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Abstract: Knowledge of the relationship between soil sampling density and spatial autocorrelation
with interpolation accuracy allows more time- and cost-efficient spatial analysis. Previous studies
produced contradictory observations regarding this relationship, and this study aims to determine
and explore under which conditions the interpolation accuracy of chemical soil properties is affected.
The study area covered 823.4 ha of agricultural land with 160 soil samples containing phosphorus
pentoxide (P2O5) and potassium oxide (K2O) values. The original set was split into eight subsets
using a geographically stratified random split method, interpolated using the ordinary kriging (OK)
and inverse distance weighted (IDW) methods. OK and IDW achieved similar interpolation accuracy
regardless of the soil chemical property and sampling density, contrary to the majority of previous
studies which observed the superiority of kriging as a deterministic interpolation method. The
primary dependence of interpolation accuracy to soil sampling density was observed, having R2 in
the range of 56.5–83.4% for the interpolation accuracy assessment. While this study enables farmers
to perform efficient soil sampling according to the desired level of detail, it could also prove useful to
professions dependent on field sampling, such as biology, geology, and mining.

Keywords: spatial autocorrelation; ordinary kriging; inverse distance weighted; prediction; mapping

1. Introduction

Spatial interpolation of soil chemical and physical properties is necessary to model its
continuous distribution from discrete geo-referenced soil samples, which in this form do not
exhibit a representative state of the agricultural land [1]. Monitoring the spatio-temporal
dynamics of soil parameters is necessary for sustainable agricultural land management
due to their heterogeneity affected by edaphic processes and agricultural production
systems, which are difficult to record and model [2]. Detection of input parameters for
spatial interpolation, such as sampling density and method as well as terrain heterogeneity,
enables more economical and efficient soil sampling by adjusting the sampling plan to
accommodate these factors [3]. The influence of these segments with varying intensity
affects the heterogeneity of agricultural land and can be divided into micro- and macro-
level [4]. The micro-level includes one or several neighboring agricultural parcels, while
the macro-level covers administrative units ranging from municipalities to the state level.
One of the more important applications of spatial interpolation of soil parameters at the
micro-level is mapping agriculture in precision [5], which affects farmers’ financial gain
and environmental protection due to the reduced application of mineral fertilizers and
pesticides [6]. Conducted studies at the macro-level are aimed at better decision-making
related to spatial planning and management of agricultural land. Determining the level of
impact of soil sampling density is important for both levels of research, given the high cost
and time inefficiency of conventional field sampling and laboratory soil analysis [7].
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According to the Web of Science Core Collection (WoSCC) database, the number of
scientific papers published from 2010 to 2020 indicates a steady growth in soil properties
prediction studies (Figure 1). The query consisted of the combination of the term “soil”,
combined with the terms “interpolation” or “prediction”, and terms specific for macro-
and micro-level research. Among the most commonly used methods, geostatistical and
deterministic interpolation methods have been commonly applied in these studies over
the past decade. The application of machine learning to predict soil parameters has grown
rapidly since 2017 but requires a substantial number of covariates, being time inefficient on
smaller study areas.
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Figure 1. The number of scientific articles indexed in WoSCC from 2010–2020, based on the combination of terms “soil”,
“interpolation”, or “prediction”, with specific terms listed.

Numerous studies have focused on selecting optimal soil sampling methods, the
hypothesis being that a larger number of soil samples allows for proportionally higher
interpolation accuracy being fully or mostly accepted (Table 1). One of the main reasons for
the difference in the influence of the number of soil samples on the interpolation accuracy
was the average area per sample, though it was not possible to clearly define the degree
of its influence on the interpolation accuracy. Studies in which a low dependence of soil
sampling density on the accuracy of spatial interpolation was found have shown that a
more important parameter is the level of spatial autocorrelations between samples. Land
cover classes and topographic properties of sampled areas also impacted interpolation
accuracy [8]. Liu et al. [9] noted a low degree of dependence of interpolation accuracy
on the number of collected samples under conditions of moderate spatial autocorrelation
at the macro-level. Instead, high dependence of interpolation accuracy on land cover
class, precipitation, and air temperature was noted, parameters that are variable only at
the macro-level. Long et al. [7] also noted a higher dependence of interpolation accuracy
on sampling density for a lowland terrain in a large study area. Similar observations
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were obtained at the micro-level of research, while the importance of land cover was
much more impactful. Its inclusion in the study allowed the increase of interpolation
accuracy and reduced the number of required samples by approximately 6% compared to
the conventional approach [10]. At the micro-level, increasing the spatial autocorrelations
according to the land cover class is appropriate, indicating that sampling density is not
necessarily the primary factor of spatial interpolation accuracy. Previous research at the
micro-level more strongly indicates the primary importance of spatial autocorrelation in
determining the accuracy of spatial interpolation. Li [3] analyzed soil sampling densities in
the range of the smallest distance between adjacent samples of 25 m to 500 m and found
that the sparse sampling distance of 250 m resulted in the highest interpolation accuracy.
At the same time, the distribution and the coefficients of variation of the applied data sets
did not differ significantly from each other. Based on similar research, Kravchenko [11]
concluded that the level of spatial autocorrelation, regardless of the coefficient of variation,
is the primary factor in the accuracy of spatial interpolation. Rodrigues et al. [12] noted
the dependence of interpolation accuracy on sampling density only in cases below 50% of
the collected samples, with only a very small sample count producing a negative effect on
the interpolation accuracy. Quantification of spatial autocorrelation in spatial interpolation
studies is most often performed using the Moran’s I index, which determines the complex
relationships of soil sample values in their environment [13].

Table 1. Literature review of the effect soil sampling density in agricultural land has on spatial interpolation accuracy.

Reference Study Area Total Sample
Count

Average Area per
Sample (ha)

Correlation of Interpolation
Accuracy and Sampling Density

Rodrigues et al. [12] 72 ha 4306 0.02 low
Kravchenko [11] 20 ha 529 0.04 low
Zhang et al. [14] 72 km2 2755 2.61 moderate
Zhang et al. [10] 40 km2 997 4.01 high

Long et al. [7] 10,636 km2 188,247 5.65 high
Zhang et al. [15] 40 km2 214 18.7 high

Shen et al. [1] 173 km2 700 24.7 high
Li [3] 400 km2 335 119 low

Sun et al. [16] 683 km2 394 173 high
Zhao et al. [17] 1450 km2 745 195 moderate

Ye et al. [18] 16,400 km2 1458 1125 high
Liu et al. [9] 620,000 km2 382 162,304 low

Accounting for the inconsistency of previous research on the dependence of soil
sampling density and spatial interpolation accuracy, the research hypothesis is that inter-
polation accuracy primarily depends on the spatial autocorrelation of input values. The
primary goal of the research was to determine the validity of the hypothesis by applying
different densities of soil samples in the same research area and observing their impact
on interpolation accuracy. Secondary objectives were to determine the applicability of the
Moran’s I index as a value for quantifying spatial autocorrelation, to predict interpolation
accuracy, and to determine which of the interpolation methods used is most appropriate
for evaluating soil samples.

2. Materials and Methods
2.1. Study Area

The study area covers 823.4 ha in Osijek-Baranja County in eastern Croatia (Figure 2).
It is mainly a lowland area, with an average altitude of 88 m. The dominant land cover is
non-irrigated, arable agricultural land (code 211), according to the CORINE 2018 land cover
classification. This area is traditionally a hotspot for agricultural production in the Republic
of Croatia, with maize, wheat, and sunflower as the major cultivated crops [19]. Based on
previous research in eastern Croatia, it was noted that the existing natural resources are
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not used optimally according to agricultural land management plans [20]. Per FAO-85 soil
classification of the European Soil Database v2.0 database, pseudogley Luvisol (Lo) covers
the entire study area. The climate is moderately warm and rainy, representing class Cfwbx
of the Köppen classification [21].
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2.2. Soil Sampling Data

A total of 160 soil samples were used in the study, based on 20 soil cores at a depth
of 0–30 cm within a field. The samples were provided by Osijek-Baranja County, with an
average sampling density of 5.1 ha per sample. Sampling was performed using the random
sampling method. Laboratory analysis using the Al method [22] was used to determine
the soil phosphorus pentoxide (P2O5) and potassium oxide (K2O) contents, expressed in
mg 100 g−1. The reliable spatial representation of P2O5 and K2O, as the macro-nutrients in
the soil, are traditionally important in sustainable agriculture, which is further intensified
by the emergence of the concept of precise fertilization [6]. Monitoring the dynamics of
P2O5 and K2O at the micro-level enables quality management of agricultural land and
environmental protection, enabling the optimal application of mineral fertilizer [23,24]. At
the macro-level, it enables monitoring and remediation of soil degradation [25].

The original soil sample set was split using a geographically stratified random splitting
procedure to create soil sample subsets. The stratification was performed by horizontally
and vertically splitting the study area into four equal zones. Samples in each of these zones
were then randomly split in eight variations according to the percentage of the original
soil sample set: 100%, 87.5%, 75%, 62.5%, 50%, 37.5%, 25%, and 12.5%. After the splits
within each zone, corresponding subsets containing the same percentages were merged
into a study area subset covering the entire study area, forming eight subsets in total
(Figure 3). This approach achieved a balanced spatial distribution of soil samples over an
entire study area, which more accurately simulates the soil sampling procedure in the field
than the conventional random split procedure. A similar variation of the applied method
for creating soil sample subsets was successfully performed in studies by Kravchenko [11]
and Rodrigues et al. [12].
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The basic properties of the input soil sample subsets were evaluated using descriptive
statistics consisting of arithmetic mean, coefficient of variation (CV), and minimum and
maximum values. The spatial autocorrelation of the input soil sample subsets was eval-
uated using a correlogram and a univariate global Moran’s I index [26]. Positive values
of Moran’s I indicate a proportionally positive spatial autocorrelation, while negative
values indicate a lack of spatial autocorrelation [27]. Moran’s I was calculated according to
Formula (1):

Moran′s I =
n

∑n
i=1 ∑n

j=1 wMI
·

∑n
i=1 ∑n

j=1 wMI(yi − y)
(
yj − y

)
∑n

i=1(yi − y)2 , (1)

where n represents a quantity of soil samples per subset, wMI represents spatial weight
which indicates a spatial relationship of two neighboring samples, yi represents sampled
P2O5 and K2O values, while y represents the arithmetic mean of all input values per subset.
Distance weights for Moran’s I were determined using the K-nearest neighbors method,
based on the four neighbors of each soil sample. The optimal spatial resolution of the
interpolation results relates to the number of samples per subset and was determined for
each of the eight subsets using the Inspection Density method according to Formula (2) by
Hengl [28]:

r = 0.0791 ·
√

A
n

, (2)

where r is the spatial resolution and A is the study area. The open-source GIS software
SAGA GIS v.7.3.0 was used for spatial interpolation and assessment of interpolation
accuracy, GeoDa v1.18 was used to assess spatial autocorrelation, and QGIS v3.8.3 was
used for the visualization of interpolation results. All spatial calculations were performed
in the coordinate reference system HTRS96/TM.

2.3. Spatial Interpolation Methods and Interpolation Parameters

Ordinary kriging (OK) and the inverse distance weighted (IDW) were selected as
spatial interpolation methods to analyze the effect of spatial autocorrelation and sampling
density on interpolation accuracy. Previous research has found that these methods achieve
optimal interpolation accuracy under different conditions of normal distribution and
stationarity of input data, being complementary in various cases [29]. Although OK is in
most cases a superior method of spatial interpolation in terms of prediction accuracy [1],
IDW supports the very few soil samples for the interpolation, which can disable variograms
fitting for OK [20]. OK has been declared the best linear unbiased spatial interpolation
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method in the case of normal distribution of input data, being also the most commonly
used geostatistical interpolation method for various soil parameters [30]. Though it is one
of the most efficient and flexible interpolation methods, it requires the normal distribution
and stationarity of input data [31]. OK uses a variogram to model spatial autocorrelation
under the assumption that the observed soil parameter at a particular location is similar to
closer samples in proportion to their mutual distance [9]. Formula (3) was used to model
the variogram:

γ(d) =
1

n(d)

n(d)

∑
i=1

[z(xi) − z(xi+d)]2, (3)

where γ(d) represents a variance at the distance h, n(d) represents a number of lags at
distance d, z(xi) and z(xi + d) represent soil sampling values at the locations xi i xi + d.
Prediction of the P2O5 and K2O values at the unknown locations was performed based on
the variogram according to the Formula (4):

zOK =
n

∑
i=1

λi · z(xi), (4)

where zOK represents interpolated value using the OK and λi represents weight determined
using the variogram. The presence of a normal distribution of P2O5 and K2O values in the
soil was examined using the Shapiro–Wilk test, using R software v4.0.3. In the absence
of normal distribution cases, the logarithmic transformation of the input values was
performed as a preprocess for OK interpolation. Spatial autocorrelation in variogram
modeling was evaluated at a distance of 1200 m from at least 15 known points, including
12 lags, each of which covered a distance of 100 m. The tested mathematical models
for variogram fitting were linear, square root, power, Gaussian, and spherical models,
explained in detail in [32]. The selection of the optimal mathematical model was performed
according to the highest level of fitting the mathematical model to the variogram, expressed
by the coefficient of determination (R2

v). For each set of input data, the basic parameters
of the selected mathematical model were examined, including the nugget (n), sill (s), and
range (r).

IDW belongs to the most commonly used deterministic spatial interpolation methods,
characterized by ease of application due to the small number of interpolation parame-
ters [11]. Prediction of P2O5 and K2O values at an unknown location was performed using
weighted inverse distances and sampled soil values according to Formula (5):

zIDW =
∑n

i=1 z(xi) · d −wIDW

∑n
i=1 d −wIDW

, (5)

where wIDW represents the weight calculated using the inverse distance from the soil
samples to an unknown location. The inverse distance exponent for interpolation was
3, the most suitable value determined based on the iterative interpolation procedure for
all input subsets. The maximum distance for the prediction corresponds to the distance
selected for OK interpolation and equals 1200 m, with at least 15 neighboring samples used
for the prediction.

2.4. Interpolation Accuracy Assessment and Relationship with Sampling Density and Spatial
Autocorrelation

The accuracy assessment of the OK and IDW interpolation results for the 100% subset
was performed by cross-validating the input values using the leave-one-out technique. The
partial subsets were evaluated according to the soil samples excluded from the original
soil sample set, implementing a split-sample validation to allow more comprehensive
assessment accuracy. The coefficient of determination (R2), root mean square error (RMSE),
and normalized root mean square error (NRMSE) were metrics used for the accuracy
assessment. R2 and RMSE allow a comprehensive analysis of the interpolation accuracy
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due to their complementarity [33]. NRMSE resulted in a relative interpolation error value
and allowed a parallel interpolation accuracy assessment of both soil parameters with
different value intervals [7]. These values were calculated according to Formulas (6)–(8):

R2 = 1 − ∑n
1 (yi − ỹi)

2

∑n
1 (yi − y)2 (6)

RMSE =

√
∑n

1 (y i − ỹi)
2

n
, (7)

NRMSE =
RMSE

y
, (8)

where ỹi represents interpolated P2O5 and K2O values. Sampling density and Moran’s
I values for both interpolation methods were compared with the interpolation accuracy
results represented by R2 and RMSE. The relationship of the spatial autocorrelation and soil
sampling density to interpolation accuracy was modeled using linear regression separately
for P2O5 and K2O. The strength of their dependence was quantified proportionally by the
coefficient of determination.

3. Results

A high range of P2O5 values in the soil in the study area was observed, while K2O
values showed low variability (Table 2). For both soil chemical properties, CV values
retained a close value range, which began to increase for sampling densities of less than
37.5% of the original soil samples. The p values of the Shapiro–Wilk test resulted in values
below 0.05 for five subsets with the highest percentages of soil samples for P2O5, as well
as the top seven subsets for K2O. The null hypothesis of normal data distribution for
these subsets was rejected, and logarithmic transformation as a preprocess for OK was
performed. The spatial resolution determined by the Inspection Density method showed
a relatively low difference of between 100% and 50% of soil samples, dropping off more
intensively for sparser subsets.

Table 2. Descriptive statistics and Shapiro–Wilk test results of soil subsets.

Soil
Property

Percentage of
Soil Samples Mean CV Min Max

Shapiro–Wilk Target Spatial
Resolution (m)W p

P2O5

100% 21.59 0.32 8.3 36.5 0.971 0.002 18
87.5% 21.59 0.31 8.3 36.5 0.973 0.007 19
75% 21.44 0.32 10.3 36.5 0.968 0.006 21

62.5% 21.55 0.32 10.5 36.5 0.967 0.012 23
50% 20.75 0.31 10.5 35.0 0.963 0.022 25

37.5% 21.65 0.33 8.3 36.5 0.972 0.180 29
25% 22.01 0.33 8.3 36.5 0.965 0.236 36

12.5% 21.55 0.39 10.5 36.5 0.936 0.198 51

K2O

100% 24.43 0.15 16.7 34.4 0.944 >0.001 18
87.5% 24.49 0.15 16.7 34.2 0.942 >0.001 19
75% 24.36 0.15 16.7 34.4 0.952 >0.001 21

62.5% 24.28 0.15 16.7 33.6 0.945 >0.001 23
50% 24.82 0.15 19.5 34.4 0.938 0.001 25

37.5% 24.67 0.16 17.2 34.4 0.937 0.004 29
25% 24.62 0.18 17.2 34.2 0.923 0.008 36

12.5% 24.02 0.18 17.2 34.4 0.935 0.192 51
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Moran’s I values of all subsets revealed a positive, moderately-high spatial autocorre-
lation (Figure 4). A stable Moran’s I was retained while lowering soil sample percentages
by up to 25% of the original datasets, the values dropping noticeably for the 12.5% subset.
Both soil chemical properties resulted in values of over 0.500 for these subsets, while K2O
resulted in a slightly higher spatial autocorrelation than P2O5 values. The distance of the
spatial autocorrelation per subset was analyzed by correlograms, showing stable value and
a noticeable increase for the 25% and 12.5% subsets (Appendix A, Figure A1).
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The optimal OK interpolation parameters per subset are shown in Appendix A,
Table A1. The mathematical power model was determined as the best fit for all interpo-
lation variants. Fitting autocorrelation ranges corresponded to those determined by the
correlograms, increasing for 25% and 12.5% soil subsets. The highest R2

v values were
observed for denser soil subsets, especially for 62.5% and higher percentages of the original
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soil samples. Both OK and IDW achieved high spatial interpolation accuracy for subsets
containing 37.5% or more of the original samples (Table 3). The P2O5 was more accurately
predicted by IDW in six cases, per RMSE and NRMSE values. IDW achieved maximum
interpolation accuracy for the 87.5% subset, followed by the full soil subset using the OK.
Considering the R2 values for P2O5, the top two subsets produced a large gap in the results
for 75%, 62.5%, 50%, and 37.5% values, while the bottom two subsets further showed
a considerable decline in interpolation accuracy. OK was a more accurate interpolation
method in seven of eight cases for the K2O samples, with higher spatial autocorrelation
than the P2O5 values. Similar to the previous case, the most accurate interpolation variant
was achieved using the 100% soil samples, with accuracy significantly dropping for the
two sparsest subsets.

Table 3. Interpolation accuracy results for soil subsets using OK and IDW interpolation methods.

Soil Property Percentage of
Soil Samples

OK IDW

R2 RMSE NRMSE R2 RMSE NRMSE

P2O5

100% 0.743 4.157 0.193 0.713 4.249 0.197
87.5% 0.729 4.272 0.198 0.751 4.211 0.195
75% 0.628 4.468 0.208 0.653 4.308 0.201

62.5% 0.630 4.696 0.218 0.623 4.466 0.207
50% 0.618 4.702 0.227 0.614 4.526 0.218

37.5% 0.581 4.394 0.203 0.687 4.323 0.202
25% 0.445 5.135 0.233 0.449 5.182 0.235

12.5% 0.487 5.190 0.241 0.492 5.044 0.234

K2O

100% 0.794 2.080 0.085 0.759 2.172 0.089
87.5% 0.774 2.127 0.087 0.704 2.473 0.101
75% 0.760 2.127 0.087 0.716 2.325 0.095

62.5% 0.727 2.324 0.096 0.668 2.438 0.100
50% 0.688 2.884 0.116 0.634 2.457 0.099

37.5% 0.637 2.275 0.173 0.629 2.327 0.094
25% 0.455 2.678 0.109 0.469 2.702 0.110

12.5% 0.518 2.751 0.115 0.508 2.703 0.113

The highest interpolation accuracy values per soil property are in bold type.

The OK and IDW interpolation results using all eight subsets with P2O5 and K2O
values are shown in Figure 5. All interpolation results predicted the highest state of soil
P2O5 in the northern and western parts of the study area, with variable levels of local
heterogeneity. The highest concentration of K2O was observed in the central and northern
part of the study area, declining along the borders of the study area to low intensity. The
wide value range of both P2O5 and K2O was retained from the input values of soil samples
in the interpolation results, primarily in the case of IDW. IDW retained a nearly constant
level of local soil P2O5 heterogeneity, dropping off only in a sample density below 50%.
For OK, the level of heterogeneity of the interpolation results is more uniform, due to the
same applied mathematical model and similar n and s values.

Both R2 and RMSE representing the interpolation accuracy of the combined OK and
IDW results indicated a strong correlation to the sampling density (Figure 6). Sampling
density resulted as a prime indicator of the interpolation accuracy, having a superior
correlation with R2 and RMSE for both soil chemical properties. The spatial autocorrelation
represented by Moran’s I showed a lower impact on the interpolation accuracy, with a
slightly higher impact on lower spatial autocorrelation P2O5 values.
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4. Discussion

The area per sample of 5.1 ha for the full soil sample set in this study indicates its
primary importance towards understanding the relationship between sampling density and
spatial autocorrelation with interpolation accuracy on a micro-level. The main observation
of this study is the predominant impact of the sampling density on interpolation accuracy,
achieving high R2 for both P2O5 and K2O values. This aligns with the observations of
previous studies with a similar average area per sample, where interpolation accuracy
achieved a high correlation with sampling density [7,10]. The exception to this statement
related to previous studies at the micro-level occurred in cases of an extremely high
sampling density of 0.02–0.04 ha per sample for precision agriculture [11,12]. Therefore,
there is a strong indication that soil sampling was overly detailed in these cases, whereas the
accurate spatial representation of soil properties could be accomplished with sparser soil
sampling and higher time- and cost-efficiency. The spatial autocorrelation had a secondary
impact on interpolation accuracy, although a higher R2 with the accuracy metrics for
the P2O5 might indicate its suitability for the study of soil samples with lower spatial
autocorrelation and higher variability. A similar approach to the application of Moran’s
I for the assessment of interpolation accuracy was implemented in the process of spatial
prediction of the distribution of heavy metals [34]. This reinforces the assumption of
its potential in cases of different soil properties, value ranges, and autocorrelation in
comparison to this study, but also requires further research for specific conclusions.

Sampling density below 37.5% of the total soil sample set showed a considerable
decline in the interpolation accuracy, indicating 13.7 ha per sample as the borderline
sampling density in this study. This sampling density also corresponds to the breakpoint
value of CV and autocorrelation, which both increased for sparser subsets. Most notably,
spatial autocorrelation for 25% and 12.5% subsets showed an increase of up to 60% in
value compared to denser subsets. This occurrence was similar for the sparsest sample
in a study by Zhang et al. [10], which resulted in the lowest interpolation accuracy of the
evaluated alternatives, as was the case in this study. OK and IDW achieved very close
interpolation accuracy regarding soil sampling density. This observation is contrary to
the majority of previous studies, which noted the superiority of geostatistical methods in
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comparison to deterministic interpolation methods [1], or selected them a priori without
evaluation [7]. However, this study indicates the importance of comparative assessment
of interpolation accuracy using multiple complementary methods, such as OK and IDW.
OK had the edge for interpolating higher autocorrelation and lower variability K2O values,
while IDW achieved higher accuracy for the interpolation of P2O5 values and retained
its local variability. This observation indicates the suitability of IDW for heterogeneous
agricultural parcels with the presence of extreme values and lower spatial autocorrelation.

The influence of sampling density is expected to be similarly pronounced at the macro-
level [16,18], compared to the micro-level observations represented by this study and
multiple previous ones [12,14]. This statement is valid primarily for more homogeneous
soils at the micro-level with a high level of spatial autocorrelation of a particular soil
parameter [9]. In these cases, observing one or more agricultural parcels to determine
precise fertilization could lead to less frequent sampling for the purpose of financial
savings [35], which would potentially lead to a wider implementation of precise fertilization.
For several agricultural parcels with similar tillage and crop rotation systems as the study
area, it is recommended to perform an integrated soil sampling of the entire area. Such
an approach reduces the financial burden on farmers and carries lower sampling density
requirements for individual agricultural parcels. At the same time, this further expands the
possibilities of geostatistical modeling, since the risk of an insufficient number of samples
to join the mathematical model to the variogram with high reliability is reduced. For cases
of sampling at the macro-level, in very few cases moderate or high spatial autocorrelation
is achieved [17,18], making previous zoning and denser sampling in the locations of greater
heterogeneity a recommended practice [7]. Previous research also indicates the importance
of using an optimal sampling method concerning soil sampling quantity, with a regular
grid being one of the most suitable soil sampling methods [17]. Furthermore, including
auxiliary environmental variables could increase the interpolation accuracy of various soil
parameters [36]. Future research is planned to implement independent predictors of soil
parameters in order to implement high potential methods in spatial interpolation, such as
regression kriging and machine learning [37].

5. Conclusions

Knowledge of the optimal soil sampling density increases the time- and cost-efficiency
of the procedure, allowing the accurate spatial representation of soil parameters on both
micro- and macro-levels. The performed analysis is expected to assist farmers in selecting
optimal sampling density according to the desired level of detail while avoiding unneces-
sary costs. This approach could also prove useful for similar professions dependent upon
time- and cost-intensive field sampling to reduce redundant fieldwork, such as biologists,
geologists, and miners. Based on the research of the influence of spatial autocorrelation and
sampling density on the interpolation accuracy using OK and IDW, it was determined that:

1. Interpolation accuracy primarily increases with the sampling density, having R2

produced by linear regression in the range of 56.5–83.4%. Spatial autocorrelation
indicated a lower impact on the interpolation accuracy but has potentially higher
applicability in cases of lower spatial autocorrelation;

2. Both soil sampling density and spatial autocorrelation limit the interpolation accuracy
if the number of input values is not large enough to accurately fit the mathematical
model with a variogram for OK. In this study, sampling density below 37.5% on input
data of 160 samples caused a rapid decrease in interpolation accuracy;

3. OK and IDW resulted in a similar interpolation accuracy for both soil P2O5 and
K2O interpolation, while OK was more accurate in cases of lower CV and higher
spatial autocorrelation. While deterministic interpolation methods, such as IDW, were
inferior to OK in previous studies, they should be evaluated alongside geostatistical
interpolation methods in similar studies.

Future research is planned to evaluate machine learning methods to predict soil
parameters and the inclusion of environmental covariates. The rapid increase in the



Agronomy 2021, 11, 2430 13 of 15

popularity of these methods in recent years could have multiple benefits for farmers and
land management planners, and it is necessary to optimize soil sampling density and
methods according to the possibilities of the applied prediction methods.
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Table A1. OK interpolation parameters for mathematical models with the highest coefficient of determination with
variogram per input data set.

Soil Property Percentage of Soil Samples n s r (m) R2
v

P2O5

100% 0.020 0.326 976 0.974
87.5% 0.024 0.326 1020 0.981
75% 0.055 0.536 937 0.964

62.5% 0.089 0.475 1151 0.869
50% 0.032 0.488 985 0.943

37.5% 0.012 0.349 1068 0.862
25% 0.011 0.358 1501 0.908

12.5% 0.016 0.104 1630 0.761

K2O

100% 0.159 0.397 1490 0.993
87.5% 0.017 0.242 1428 0.987
75% 0.020 0.238 1430 0.987

62.5% 0.006 0.235 1151 0.998
50% 0.058 0.461 985 0.951

37.5% 0.017 0.197 1068 0.747
25% 0.013 0.297 1651 0.745

12.5% 0.001 0.413 1585 0.759
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Data for Prediction of Spatial Variability in Soil Physical Properties. Precis. Agric. 2021, 22, 1659–1684. [CrossRef]
6. Franzen, D.; Mulla, D. A History of Precision Agriculture. In Precision Agriculture Technology for Crop Farming; CRC Press: Boca

Raton, FL, USA, 2015; ISBN 978-0-429-15968-8.
7. Long, J.; Liu, Y.; Xing, S.; Qiu, L.; Huang, Q.; Zhou, B.; Shen, J.; Zhang, L. Effects of Sampling Density on Interpolation Accuracy

for Farmland Soil Organic Matter Concentration in a Large Region of Complex Topography. Ecol. Indic. 2018, 93, 562–571.
[CrossRef]

8. Hua, L.; Yang, X.; Liu, Y.; Tan, X.; Yang, Y. Spatial Distributions, Pollution Assessment, and Qualified Source Apportionment of
Soil Heavy Metals in a Typical Mineral Mining City in China. Sustainability 2018, 10, 3115. [CrossRef]

9. Liu, Q.; Xie, W.; Xia, J. Using Semivariogram and Moran’s I Techniques to Evaluate Spatial Distribution of Soil Micronutrients.
Commun. Soil Sci. Plant Anal. 2013, 44, 1182–1192. [CrossRef]

10. Zhang, Z.; Yu, D.; Shi, X.; Wang, N.; Zhang, G. Priority Selection Rating of Sampling Density and Interpolation Method for
Detecting the Spatial Variability of Soil Organic Carbon in China. Environ. Earth Sci. 2015, 73, 2287–2297. [CrossRef]

11. Kravchenko, A.N. Influence of Spatial Structure on Accuracy of Interpolation Methods. Soil Sci. Soc. Am. J. 2003, 67, 1564–1571.
[CrossRef]

12. Rodrigues, H.M.; Vasques, G.M.; Oliveira, R.P.; Tavares, S.R.L.; Ceddia, M.B.; Hernani, L.C. Finding Suitable Transect Spacing
and Sampling Designs for Accurate Soil ECa Mapping from EM38-MK2. Soil Syst. 2020, 4, 56. [CrossRef]

13. Liao, Y.; Li, D.; Zhang, N. Comparison of Interpolation Models for Estimating Heavy Metals in Soils under Various Spatial
Characteristics and Sampling Methods. Trans. GIS 2018, 22, 409–434. [CrossRef]

14. Zhang, Z.; Zhou, Y.; Wang, S.; Huang, X. Influence of Sampling Scale and Environmental Factors on the Spatial Heterogeneity of
Soil Organic Carbon in a Small Karst Watershed. Fresenius Environ. Bull. 2018, 27, 1532–1544.

15. Zhang, Z.; Sun, Y.; Yu, D.; Mao, P.; Xu, L. Influence of Sampling Point Discretization on the Regional Variability of Soil Organic
Carbon in the Red Soil Region, China. Sustainability 2018, 10, 3603. [CrossRef]

16. Sun, W.; Zhao, Y.; Huang, B.; Shi, X.; Landon Darilek, J.; Yang, J.; Wang, Z.; Zhang, B. Effect of Sampling Density on Regional Soil
Organic Carbon Estimation for Cultivated Soils. J. Plant Nutr. Soil Sci. 2012, 175, 671–680. [CrossRef]

17. Zhao, Y.; Xu, X.; Tian, K.; Huang, B.; Hai, N. Comparison of Sampling Schemes for the Spatial Prediction of Soil Organic Matter in
a Typical Black Soil Region in China. Environ. Earth Sci. 2015, 75, 4. [CrossRef]

http://doi.org/10.1016/j.catena.2018.10.052
http://doi.org/10.1007/s10661-019-7844-y
http://www.ncbi.nlm.nih.gov/pubmed/31659465
http://doi.org/10.1016/j.geoderma.2010.06.017
http://doi.org/10.1016/j.landusepol.2007.10.001
http://doi.org/10.1007/s11119-021-09805-y
http://doi.org/10.1016/j.ecolind.2018.05.044
http://doi.org/10.3390/su10093115
http://doi.org/10.1080/00103624.2012.755999
http://doi.org/10.1007/s12665-014-3580-3
http://doi.org/10.2136/sssaj2003.1564
http://doi.org/10.3390/soilsystems4030056
http://doi.org/10.1111/tgis.12319
http://doi.org/10.3390/su10103603
http://doi.org/10.1002/jpln.201100181
http://doi.org/10.1007/s12665-015-4895-4


Agronomy 2021, 11, 2430 15 of 15

18. Ye, H.; Huang, W.; Huang, S.; Huang, Y.; Zhang, S.; Dong, Y.; Chen, P. Effects of Different Sampling Densities on Geographically
Weighted Regression Kriging for Predicting Soil Organic Carbon. Spat. Stat. 2017, 20, 76–91. [CrossRef]
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