies. Multicolor
fluorescence imaging technology has been used for the early detection of pathogens in
plants such as zucchini, melon, and Nicotiana benthamiana, demonstrating the potential of
multicolor fluorescence imaging in revealing stress-associated signatures [23,24]. The com-
bination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging has been
successfully applied in the early detection of drought stress responses in Arabidopsis [25].
Based on a multicolor fluorescence system coupled with a dynamic fluorescence index
(DFI), the fluorescence index has been utilized in predicting the water stress status of
cabbage seedlings [26]. In addition, multicolor fluorescence imaging technology has been
employed in the study of plant nutrients, as reviewed by Tremblay et al. [27]. However,
there are still limited studies applying multicolor fluorescence imaging technology as a
tool to analyze the plant response to salt stress.

Hence, the main objective of this work was to explore the possible application of
multicolor fluorescence imaging technology for evaluation of the early detection of salt
stress in plants. In this work, light-emitting diode (LED)-induced multicolor fluorescence
was detected by a charge coupled device (CCD) sensor through different light filters with
four bands (440, 520, 690, and 740 nm) to acquire multicolor fluorescence images. Based on
this, multiple fluorescence parameters were extracted to assess the effects of salt stress, and
data dimension reduction was conducted through principal component analysis (PCA)
to reduce the number of features and select the best features. Then, the best features and
an optimized support vector machine (SVM) model were integrated to construct the early
detection model for salt stress. The results showed that multicolor fluorescence imaging
has great potential in the early detection of salt stress in plants.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Arabidopsis Columbia (Col-0) was used to establish the cultivation and salt treatment
in the experiment. Similar to the procedure in [28], seeds were sown in Petri dishes in
half-strength Murashige and Skoog salts (1/2 MS; Sigma), 1.5% (w/v) sucrose (Sigma), and
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0.8% (w/v) agar. At the four-leaf stage (day 15 after sowing), plants were transplanted
to pots (70 × 70 mm and 50 × 50 mm top and bottom, respectively, and 54 mm height,
with holes in the bottom) filled with a mixture of nutrient soil and vermiculite (3:1, v/v).
Arabidopsis plants were cultivated in a climate-controlled growth chamber (F731, Hipoint,
Taiwan, China) at 22 ◦C, 65% RH, 8/16 h light/dark, under an optimal light intensity of
120 µ mol m−2·s−1 [29].

2.2. Salt-Stress Treatment

In this experiment, the Arabidopsis plants were irrigated with NaCl solution with a
concentration of 100 mM. The experimental treatment began 28 days after sowing (day 28),
when the plants were irrigated with NaCl solution for 9 days, while watered plants served
as the controls. In the experiment, the control and salt-treated plants were used for non-
destructive multicolor fluorescence imaging at day 1, 3, 5, 7, and 9 after treatment.

2.3. Multicolor Fluorescence Imaging (MFI) System

The schematic representation of the self-developed MFI system is shown in Figure 1.
The system consists of a LED panel, a monochrome CCD camera (MV-CA005-20GM,
Hikvision, Hangzhou, China), band-pass filters, and a computer. The LED panel containing
48 × 3W LEDs provided an excitation light at 365 nm to measure the fluorescence signals
emitted by plants. In order to reduce the influence of the heterogeneous intensity field
of LED, four mirrors were installed at four sides of the dark box. The monochrome CCD
camera had a spatial resolution of 1024 pixels × 1280 pixels. The focal length of the camera
lens was 12 mm with a standard view (H0514-MP2, Computar, Tokyo, Japan). Multicolor
fluorescence imaging was implemented by using band-pass filters (half-band width of
15 nm) placed in front of the lens in the respective bands (440, 520, 690, and 740 nm). The
images were captured by the CCD camera controlled by a software developed by our group
using the C++ programming language based on the platform Visual Studio 2018 (Microsoft,
Redmond, WA, USA). During the process of multicolor fluorescence image acquisition, the
sample was placed on flat surface and the distance between the lens and the sample was
approximately 25 cm.
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2.4. Determination of Leaf Area

In order to observe the effect of salt stress on plant morphology features, the RGB
images were acquired at day 1, 3, 5, 7, and 9 after salt stress using an RGB camera (Nikon
D5600, Tokyo, Japan) and the projected leaf area of the plants was calculated from the
total pixels.
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2.5. Image Processing and Statistical Analysis

There were no fluorescence signals in the non-plant region, where it was dark com-
pared to the plant region in the multicolor fluorescence images. Hence, we set a threshold
to segment the plant region from the image, in which an image can be grouped into two
classes representing the plant and the background, respectively. Based on the four basic
multicolor fluorescence images F440, F520, F690, and F740, we calculated the individual
fluorescence intensity from the corresponding plant region. Additionally, the fluores-
cence ratios could be calculated, including F440/F520, F440/F690, F440/F740, F520/F690,
F520/F740, and F690/F740. After image processing, an analysis of variance (ANOVA)
was employed to evaluate the differences in four basic multicolor fluorescence parameters
between the control and salt-stressed plants. In this study, we obtained 10 fluorescence
parameters, including 4 basic parameters and 6 fluorescence ratios, and Pearson’s correla-
tion analysis was utilized for the linear correlation among these parameters and to check
whether all parameters had potential as an input for the detection model of salt stress to
obtain better results. Imaging processing and the calculation of fluorescence intensity were
carried out using MATLAB 2016b (Mathworks, Natick, MA, USA). ANOVA and Pearson’s
correlation analysis were conducted on IBM SPSS Statistics 26 (IBM Corporation, Armonk,
New York, NY, USA).

2.6. Construction of a Classification Model Based on PCA and SVM

In this paper, to further select ideal principal features in limited sample data to dif-
ferentiate the salt-stressed plants from the controls, PCA was performed to reduce the
dimensionality of such datasets, increasing interpretability and at the same time minimiz-
ing information loss [30]. After the application of PCA, the principal components were
uncorrelated variables that successively maximized variance and then the ideal principal
component features were determined. An SVM is a versatile and configurable model that
could be treated as a classification problem, which has a better performance than other
traditional machine learning algorithms [31,32]. Therefore, it is a great alternative to classify
the salt-stressed plants from the controls based on the model that combines PCA and SVM.
In this study, four principal component combinations characterizing the plant response
to salt stress were extracted from all multicolor fluorescence parameters, and these com-
binations were preprocessed together to form sample data. The two classifications, with
the labeling “1” for the control plants and “2” for the salt-stressed ones, were conducted
by an SVM classifier. For the classification scheme, the data set consisted of multicolor
fluorescence data of 168 pots (84 controls and 84 salt-stress treatments) for 5 days, from
which 100 pots (50 controls and 50 salt-stress treatments) for 5 days were taken as the
training set, and the remaining 68 pots (34 controls and 34 salt-stress treatments) per day
were used as the testing set with 10 repetitions using 10-fold cross-validation. In this study,
PCA for feature selection and SVM for classification were performed in MATLAB 2016b
(Mathworks, United States) and Python 3.6 (Python Software Foundation, Wilmington,
DE, USA).

3. Results and Discussion
3.1. Salt Stress Affected Growth over Time

The RGB images of Arabidopsis Columbia (Col-0) under control and salt stress treat-
ment at day 1, 3, 5, 7, and 9 after exposure to the salt stress are presented in Figure 2A. From
the RGB images, it can be observed that the slender leaves of the plant under salt stress
treatment changed in roundness over time and the salt stress caused a significant decrease
in the projected leaf area after salt stress treatment for 7 days (Figure 2B). However, the
color of the plants exposed to salt stress did not show significant changes over time from
the RGB images, which was consistent with an earlier report [33]. These results showed
that early salt-induced changes had limited effects on the structural traits of the plants
from RGB images over time. However, early salt-induced changes ignored by RGB images
could be revealed using multicolor fluorescence imaging in this study.
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3.2. Effect of Salt Stress on Basic Fluorescence Parameters of Arabidopsis Leaves

From the multicolor fluorescence images in the 440 nm, 520 nm, 690 nm, and 740 nm
regions, four basic multicolor fluorescence parameters were derived (F440, F520, F690,
and F740), and these multicolor fluorescence parameters and pseudo-color images are
shown in Figures 3 and 4. Differences in the four parameters between the control and
salt-stressed plants were observed at day 1, 3, 5, 7, and 9 after treatments by using ANOVA
analysis (Figure 3). It was found that the values of F440 and F520 for the control were
relatively consistent during plant growth, while the salt-stressed plants showed statistically
significant increases in F440 and F520 starting from day 5 and day 3 after salt-stress
treatment, respectively. However, the values of F690 and F740 decreased after salt-stress
treatment, and the difference of these values under the control and salt-stress treatment
condition was obvious from day 5 after salt-stress treatment. These differences caused by
salt tress became more significant between the control and salt-stressed plants from day 3
after salt stress treatment.

To visualize the effect of salt stress on Arabidopsis plants, the representative pseudo-
color images of control and salt-stressed plants at day 5 and 9 after treatments are shown in
Figure 4. When viewing the blue and green fluorescence images, it could be found that the
fluorescence intensity of F440 and F520 increased considerably and salt stress could cause
the spatial heterogeneities within the leaf level, specifically at the edge of leaves. However,
the decreased signals of F690 and F740 appeared in the entire canopy from the red and
far-red fluorescence images.
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Often, F440 and F520 are treated as blue–green fluorescence (BGF), which could
be primarily emitted from several phenolic compounds located in the cell walls of the
epidermis or vacuoles of leaves [34,35]. According to the study by Lang et al., the blue
fluorescence emission is often caused by several phenolic substance such as chlorogenic
acid, caffeic acid, coumarins (aesculetin, scopoletin), and stilbenes (t-stilbene, rhaponticin),
while the green fluorescence emission is derived from substances such as alkaloid berberine
and the flavonoid quercetin [36]. Based on the previous study, salt stress could contribute
to the significant accumulation of cinnamic acids and ferulic acid in salt-stressed plants
over time, which could lead to the increase of F440 [37]. Yastreb et al. showed that
the plants under salt stress could enhance the level of flavonoids and form a protective
system against salt stress [38]. Thus, the increase of flavonoid content could be one of
the reasons to explain the increase of F520. Additionally, a previous study reported that
the exposure of Arabidopsis to salt stress resulted in a decline in chlorophyll content [29],
which also could be a result of the increase of F460 and F520 since the reabsorption of blue–
green fluorescence is reduced [39]. The chlorophyll-fluorescence emission spectra usually
exhibits two emission maxima around 690 nm and 740 nm, which are termed F690 and
F740 [40,41]. The decrease of F690 is partially caused by the in vivo chlorophyll (overlapping
of absorption and fluorescence emission bands of chlorophyll a forms) [42,43]. The far-red
chlorophyll fluorescence band F740 is not affected by this re-absorption process [44] and
the decline of F740 with increasing chlorophyll loss as well as the breakdown of chlorophyll
in salt-stressed plants over time.
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3.3. Correlation Analysis for Multicolor Fluorescence Parameters

From the effect of salt stress on basic multicolor fluorescence parameters, the consistent
trends of F440 with F520 and F690 with F740 were observed, which indicated that a high
correlation occurred between them. Thus, Pearson’s correlation analysis on these multicolor
fluorescence parameters was conducted and the correlation detection matrix diagram of
multicolor fluorescence parameters is shown in Figure 5. It can be observed that there were
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different degrees of correlation among the fluorescence parameters, indicating that these
fluorescence parameters contain different types of information, but also have repeatability.
Correlation analysis indicated that the extremely high correlation coefficients exceeding 0.85
appeared among F440/F690, F440/F740, F520/F690, and F520/F740. The high correlation
coefficients exceeding 0.7 appeared in the feature values including F440 with F520, F690
with F740, F690 with F440/F740 and F520/F740, and F740 with F440/F690 and F520/F690.
Although these parameters were related to class label, there was redundancy. Hence, a data
dimension was needed to reduce the redundant information and construct the optimized
detection model for salt stress.
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3.4. Principal Component Analysis of Effect of Salt Stress in Arabidopsis

The feature information contained from the high correlation feature values was also
highly similar to the data represented in Figure 5, and thus there was a need to reduce the
redundant information and simultaneously decrease the dimension of data for constructing
an optimal classification model. Therefore, principal component analysis (PCA) was used
to reduce the dimensionality of the preprocessed multi-dimension data, and its first several
components can express most of the contributions of the original data. In this study,
principal component analysis (PCA) with these fluorescence parameters obtained from
fluorescence images of the control and salt-stressed plants was performed at day 1, 3, 5, 7,
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and 9, respectively. It was found that the first two components could explain over 70% of
the total variances in the vector graph at day 1, 3, 5, 7, and 9, respectively (Figure 6), and
their contribution rate increased from 72% to 82% over the treatment time. Additionally,
principal component analysis showed that the control and salt-stressed samples were
gathered in whole at day 1 after treatment, while they were gradually clustered into two
groups from day 5 after treatment and the control samples were grouped on the left side
and the salt-stressed samples were clustered on the right side with higher values of PC1
based on an overall analysis (Figure 6). However, the clustering ability for the control
and the salt-stressed plants based on the PC2 score was not as good as that based on PC1.
This demonstrated that the distribution of salt-stressed plants was strongly related to the
increased value of the PC1 score.
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In order to further understand changes of the functional and structural information of
secondary metabolism in salt-stressed plants, the effects of each multicolor parameter on
the first several principal components were also taken into consideration. According to PCA
at day 1, 3, 5, 7, and 9, respectively, the contribution rate of the first four components could
obtain 99%, which could explain most of the variance in the original data, so the relative
“contribution” of each multicolor parameter to the formation of the four components was
then used for further analysis. The component matrix details the factor loadings onto the
four components. The loading matrix of the variables onto the components at day 1, 3, 5, 7,
and 9 are shown in Supplementary Table S1. The names addressed to each component were
based on an understanding of the content of the variables. PC1 was the most dominant
pattern in the four principal components and its contribution rate increased from 40.71%
at day 1 to 71.03% at day 9, whereas each of the remaining three principal components
was varied between 11.24–31.77% (PC2), 10.40–21.5% (PC3), and 5.78–12.45% (PC4) of
the variance.

From the data represented in Supplementary Table S1, it can be observed that the
parameters for the formation of the four principal components differentially responded to
salt stress at day 1 and day 3 after treatment. However, with the extension of treatment
time, there were some common fluorescence parameters with high positive values in
the first four components, such as F440/F690, F440/F740, F520/F690, F520/F740 in PC1,
F740 in PC2, and F440/F520 in PC3. It was indicated that these parameters were more
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sensitive indicators of gradients or changes in fluorescence emission over the leaf surface
and presented a relatively high contribution for the detection of salt stress compared to
other parameters. The significant changes of the fluorescence ratios, including F440/F690,
F440/F740, F520/F690, and F520/F740, were a result of the decline of the red and far-red
fluorescence and the increase of the blue–green fluorescence. Although there was no doubt
that the sensitivity of the different multicolor parameters to salt stress varied in its degree,
the first four components extracted from these fluorescence parameters based on PCA could
explain approximately 99% of the variance in these parameters. Additionally, the highest
coefficient with a positive value in each principal component was different, which indicated
that principal component analysis was an appropriate approach to fuse multidimensional
data and preserve valid information to the maximum extent possible. After principal
component analysis, it could be found that the contribution rate in PC1 increased with
the decline of the contribution rate in the remaining three principal components, but
they still accounted for a significant proportion. Therefore, the four principal component
combinations could be considered as the input for SVM model to detect salt stress in plants.
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3.5. Classification Model for Salt Stress Detection

Multicolor fluorescence imaging could visualize the changes in plant with salt-stress
treatment and provide information about the primary and secondary metabolism of plants.
The changes of fluorescence parameters could be used to detect the growth status of
plants combining machine learning. Therefore, the classification models at different salt-
stressed levels were constructed with the SVM classifier using the four fluorescence feature
combinations selected by PCA, and the results are summarized in Table 1. It was found
that at day 1 and day 3 after treatment, the overall accuracies were 60.29% and 73.53%,
respectively, while the accuracy of the classification model was 98.53% at day 9 after
treatment. This implied that the degree of difference caused by salt stress varied in different
stress times and growth stages.

The results of the classification showed that the detection accuracy of the SVM model
was low at day 1 and 3 after salt-stress treatment, which was due to the fact that the earlier
changes caused by salt stress in the metabolite were not significant [32]. With the elongation
of stress time, however, these differences also became more significant and the overall
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accuracy obtained was 90% starting from day 5, when few visual symptoms were observed
from the RGB images. This revealed that the salt stress could be detected using multicolor
fluorescence imaging at the early stage, and the SVM classifier with PCA selection showed
a good performance for classifying healthy and salt-stressed plants.

Table 1. Support vector machine (SVM) classification results of control and salt-stressed plants based on multicolor
fluorescence feature combinations selected by principal component analysis (PCA).

Salt-Stressed Time Training Sample Number Testing Sample Number
Accuracy (%)

Control Salt-Stressed Overall

Day 1

500

68 58.82 61.76 60.29
Day 3 68 70.59 76.47 73.53
Day 5 68 94.12 91.18 92.65
Day 7 68 97.06 94.12 95.59
Day 9 68 100 97.06 98.53

4. Conclusions

In this study, the fluorescence images of normal growing and salt-stressed plants
were acquired using multicolor fluorescence imaging, from which the difference of the
growth status of plants could be significantly visualized after 5 days of salt-stress treatment.
The results from PCA showed that the control and salt-stressed plants can be potentially
distinguished by basic multicolor fluorescence parameters and their ratio values. The four
fluorescence feature combinations selected by PCA were used as inputs to establish a SVM
classifier with an overall accuracy of 92% for salt-stressed plants after salt treatment for
5 days. Additionally, the classification accuracy gradually increased to 98% at day 9 after
salt-stress treatment, which demonstrated that multicolor fluorescence imaging has the
potential to be used as a diagnostic tool to assess salt stress in plants. This study provides
a reference for detecting salt-stressed plants by multicolor fluorescence imaging and its
application in other salt-stressed crops. Further development of the technique would
be desirable in order to facilitate its applicability in accessing plant stress and relative
breeding programs.
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