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Abstract: Various plant diseases are major threats to agriculture. For timely control of different
plant diseases in effective manner, automated identification of diseases are highly beneficial. So far,
different techniques have been used to identify the diseases in plants. Deep learning is among the
most widely used techniques in recent times due to its impressive results. In this work, we have
proposed two methods namely shallow VGG with RF and shallow VGG with Xgboost to identify
the diseases. The proposed model is compared with other hand-crafted and deep learning-based
approaches. The experiments are carried on three different plants namely corn, potato, and tomato.
The considered diseases in corns are Blight, Common rust, and Gray leaf spot, diseases in potatoes
are early blight and late blight, and tomato diseases are bacterial spot, early blight, and late blight.
The result shows that our implemented shallow VGG with Xgboost model outperforms different
deep learning models in terms of accuracy, precision, recall, f1-score, and specificity. Shallow Visual
Geometric Group (VGG) with Xgboost gives the highest accuracy rate of 94.47% in corn, 98.74% in
potato, and 93.91% in the tomato dataset. The models are also tested with field images of potato, corn,
and tomato. Even in field image the average accuracy obtained using shallow VGG with Xgboost are
94.22%, 97.36%, and 93.14%, respectively.

Keywords: convolutional neural network; deep learning; machine learning; transfer learning;
support vector machine; random forest

1. Introduction

Diagnosis of plant diseases using the naked eye through observation of symptoms
on plant leaves requires expertise and continuous monitoring. As there is a large number
of cultivated crops, even experienced pathologists and agronomists often fail to identify
specific diseases [1]. Timely identification of diseases is an important issue in agriculture.
If they are not identified in proper time then, there will be chances of qualitative and
quantitative crop loss. In a large firm, manual identification of diseases will be time-
consuming and expensive task. So, automated identification of plant diseases has a great
impact in qualitative production. The diseases are identified by visualizing the symptoms
on the leaf [2,3]. Several factors that affect the growth of plants and cause diseases in
plants includes temperature, relative humidity, soil moisture, etc. The diseases in plants
are roughly categorized as bacterial disease, fungal disease and viral disease [4]. The main
reason for considering the leaves of the plant to identify the diseases is that most of the
disease symptoms appear in the leaves [5,6].

It is found that various works and approaches are there in identification of plant
diseases using machine learning techniques. In machine learning, two methods are mainly
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used: hand-crafted feature extraction based classification and deep learning based classi-
fication. Identification of plant diseases using hand-crafted based method uses different
classification algorithm such as K Nearest Neighbor (KNN) [7], Support Vector Machine
(SVM) [8], Random Forest (RF) [3], Artificial Neural Network (ANN) [9], Naive Bayes
(NB), Fisher Linear Discriminant (FLD), Decision Tree (DT), etc. These classification algo-
rithms heavily depend upon the extracted features such as shape feature, texture feature,
scale-invariant feature transform (SIFT) [10], histogram of oriented gradient (HOG), gabor
transform, gray level co-occurrence matrix (GLCM) [11], gray level run length matrix
(GLRLM) [9], etc. However, extraction of these features is expensive and it is tough to
determine the optimal features from all the extracted features. Moreover, segmenting the
leaf and finding the corresponding diseased region under a complex background image is
also challenging. These may lead to unreliable classification results.

The advancement of deep learning techniques, particularly convolutional neural
network (CNN) has gained huge attention in the agriculture area. CNN does not require
any pre-processing techniques such as segmentation and feature extraction. In CNN,
the stack of convolutional layers is used to extract the features automatically. The earliest
layers in the CNN models extract the primary features such as color, edge, and texture
features, etc. Adding more layers in the CNN model, the extracted features will be more
ideal. But increasing the number of layers in CNN may cause overfit in the training set. In
addition, a network with a complex structure and a large number of layers require high
computation and memory resources. Several CNN models are applied in agricultural
field such as plant identification [12], disease detection [13,14], weed detection [15] and
pest recognition [16,17], etc. Different deep learning architectures such as AlexNet [18],
GoogleNet [19], VGG [20], ResNet [21], DenseNet [22], XceptionNet [23], etc. are used.
As the number of layers in these deep learning models are more, the generated parameters
are also high. Deep learning models are generally implemented on a high powered devices
with GPU. The execution time of these models are also high. For real time application in
agriculture, these high powered hardware may not be suitable. One of the main motivation
behind this work is to reduce the number of parameters without compromising with
the accuracy. So that these model may be suitable for smart phone based lightweight
application with high accuracy, rapid detection and low power consumption [24,25].

In this article, we have proposed shallow VGG with Xgboost and shallow VGG with
RF to identify the diseases in a plant. The base model considered in this paper is VGG19. We
have used the shallow VGG network (some layers of original VGG19) to extract the features.
The shallow VGG network uses nine layers (seven convolution layers, two max-pooling
layers) of the VGG19 model. After the 7th convolution layer with dimension 64× 64× 256,
we have used a global average pooling layer which replaces the fully connected layer and
batch normalization. After the extraction of features from the shallow VGG, the features
are fed into machine learning classifiers such as Xgboost and random forest. The reason
for selecting these two classifier is that both the classifier has generalization ability and
faster running time. RF uses a DT algorithm and combines the output of all trees to make a
decision which reduces the overfitting problem. Moreover, feature normalization is not
required in random forest. Xgboost uses both LASSO (L1) and Ridge (L2) regularization
techniques which prevent the model from overfitting.

We summarize the contribution of this article and these are as follows:

• In this paper, we have proposed two models namely: shallow VGG with Xgboost,
shallow VGG with RF to identify the diseases in plants. VGG19 is considered as the
base model of the network.

• The implemented network consists of only nine layers of VGG network with a global
average pooling layer. It differs from the original VGG19 network with no fully
connected layers in the network. This simply reduces the number of the parameter by
a huge margin. We found that shallow VGG network with machine learning classifier
performs well and shallow VGG with Xgboost classifier outperforms original VGG19.
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• Instead of using only laboratory images, we have measured the model performances
with both laboratory and field conditioned images.

• We have done an extensive experiment on the proposed model and find that, the pro-
posed model has an advantages in accuracy, precision, recall, and f1-score. Finally,
a comparative analysis of the implemented model, with other deep learning models,
and traditional hand-crafted based approaches is carried out.

The rest of the paper is organized as follows: Section 2 gives brief discussions about
the related work along with their limitations. Section 3 discussed the materials and
methodology. Experimental results, as well as the comparative analysis, are provided in
Section 4. Finally, Section 5 concludes the paper with future scope.

2. Related Work

In this section, we are going to discuss on the brief overview of the work done so far
in identification of plant diseases. In the field of agriculture, two methodologies are used
extensively to classify the diseases: first one is a traditional hand-crafted feature-based and
second one is deep learning feature-based. Recent works focus mainly on the development
of deep learning-based models such as CNN which has the ability to learn the features au-
tomatically. Mohanty et al. [26] used AlexNet and GoogleNet model for classifying 14 crop
species and 26 crop diseases. Ferentinos et al. [1] used five different CNN architectures:
AlexNet, AlexNetOWTBn, GoogLeNet, OverFeat, and VGG, to identify 58 distinct classes
and achieved the highest accuracy of 99.53% using VGG architecture. The testing dataset
used in this work to evaluate the performances of the models was part of the same dataset
that was used to train the model. The performance drops significantly when the model is
trained on laboratory images and tested on real field images. Geetharamani et al. [27] used
a nine-layer deep CNN architecture to identify different plant diseases in the Plant Village
dataset and achieved an accuracy rate of 96.46%. Extension of their work includes, collect-
ing images from various sources of different plants, different geographic areas, cultivation
conditions, etc.

Amara et al. [28] used LeNet architecture to identify banana diseases under chal-
lenging conditions such as complex background, illumination, and different orientations.
Modified AlexNet architecture was used by Liu et al. [29] to identify four different apple
diseases and they achieved an accuracy rate of 97.62% which was higher than the tradi-
tional approach. As a future work, the authors suggested detecting apple leaf diseases in
real-time conditions and with more types of apple diseases. The authors also suggested
using Faster RCNN (Regions with Convolutional Neural Network), YOLO (You Only Look
Once), and SSD (Single Shot MultiBox Detector) to identify the diseases.

Fuentes et al. [30] identified tomato diseases using Faster Region-based Convolutional
Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN).
They tested their model with several class variations and with complex backgrounds.
Brahimi et al. [31] made an effort to enhance the performance of two popular deep learning
models namely AlexNet and GoogleNet for identification of tomato leaf diseases. Reduc-
tion of the computation time and size of deep learning models for small devices was an
important issue regarding their approach.

Yang Li [16] focused on designing a simple CNN network by considering limited
computation resources and identified the cotton pest. It was achieved an accuracy rate of
95.4%. Triplet loss function was used in their approach. PD2SE-Net used by Liang et al. [32]
to diagnose the diseases in plant and severity estimation of the diseases. The network used
ResNet50 as a base model with shuffle unit as an auxiliary structure. Though It achieved a
satisfactory performance accuracy, the parameter generated in this model is much higher,
which implied the higher computational cost.

Johannes et al. [33] identified four different wheat diseases based on hot spot region.
After extraction of the hot-spot region, they categorized each region based on visual charac-
teristics. Meta classifier was used in this approach to classify the diseases. Exact extraction
of diseased region is an important issue in this work. Picon et al. [34] extended the work
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and identify these crop diseases using Residual Network (ResNet50). Yang Lu et al. [13]
proposed a small six layer deep CNN based on LeNet and AlexNet model to identify
10 different rice diseases. Choosing the optimal number of layers and neuron size is one of
the challenging issues in their deep CNN model. Different deep CNN models were used
by Sethy et al. [35] to identify four different rice diseases. In their paper, they extracted the
features from the deep learning models and classified them using an SVM classifier.

In a recent study, Barbedo et al. [36] considered lesions of the leaf instead of using the
whole leaf to identify the diseases. They achieved reliable results however the segmentation
of the lesion region is performed manually.

Pre-trained VGG net on ImageNet data with two inception module used in [37] to
identify rice diseases and achieved an accuracy of 92%. As VGG network itself generates a
large number of parameters, adding more layers to this network may increase parameters
drastically. Therefore the computation cost was more. Shallow CNN-based approach used
in [3] to identify maize, apple, and grape diseases. After the extraction of features, they
reduced the features using Principal Component Analysis (PCA) and classified using SVM
and RF and achieved accuracy in between 91–94%. While reducing the features, some of
the important features may be removed which affected the performance of this work.

Self-Attention Convolutional Neural Network (SACNN) based approach used by
Zeng et al. [38] to identify different crop leaf diseases. The network used in this work
consists of basic network (Base Net) which extracted the global features and the self-
attention (SA) network extracted the local features of the lesion area. The key issue of
SACNN based approach is keeping SA network in proper places of the Base-Net so that
the model works properly for the identification of crop diseases.

3. Materials and Methods

A generalized overview of the identification of plant diseases using shallow VGG is
presented in Figure 1. To implement our proposed work, firstly, the images of diseased
leaves of corn, tomato, and potato are collected from the Corn [39] and PlantVillage [26]
dataset as well as from the field. Then the images are labeled according to the disease
classes based on expert knowledge in case of field images. After that, pre-processing of
images is performed which includes resizing of images, filtering of images, and different
data augmentation techniques such as rotation, flipping, zca whitening, and shifting to
increase the dataset size. The training and the testing images are fed into the shallow VGG
model and the features are extracted. At last, we have used two different machine learning
classifiers to classify the diseased leaf images. A detailed description of the implemented
models is discussed in subsequent sub-sections.
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Figure 1. Overall flow diagram of plant disease identification system.

3.1. Convolutional Neural Network

Convolutional Neural Network (CNN) is a deep learning technique used mainly
in recognition and classification purposes. In comparison with hand-crafted traditional
approaches, CNN has the potential to perform better. It has the ability to learn the robust
features directly from the input images. Whereas, to classify in the traditional hand-crafted
feature-based approach, we need to extract the features separately. Different popular
deep CNN models are used in identification of plant diseases such as AlexNet [40], VGG
net [20,41], InceptionV3 [14,42], ResNet50 [35], DenseNet [35], etc. From the research,
it is shown that deep CNN-based models can achieve better performance accuracy in
identification of plant diseases. Typically a CNN consist of convolutional layer, pooling
layer, and fully connected layer [13].

The convolutional layer is the main component in CNN, which extracts the features
of the input images using different convolutional kernel. The output of the convolutional
operation is computed as:

xj = I ∗Wj + bj where j = 1, 2, . . . . . . F (1)

here, xj is the output feature corresponds to jth convolution filter, Wj is the corresponding
weight, bj is the bias and F is the number of filter.

Poling layer down-samples the input vector and avoids over-fitting in the output.
The pooling layer reduces the computational complexity of the model. The output of the
pooling layer is evaluated as :

xk
i = down(xk−1

i , s) (2)

where down() represents the downsample, xk−1
i represents the feature vector of previous

layer and s represents the pool size. Max pooling and average pooling are two commonly
used pooling operation.

After the convolutional and pooling layer, several fully connected layers are there
which transform the output of the previous layer to a single column vector. Usually,
softmax function is used for multi-class prediction. Dropout regularization is used to
decrease the neuron size and to avoid over-fitting. The softmax function is written as:

so f tmax(zj) =
ezj

∑K
k ezk

f or (j = 1, 2, . . . . . . K) (3)
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where K represents the dimension of z vector.

3.2. Visual Geometry Group (VGG19)

In recent times, several popular deep learning models such as AlexNet, VGGNet,
ResNet, Inception, DenseNet, Xception, etc., have been used in the identification of plant
diseases. Among this model, VGG is a relatively simple network developed by Simonyan
and Zisserman [20]. VGG network consists of several convolution layer and pooling layer
with different numbers of filter. VGGNet has two models VGG16 and VGG19. VGG16
consists of 16 convolutions and pooling layer with fully connected layer. VGG19 consist of
19 convolutions and pooling layer with fully connected layer. The number of parameters
generated in the VGG network is 140 million. The VGG network is pre-trained on a large
dataset (ImageNet) with 1000 categories.

In our work, we have used shallow VGG model which takes nine layers of the VGG19
model that includes 7 convolution layer and 2 max-pooling layer. The input size used
in our implemented model is 256× 256× 3 and after performing the convolution and
pooling operation the output size is 64× 64× 256. Instead of a fully connected layer, we
have used global average pooling layer which reduces the number of parameters and
dropout layer. The dropout layer plays an important role in reducing the overfitting
problem of the network. After extracting the features using Shallow VGG, we have
classified them using Random forest and Xgboost classifier. The parameter generated
in our implemented model is 1.73 million which is much lesser in comparison with the
original VGG19 model. Tables 1 and 2 show the parameter generated on VGG19 and
shallow VGG model, respectively.

Table 1. Related parameter and output size of original VGG19 model.

Layers Kernel Size Output Size Parameter

Input - (256, 256, 3) -
Block1−conv1 3 × 3 (256, 256, 64) 1792
Block1−conv2 3 × 3 (256, 256, 64) 36,928
Block1−pool 2 × 2 (128, 128, 64) -
Block2−conv1 3 × 3 (128, 128,128) 73,856
Block2−conv2 3 × 3 (128, 128, 128) 147,584
Block2−pool 2 × 2 (64, 64, 128) -
Block3−conv1 3 × 3 (64, 64, 256) 295,168
Block3−conv2 3 × 3 (64, 64, 256) 590,080
Block3−conv3 3 × 3 (64, 64, 256) 590,080
Block3−conv4 3 × 3 (64, 64, 256) 590,080
Block3−pool 2 × 2 (32, 32, 512) -
Block4−conv1 3 × 3 (32, 32, 512) 1,180,160
Block4−conv2 3 × 3 (32, 32, 512) 2,359,808
Block4−conv3 3 × 3 (32, 32, 512) 2,359,808
Block4−conv4 3 × 3 (32, 32, 512) 2,359,808
Block4−pool 2 × 2 (16, 16, 512) -
Block5−conv1 3 × 3 (16, 16, 512) 2359808
Block5−conv2 3 × 3 (16, 16, 512) 2,359,808
Block5−conv3 3 × 3 (16, 16, 512) 2,359,808
Block5−conv4 3 × 3 (16, 16, 512) 2,359,808
Block5−pool 2 × 2 (8, 8, 512) -
Global Average Pooling - (512) -
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Table 2. Related parameter and output size of shallow VGG model.

Layers Kernel Size Output Size Parameter

Input - (256, 256, 3) -
Block1−conv1 3 × 3 (256, 256, 64) 1792
Block1−conv2 3 × 3 (256, 256, 64) 36,928
Block1−pool 2 × 2 (128, 128, 64) -
Block2−conv1 3 × 3 (128, 128,128) 73,856
Block2−conv2 3 × 3 (128, 128, 128) 147,584
Block2−pool 2 × 2 (64, 64, 128) -
Block3−conv1 3 × 3 (64, 64, 256) 295,168
Block3−conv2 3 × 3 (64, 64, 256) 590,080
Block3−conv3 3 × 3 (64, 64, 256) 590,080
Global Average Pooling - (256) -

3.3. Extreme Gradient Boosting (Xgboost)

Xgboost is a decision tree based ensemble learning algorithm designed by Chen
and Guestrin. It is used mainly in classification and regression problem [43]. It uses
gradient boosting framework. In prediction of unstructured data it outperforms all other
classification algorithm. The final prediction of the output can be represented as:

ŷi = ϕ(xi) =
K

∑
k=1

fk(xi), fk ε F, (4)

where the xi are the training set and their corresponding class labels is represented by yi.
fk is the leaf score for the kth tree and F is the set of all K scores for all regression trees.
Regularization is applied in Xgboost to improve the result.

L (ϕ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (5)

The term l in Equation (5) represents the loss function which signifies how well the
model fit into the training data. Loss function is the squared difference between predicted
output ŷi and actual output yi. The term Ω represents the regularization which measures
the complexity of the tree. Optimizing the regularization encourages generalized simpler
model and avoids overfitting.

Ω( f ) = γT +
1
2

λ
T

∑
j=1

w2
j (6)

Regularization uses two parameter. T is the number of leaves in ith tree and w defines
the weight in each leaves. γ and λ are constants that controls the degree of regularization.

L (t) '
n

∑
i=1

[
l(yi, ŷ(t−1)) + gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (7)
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The gi indicates the first order differentiation gi = ∂ŷ(t−1)(yi− ŷ(t−1))2 and hi indicates
the second order differentiation hi = ∂2

ŷ(t−1)(yi − ŷ(t−1))2. After removing the constant
term the simplified objective at step t is represented as:

L̃ (t) '
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft)

=
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ γT +

1
2

λ
T

∑
j=1

w2
j

=
T

∑
j=1

(∑
iεIj

gi)wj +
1
2
(∑

iεIj

hi + λ)w2
j

+ γT

(8)

where Ij = {i|q(xi) = j} defines the instance set of leaf j. For a given fixed tree structure
q(x), the optimal weight w∗j of each leaf j is computed as:

dLt

dw∗j
= 0

w∗j = −
∑iεIj

gi

∑iεIj
hi + λ

(9)

and evaluated the corresponding optimal value as:

L̃ (t)(q) = −1
2

T

∑
j=1

(∑iεIj
gi)

2

∑iεIj
hi + λ

+ γT (10)

Finally a greedy algorithm is used which starts from node 0 to build the tree. Assuming
that IL is the instance set of left node and IR is the instance set of right node after the split
and I = IL ∪ IR, the loss reduction after split can be mathematically represented as:

Lsplit =
1
2

[
(∑iεIL

gi)
2

∑iεIL
hi + λ

+
(∑iεIR

gi)
2

∑iεIR
hi + λ

− (∑iεI gi)
2

∑iεI hi + λ

]
− γ (11)

3.4. Random Forest (RF)

Random forest [44] is a decision tree based supervised machine learning algorithm
used for classification and regression problem. RF generates multiple decision trees using
randomly selected subset of training data. Because of high classification accuracy, RF is
more popular in classification problems. Growing the forest depends on the number of
tree generated. It is a user defined function. The generated trees have high variance and
low bias [44]. The final prediction is made by averaging all the class probabilities from the
trees [45]. The new test sample is evaluated against the trees in the ensemble and each tree
voted for a class. The class with the maximum votes will be the final predicted output.

3.5. Proposed Approach

As mentioned, Visual Geometry Group (VGG) is a widely used deep learning model
amongst all the models and also highly portable in nature. Though VGG is a simple
architecture with convolution and pooling layers, the number of parameters generated in
the VGG network is relatively high and it is more than 140 million. The VGG network is pre-
trained on a large dataset (ImageNet) with 1000 categories. In [3] the author showed that
instead of using a large deep network, shallow CNN provide enough feature information
to classify. Instead of training the model with randomly initialized weights, we have used
the pre-trained network which is trained on a large dataset. Figure 2 shows the VGG19
model and in our work, we have used only 7 convolution and 2 pooling layers from the
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pre-trained network. VGG19 is considered the base model. After the 7th convolution
layer, we have replaced all convolution layer, pooling layer, and fully connected layer with
the Global Average Pooling layer and Batch Normalization layer. The modified VGG19
network is named as shallow VGG network.

Figure 2. Basic VGG19 architecture with transfer learning process.

Firstly, the images of plant leaves are pre-processed and fed into the shallow VGG
network. The input size used in our model is 256× 256× 3. The convolution layers of
the network extract the features and pooling layers are used to reduce the dimension of
the features. Instead of using a fully connected layer on top, we have used global average
pooling. Global average pooling has an advantage over a fully connected layer is that it is
more familiar to the convolution structure. Another advantage is that overfitting can be
avoided in the global average pooling layer since there is no parameter to optimize [46].
The model first extracts the features by 3 × 3 convolution with 64 filters. Next, 2 × 2
max-pooling is used which reduces the feature dimension and computation. Next 3× 3
convolution is used with 128 filter to extract the features. The second 2× 2 max-pooling
layer further reduces the feature dimension. The third block of convolutional layer uses
3× 3 convolution and 256 filter. At last global average pooling layer is used and it generates
256 neurons which is used for classification. Later, dropout is used to reduce over-fitting
and also to improve the generalization of the model. After that classification of the diseased
leaves are performed using Random forest and Xgboost classifier. Figure 3 shows the
proposed model used in the identification of plant diseases. The parameter used in this
shallow VGG network is shown in Table 2.

Figure 3. Proposed shallow VGG architecture.

The shallow VGG model has two parts. one part is using this shallow network to
extract the features and the next part is used to classify using two classical machine learning
classifiers such as random forest and Xgboost classifier. The shallow VGG reduces the
parameter by a large margin. Hence, the computational cost of this model is much less in
comparison to the VGG19 model.
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4. Results and Discussion
4.1. Experiment Setup

In our experiment, all the pre-processing, CNN based feature extraction and clas-
sification are performed in Anaconda-python 3.6 with jupyter notebook environment.
The model is implemented using keras-libray, OpenCV-python3 library, etc. The experi-
ment is conducted on Intel(R) Core (TM) i7-6700 CPU at 3.40 GHz with 8 GB memory.

4.2. Data Acquisition

In this work, we have used publicly available corn dataset [39] and PlantVillage [26]
open dataset. From the PlantVillage dataset specially potato and tomato leaf diseases
are considered. The corn dataset consists of 4188 images of four different categories
diseases namely Blight, Common rust, healthy, Gray leaf spot. Potato leaf images consist
of 7128 images of 3 categories of diseases, such as early blight, late blight, and healthy
images. Tomato leaf images consist of 7399 images of four different categories of diseases,
such as bacterial spot, early blight, healthy, and late blight images. Moreover, some
field conditioned images captured under non-uniform illumination. Field background
conditioned images are taken using smartphone from Shillong, India, region and are also
used to train the network and to evaluate the performances. The captured images are
labeled according to the class name of the diseases. While capturing the image, images
are captured in such a way that the image contains the region of interest. Different data
augmentation techniques such as flipping, rotation, horizontal and vertical shifting, zca
whitening are used to increase the number of images in the dataset as deep learning requires
large volume of data to obtained better outcome [27]. The images are pre-processed and
resized to 256× 256 pixel to fit in the model. The dataset is splitted randomly in the ratio
of 80% training and 20% testing ratio. Table 3 summarizes the dataset used along with
the number of images in the actual dataset and images captured in field condition. Some
samples of these datasets are shown in Figure 4.

Figure 4. Sample images of the diseased and healthy image.
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Table 3. Dataset description.

Name of the Dataset Class Images in
Dataset

Train
Images

Test
Images

Field
Images Total

Corn disease data 4 4188 3350 838 312 4500

Potato disease data 3 7128 5702 1426 570 7698

Tomato disease data 4 7399 5919 1480 423 7822

4.3. Results

To evaluate the performances of the implemented model, we have used different
performance measure metrics such as accuracy, precision, recall, specificity, and f1-score.
To evaluate these metrics we need several indices such as True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN). TP is the correctly classified images
in a particular category. FP is the number of wrongly classified images, whereas TN is
the sum of the correctly classified images in all other categories and FN is the number of
misclassified images from the relevant category. The performance metrics are calculated
using the following equations

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

Speci f icity =
TN

TN + FP
(15)

f 1-score =
2× precision× recall

precision + recall
(16)

Table 4 shows the performances of the implemented models. From Table 4, it can
be observed that Shallow VGG with Xgboost has better performance in all the indices
such as precision, recall, f1-score, and accuracy. The accuracy obtained in shallow VGG
with Xgboost is 0.9447, 0.9874, 0.9391 in corn, potato, and tomato, respectively. The values
obtained in all indices using Shallow VGG with Xgboost is far better than the shallow VGG
with RF and VGG19 model. Moreover, the number of the parameters is also important
which determines the computational cost of the model. From Table 4, it can be seen that
the number of parameter used in our implemented shallow VGG model is much less as
compared with the original VGG19 model. Our implemented Shallow VGG network uses
only 8% of the total parameter as compared to the VGG19 model.
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Table 4. Performance comparison of the implemented models.

Dataset Parameter Shallow VGG-Xgboost Shallow VGG-RF VGG-Softmax

Corn

Precision 0.9298 0.8904 0.8942
Recall 0.9345 0.9102 0.8756

F1-score 0.9321 0.9002 0.8849
Accuracy 0.9447 0.9201 0.8961
Parameter 1,735,488 1,735,488 20,173,700

Potato

Precision 0.9875 0.9626 0.9767
Recall 0.9907 0.9634 0.9771

F1-score 0.9890 0.9630 0.9769
Accuracy 0.9874 0.9628 0.9772
Parameter 1,735,488 1,735,488 20,173,700

Tomato

Precision 0.9384 0.8658 0.9291
Recall 0.9388 0.8678 0.9354

F1-score 0.9385 0.8668 0.9322
Accuracy 0.9391 0.8675 0.9279
Parameter 1,735,488 1,735,488 20,173,700

Figures 5–7 are the confusion matrix of the three different plant species(corn, potato,
tomato) for shallow VGG with RF and shallow VGG with Xgboost, respectively. It is
seen that both the model perform well but from Figures 6b and 7a,b shows significant
improvement using shallow VGG with Xgboost. Misclassified sample reduces from 34 in
Figure 5a to 18 in Figure 6b in corn diseases. Still, the maximum misclassified class belongs
to class 2. In the case of tomato diseases, misclassified sample reduces from 33 in Figure 6a
to 16 in shallow VGG with Xgboost as shown in Figure 7b. Both the model performs well
in identification of healthy classes.

(a) (b)
Figure 5. Confusion matrix of shallow VGG with RF (a) corn diseases (b) potato diseases.

We evaluated the performances of the model for each dataset separately. Figure 6b
shows the prediction results of corn diseases and its corresponding performances for each
class are shown in Table 5. It is seen that 18 samples of “grey leaf spot” diseases are
classified as “blight” diseases. Out of 652 images, 616 images are predicted correctly in
shallow VGG with Xgboost. From Table 5, it is seen that the average precision, recall,
and specificity obtained is 92.98%, 93.45%, and 98.27%, respectively. Figure 7a shows the
prediction results of potato diseases and amongst the three plants, the implemented model
achieves the highest accuracy rate of 98.74% in potato disease detection. On the other hand,
the performance accuracy of tomato disease identification is a little bit lesser in comparison
with corn and potato. The average accuracy obtained in tomato disease identification is
93.91%. From Tables 5–7, it is seen that the average specificity obtained in each class is
more than 95%, which proves that the implemented shallow VGG with Xgboost model has
significant ability to identify the plant diseases.
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(a) (b)
Figure 6. (a) Shallow VGG with RF on tomato diseases (b) Shallow VGG with Xgboost on corn.

(a) (b)
Figure 7. Confusion matrix of shallow VGG with Xgboost (a) potato diseases (b) tomato diseases.

Table 5. Performance evaluation of individual classes of corn diseases using VGG and Xgboost.

Disease Class Precision Recall Specificity

Blight 89.61 88.46 96.77
Common rust 100.00 99.39 100.00
Grey leaf spot 82.30 87.73 96.33
Healthy 100.00 98.21 100.00
Average 92.98 93.45 98.27

Table 6. Performance evaluation of individual classes of potato diseases using VGG and Xgboost.

Disease Class Precision Recall Specificity

Early blight 98.35 100.0 99.15
Late blight 98.96 98.76 99.46
Healthy 98.90 98.47 99.48
Average 98.74 99.07 99.36

Table 7. Performance evaluation of individual classes of Tomato diseases using VGG and Xgboost.

Disease Class Precision Recall Specificity

Bacterial spot 96.85 92.64 98.90
Early blight 86.91 91.92 95.80
Late blight 93.04 92.36 97.74
Healthy 98.59 98.59 99.52
Average 93.84 93.88 97.99

Moreover, Area Under the Receiver Operating Characteristics (AUC-ROC) is also
an important evaluation metric in classification problems. Here, ROC is defined as the
probability curve, and AUC is the degree of separability between the classes. ROC curve
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is plotted with True Positive Rate (TPR) against False Positive Rate (FPR). TPR tells the
proportion of the positive class that got correctly classified. FPR tells the proportion of the
negative class that got incorrectly classified by the classifier.

TPR =
TP

TP + FN
(17)

FPR =
FP

FP + TN
(18)

Figures 8–10. shows the AUC-ROC curve of different testing datasets of individual
classes using Xgboost and RF classifier. From Figures 8a–10a, we can conclude that
implemented shallow VGG with Xgboost model has better ability to distinguish between
the classes than shallow VGG with RF.

(a) (b)
Figure 8. AUC-ROC curve of Potato diseases (a) shallow VGG with Xgboost (b) shallow VGG
with RF.

(a) (b)
Figure 9. AUC-ROC curve of corn diseases (a) shallow VGG with Xgboost (b) shallow VGG with RF.
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(a) (b)
Figure 10. AUC-ROC curve of tomato diseases (a) shallow VGG with Xgboost (b) shallow VGG
with RF.

To test the effectiveness of the implemented models we have used k-fold cross-
validation with k value of 10. Figure 11 shows the mean accuracy value obtained in shallow
VGG with Xgboost, shallow VGG with RF and VGG-19 after performing cross-validation.
From Figure 11 it is seen that shallow VGG with Xgboost gives better performance accuracy.
We also performed a statistical hypothesis test [47] on shallow VGG with Xgboost and
shallow VGG with RF. We perform a paired ttest on these models and obtained p-value as
0.028 which is much less and from this value, we can say that shallow VGG with Xgboost
is statistically significant.

Figure 11. Mean accuracy value of shallow VGG with Xgboost and shallow VGG with RF and VGG19.

To evaluate the shallow VGG with Xgboost is overfitted or not, we divide the dataset
into 80% training and 20% validation ratio and evaluate the loss and error rate. Figure 12a,b
shows the loss and error of shallow VGG with Xgboost model for each epoch on training
and validation data. From Figure 12a,b, it is seen that the loss and error rate gradually
decreases at each epoch and we can conclude that there is no overfitting occurs in the
implemented model.

(a) (b)
Figure 12. (a) Logarithmic loss in Shallow VGG with Xgboost (b) Classification error in shallow VGG
with Xgboost.
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We have also evaluated the time requirement to train the models. Table 8 shows
the required training time along with the average performance accuracy of the models.
From Table 8, it is seen that the shallow VGG network takes much less time in comparison
with the original VGG19 model.

Table 8. Model performances along with required training time.

Model Avg. Accuracy (%) Epoch Training Time (s)

VGG19 93.37 50 1698 s/epoch
Shallow VGG with Xgboost 95.70 10 (fold) 223.42
Shallow VGG with RF 91.68 10 (fold) 8.41

The implemented models were trained and tested individually on augmented and non
augmented datasets. Figure 13 compares the performances and it shows that the average
performance accuracy of the models improved on the augmented dataset.

Figure 13. Mean accuracy on augmented and non augmented dataset.

To verify the effectiveness of the model, the model is tested on-field images of potato,
corn, and tomato disease images which are captured with complex backgrounds and with
different illumination conditions. The images are pre-processed and resized to 256× 256
to be fed into the model. Firstly, the model is trained with both laboratory as well as
field images. After the training is over, the performance of the model is evaluated using
field images. Table 9 shows the performances of the implemented models in corn field
images. From Table 9, it is seen that the prediction accuracy obtained using shallow VGG
with Xgboost is higher than VGG19 and shallow VGG with RF. Tables 10 and 11 show the
performances on potato and tomato field images and we can see that shallow VGG with
Xgboost gives higher performances than VGG19 and shallow VGG with RF.

Table 9. Performance evaluation on corn field images.

Model Accuracy Precision Recall F1-Score

Shallow VGG with Xgboost 0.9422 0.9237 0.9310 0.9273
Shallow VGG with RF 0.9102 0.8984 0.9101 0.9042
VGG19 0.8842 0.8792 0.8823 0.8807
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Table 10. Performance evaluation on potato field images.

Model Accuracy Precision Recall F1-Score

Shallow VGG with Xgboost 0.9736 0.9729 0.9742 0.9735
Shallow VGG with RF 0.9474 0.9461 0.9439 0.9449
VGG19 0.9698 0.9691 0.9674 0.9682

Table 11. Performance evaluation on tomato field images.

Model Accuracy Precision Recall F1-Score

Shallow VGG with Xgboost 0.9314 0.9275 0.9329 0.9301
Shallow VGG with RF 0.8534 0.8464 0.8495 0.8475
VGG19 0.9007 0.8959 0.8993 0.8976

We have compared the performances of our implemented model with some popular
deep learning techniques used in identification the diseases in the plant. Table 12 shows
the performance comparison of proposed models with other deep learning models along
with the number of the parameter used. From Table 12, we can conclude that our proposed
model achieves higher performances than other deep learning models with less number
of parameters.

Table 12. Performance comparison with other deep learning techniques.

Paper Method Parameter Accuracy/Precision/Recall
(%)

J. Chen [37] INC-VGGN more than 138 million test accuracy: 84.25 (corn)
test accuracy: 92.00 (rice)

Yan li [3]

Shallow CNN 260,160
precision: 94.00 (maize)
recall: 94.00 (maize)
f1-score: 94.00 (maize)

Xception 20,869,676
precision: 82.00 (maize)
recall: 78.00 (maize)
f1-score: 75.00 (maize)

Inception V3 21,810,980
precision: 71.00 (maize)
recall: 41.00 (maize)
f1-score: 32.00 (maize)

Zeng [38] SACNN - test acc: 95.33
(AES-CD9214 dataset)

Sethy [35]

ResNet50 with SVM - test acc: 97.87 (rice)

DenseNet-201 20,242,984 training acc: 84.13 (rice)

ResNet-50 23,587,712 training acc: 70.41 (rice)

Proposed ShallowVGG
with Xgboost 1,735,488

test acc: 94.47 (corn)
98.74 (potato)
93.91 (tomato)

Proposed Shallow VGG with RF 1,735,488
test acc: 92.01 (corn)
96.28 (potato)
86.75 (tomato)

5. Conclusions

Diseases in plants are one of the main reasons that directly affect in quality of agricul-
tural crops. Therefore timely identification of plant diseases is highly desired to protect
the quality of the crops. Deep learning techniques, particularly CNN architectures show
promising results in comparison with hand-crafted based approaches. In this paper, we
proposed two models namely shallow VGG with RF and shallow VGG with Xgboost
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to identify the diseases in plants. We have modified the pre-trained VGG19 model and
used first nine layers and replaced the rest layers with a global average pooling layer.
The average performance accuracy obtained using shallow VGG with Xgboost is 95.70%,
whereas the performance accuracy obtained in shallow VGG with RF is 91.68%. From the
result, we can conclude that shallow VGG with Xgboost performs better in comparison
with other deep learning models and hand-crafted based approaches. One of the major
advantages in the proposed model is that, the model performs better with fewer parameters
in comparison with VGG19 and other deep learning models. Moreover, the number of
parameter generated this work is 1,735,488 which is much less as compared to original
VGG19 model. The computation time of our proposed approach is much lesser in com-
pared to the other deep learning models. Moreover, the Xgboost classifier has the ability to
deal with the overfitting problem by adjusting the model parameter such as depth of the
network, learning rate. In future work, we will try to implement the proposed model on
lightweight smart devices for automated identification of plant diseases. Similarly efforts
will be made to identify the plant diseases, using other different parts of the plants such as
flowers, stem etc.
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45. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.

Remote Sens. 2016, 114, 24–31. [CrossRef]
46. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
47. Dietterich, T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998,

10, 1895–1923. [CrossRef]

http://dx.doi.org/10.3389/fpls.2017.01852
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1162/089976698300017197

	Introduction
	Related Work
	Materials and Methods
	Convolutional Neural Network
	Visual Geometry Group (VGG19)
	Extreme Gradient Boosting (Xgboost)
	Random Forest (RF)
	Proposed Approach

	Results and Discussion
	Experiment Setup
	Data Acquisition
	Results

	Conclusions
	References

